
www.manaraa.com

www.manaraa.com

Mechanical Design: Theory and Methodology

www.manaraa.com

Springer Science+Business Media, LLC

www.manaraa.com

Manjula B. Waldron
Kenneth J. Waldron
Editors

Mechanical Design:
Theory and Methodology

With 109 Illustrations

i Springer

www.manaraa.com

Kenneth J. Waldron Manjula B. Waldron
Biomedical Engineering Center
Ohio State University
Columbus, OH 43210

Department of Mechanical Engineering
Ohio State University
Columbus, OH 43210

USA USA

Library of Congress Cataloging-in-Publication Data

Mechanical design: theory and methodology / edited by Manjula B.
Waldron, Kenneth J. Waldron.

p. cm.
Includes bibliographical references
ISBN 978-1-4757-2563-6 ISBN 978-1-4757-2561-2 (eBook)
DOI 10.1007/978-1-4757-2561-2

1. Engineering design-Data processing. 2. Computer-aided design.
1. Waldron, Manjula B. II. Waldron, Kenneth J.
TA174.M384 1996
620' .OO42'0285-dc20 95-37685

Printed on acid-free paper.

© 1996 by Springer Seienee+Business Media New York
Originally published by Springer-V erlag New York Ine. in 1996
Softeover reprint of the hardcover 1 st edition 19%

CIP

AII rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the Dublisher (Springer Seienee+Business Media, LLC), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form
of information and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
byanyone.

Production managed by Laura Carlson; manufacturing supervised by Joseph Quatela.
Typeset by Asco Trade Typesetting Ltd., Hong Kong

9 8 7 6 5 4 3 2 1

ISBN 978-1-4757-2563-6 SPIN 10034603

www.manaraa.com

Preface

This volume, Mechanical Design: Theory and Methodology, has been put
together over the past four years. Most of the work is ongoing as can be
ascertained easily from the text. One can argue that this is so for any text or
monograph. Any such book is only a snapshot in time, giving information
about the state of knowledge of the authors when the book was compiled.
The chapters have been updated and are representative of the state of the art
in the field of design theory and methodology.

It is barely over a decade that design as an area of study was revived,
mostly at the behest of industry, government, and academic leaders. Profes
sor Nam Suh, then the head of the Engineering Directorate at the National
Science Foundation, provided much of the impetus for the needed effort.
The results of early work of researchers, many of whom have authored
chapters in this book, were fundamental in conceiving the ideas behind
Design for X or DFX and concurrent engineering issues. The artificial intelli
gence community had a strong influence in developing the required com
puter tools mainly because the field had a history of interdisciplinary work.
Psychologists, computer scientists, and engineers worked together to under
stand what support tools will improve the design process. While this influ
ence continues today, there is an increased awareness that a much broader
community needs to be involved.

This volume is a small step. It compiles information currently available in
the field of design theory and methodology. The information provided ad
dresses process and product issues. Most of the authors emerged from, or
are associated with, mechanical engineering design, hence the title contains
"mechanical design." This is to accommodate the current discipline-specific
culture and provides this volume with a disciplinary home. However, the in
formation contained easily extends to any other engineering discipline as well.

The aim of this book is to provide the reader with both the theory and the
applications of design methodology. It captures current research results in
the field and provides a compendium on which design educators can base
their design teaching philosophies. Chapters from this book were success
fully used in teaching an integrated product design course.

v

www.manaraa.com

vi Preface

All of the contributors to this volume are active researchers in the area of
design theory and methodology and have each made significant contribu
tions to this field. Every chapter is self-contained and is readable without
assistance from any other chapter. The organization of the book requires
explanation. As with any organization, one can arrange material in many
different ways. Our organization is somewhat unique for we have included
both product- and process-related issues. The structure of this volume re
flects these dimensions. The chapters span theory to application, process and
product tools, and information flow, from specific domain knowledge repre
sentation to more general analogical reasoning, from single concept design
to life cycle design and quality issues.

The completion of this volume is largely due to the timely contributions
and revisions by the authors. We would like to acknowledge the patience of
the contributors and their willingness to revise their work as they waited for
the publication of this volume. Thanks are also due to Myrtis Smith, Soo
Won Kim, and Debbie Wong for their assistance in contacting authors,
formatting of chapters, and various required tasks which they performed.
Thanks are also due to our children, Andrew, Lalitha, and Paul, who did not
complain while we spent long hours in the evenings and on weekends com
pleting this volume rather than spending time with them.

MANJULA B. wALDRON
KENNETHJ. WALDRON

www.manaraa.com

Contents

Preface v
Contributors IX

1. Introduction 1
Kenneth J. Waldron and Manjula B. Waldron

2. The Influence of the Designer's Expertise on the
Design Process 5
Manjula B. Waldron and Kenneth J. Waldron

3. Methods of Studying Mechanical Design 21
Manjula B. Waldron and Kenneth J. Waldron

4. Design Characterizations 35
Manjula B. Waldron and Kenneth J. Waldron

5. An Observational Methodology for Studying
Group Design Activity 52
John C. Tang and Larry J. Leifer

6. Representation of Conceptual Mechanical Design
Knowledge 71
Albert Esterline, Megan Arnold, Donald R. Riley,
and Arthur G. Erdman

7. Configuring Systems Using Available Assets:
A Conceptual, Decision-Based Perspective 127
P. N. Koch, J. D. Peplinski, F. Mistree, and
J. K. Allen

vii

www.manaraa.com

viii Contents

8. Group Decision Making in Design 161
Deborah L. Thurston

9. Routineness Revisited 195
Dave Brown

10. A Comparative Analysis of Techniques in
Engineering Design 209
Srikanth M. Kannapan and Kurt M. M arshek

11. A Data Representation for Collaborative
Mechanical Design 237
Richard L. Nagy, David G. Ullman, and
Thomas Dietterich

12. Characterizing Human Analogical Reasoning 254
Beth Adelson

13. Entropy Measures in Engineering Design 275
Ronald S. LaFleur

14. Design Education 299
Kenneth J. Waldron and Manjula B. Waldron

15. Life-cycle Design 312
K. Ishii

16. Support for Workflow Process Collaboration 329
Jay Ramanathan

17. Improved Total Development Process:
Overcoming the Ten Cash Drains 365
Don Clausing

www.manaraa.com

Contributors

Beth Adelson
Rutgers University
Camden, New Jersey

Janet K. Allen
Systems Realization Laboratory
The Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

Megan Arnold
Department of Civil Engineering
University of Minnesota
Minneapolis, Minnesota

David C. Brown
Professor
Artificial Intelligence Research Group
Computer Science Department
Worcester Polytechnic Institute
Worcester, Massachusetts

Don Clausing
Professor of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts

Thomas G. Dietterich
Professor
Department of Computer Science
Oregon State University
Corvallis, Oregon

ix

www.manaraa.com

x Contributors

Arthur G. Erdman
Professor
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota

Albert Esterline
Department of Computer Science
North Carolina A&T State University
Greensboro, North Carolina

K. Ishii
Associate Professor
Department of Mechanical Engineering
Stanford University
Stanford, California

Srikanth M. Kannapan
Xerox Corporation
Design Research Institute
Cornell University
Ithaca, New York

Patrick Nathan Koch
Systems Realization Laboratory
The Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

Ronald S. LaFleur
Department of Mechanical and Aeronautical Engineering
Clarkson University
Potsdam, New York

Larry J. Leifer
Center for Design Research
Mechanical Engineering Department
Stanford University
Stanford, California

KurtM. Marshek
Department of Mechanical Engineering
The University of Texas at Austin
Austin, Texas

www.manaraa.com

Farrokh Mistree
Professor of Mechanical Engineering
Systems Realization Laboratory
The Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

Richard L. Nagy
Energy Investment Inc.
Fremont, California

Jesse David Peplinski
Systems Realization Laboratory
The Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

Jay Ramanathan, PhD
Director of Knowledge Integration Center
UES, Inc.
Dublin, Ohio

Donald R. Riley
Professor
Department of Mechanical Engineering

Contributors xi

Associate Vice President for Academic Affairs and Information Technology
University of Minnesota
Minneapolis, Minnesota

John C. Tang
Sun Microsystems, Inc.
Mountain View, California

Deborah L. Thurston
Associate Professor
Department of General Engineering
University of Illinois Urbana
Urbana, Illinois

David G. Ullman
Professor of Machine Design
Department of Mechanical Engineering
Oregon State University
Corvallis, Oregon

www.manaraa.com

xii Contributors

Kenneth J. Waldron, PhD, PE
The John B. Nordholt Professor and Chairman
Department of Mechanical Engineering
The Ohio State University
Columbus, Ohio

Manjula B. Waldron, PhD
Professor
Biomedical Engineering Center
The Ohio State University
Columbus, Ohio

www.manaraa.com

1
Introduction

KENNETH J. WALDRON AND MANJULA B. WALDRON

The distinction between an engineer and a scientist is often forgotten. The
difference is that the engineer is occupied with the creation of new artifacts,
technologies, or systems, while the scientist is focused on understanding the
physical world. To be sure, that understanding is essential to the creation of
new technologies, but it is only the foundation upon which the engineer must
build.

The creative or synthetic parts of engineering activity are mostly embodied
in design and manufacture. These activities are inextricably bound together.
Engineering design can be viewed as planning for manufacture. Manufacture
is the act of turning that design into an artifact. History has repeatedly
shown that attempts to isolate these as two separate activities have always
led to inferior results. Strenuous efforts to improve manufacturing processes
and manufacturing systems, which can be observed in many industries at
the present time, will not lead to world-class products without world-class
design.

The Challenges of the Design Process in
Modern Engineering

The technical and professional environment in which a design engineer must
operate is very different from that of even a few years ago. Technologies have
advanced rapidly, and current engineering practice features a high level of
integration of technologies that were once regarded as separate technical
domains. This means that the designs of many products require skills and
knowledge that cannot be encompassed by a single individual, or even a
small group of individuals. Engineering design has become a team activity.

Communication has become one of the most important elements of the
design process. This is ironic because engineering has traditionally been
regarded as an appropriate career for those who are mathematically gifted
but who score poorly in communication subjects. Traditionally, design engi
neers communicated their designs to manufacturers graphically by sets of

www.manaraa.com

2 Kenneth J. Waldron and Manjula B. Waldron

working drawings. Verbal communication was limited to writing specifica
tions and part lists. The complete inadequacy of this mode of operation has
become abundantly clear. Not only is it essential for engineers from different
technical domains to communicate freely throughout the design process, but
it is necessary that communication with the manufacturers be bidirectional
and take place throughout the design process. Communication with other
members of the organization, particularly those who will be responsible for
selling and servicing the product, is equally vital.

The impact of the social environment is also important. A feeling has
developed in society that technology must be controlled. Regulations im
posed on industries are society's attempt to achieve control. At the same
time, tort litigation against manufacturing industries has had a great impact
on the economics of those industries. This has created an increasingly com
plex legal and regulatory environment within which the design team must
operate. It mandates effective communication between the designers and the
legal and regulatory experts.

At the same time, competitive pressures are impelling companies continu
ally to seek to shorten product cycle times. It is no longer possible to wait
until one stage of the design process is completed before starting the next. As
far as possible, design and manufacturing processes must proceed in parallel.
Considerable ingenuity is involved in designing process plans to accomplish
projects in a highly parallel fashion when parts of the project are dependent
on information developed in other parts of the company. Sometimes risks
are taken and design features and ranges of values of specifications are
assumed in order to allow progress in other areas before those features have,
in fact, been developed.

All of the above impacts the engineering design process and the designers
who perform the process. Careful planning of the process has become essen
tial. Experience has shown that time spent in planning the process is a very
good investment, even though that time subtracts from the time available to
actually execute the design. A much more structured process than in the past
becomes a necessity because of the time pressure and the large number of
interactions to be managed. Protocols are needed to ensure that the neces
sary communication with experts in other departments as diverse as mar
keting, warranty service, and legal affairs actually occurs. Modem compu
tational tools can greatly facilitate the process, but they also have their
limitations and they can be misapplied or misused by those who do not
thoroughly understand them.

As teachers and academic researchers in engineering design, we face sub
stantial challenges. These challenges include understanding the changing
design process as it is practiced in industry and proposing improvements and
developing tools to enhance its effectiveness. The challenges also include the
preparation of engineering graduates to operate in this environment.

It is unrealistic to suppose that a four-year curriculum alone can equip
anyone to be a professional engineer in today's industrial environment. Ex-

www.manaraa.com

I. Introduction 3

perience has always been a necessary component of the designer's makeup,
and is even more necessary in the diverse technical and social environment of
the global marketplace. While cooperative education or internship experi
ences are to be encouraged to provide some awareness of the industrial
environment, these experiences fall far short of the level of practice and
accomplishment needed to produce a fully productive engineering designer.

In this light, the challenge is to determine how much design experience
should be in an engineering curriculum, and how should that component
be structured. There will always be pressure from the engineering science
courses that compete for curriculum time. What is the relative value of
time spent on design experiences early in the curriculum as opposed to time
spent in the senior year when most engineering science courses have been
completed? To what extent should small design projects be distributed
throughout engineering science courses as opposed to concentrating syn
thetic activity in a capstone experience?

In the American Society of Mechanical Engineers Publication Innovations
in Engineering Design Education, Fisher et al. (1993) have written a white
paper entitled, "Design Methodologies and New Paradigms for Design." In
this paper the authors claim that "in our rush to reinstate design as a legiti
mate engineering activity we have often confused the process or methodology
with its tools." The tools are different from the methodologies. There are
many common elements in various design methodologies used in practice
today, such as Quality Function Deployment (QFD), Pugh's Total Design,
Taguchi's robust design, and Pahl and Beitz's prescriptive design methodol
ogies. It is important that practitioners be familiar with these design
methodologies.

Any design methodology is a prescribed sequence of actions, and it is
important to know in what context a given methodology is applicable and
for what problem types it is useful. It is important to understand that design
is more than functional design. It is a part of an overall product realization
process.

Book Organization

In this volume we have collected current contributions from many of the
leading figures of the academic engineering design field. These contributions
include discussions of design methodology, design practice, computational
tools and assistants, and design education. The information contained in the
chapters that follow will provide the reader with current research results
relating to both product and process issues. Each chapter is complete and
self-contained. The reader can choose the material in any sequence desired.
The information will be useful to educators and practitioners alike in un
derstanding the entire product realization process and the tools that are
available for creating quality products.

www.manaraa.com

4 Kenneth J. Waldron and Manjula B. Waldron

This volume is unique for it contains discussion of both "soft," people
oriented issues and "hard" development of the tools and techniques neces
sary for making group decisions. The first five chapters are concerned with
process study. Chapter 2 provides information on how the designer's level of
expertise affects the design process and the resulting designs. Chapters 3, 4,
and 5 discuss the methods used for studying the design process. Several
process characterization models for single designers and groups of designers
are discussed. Chapters 6, 7, and 8 then explore the representation of design
knowledge, decision support systems for catalog designs, and group decision
making with concern for information flow and its errors. Chapters 9 and 10
discus routine design and comparative analysis techniques for engineering
design. Data representation models for group design activity are the topic of
Chapter 11. In Chapter 12 analogical reasoning is discussed. Chapter 13, on
entropy measures, is unique as it provides the concept of an energy balance
principle that can provide a universal measure for efficiency of design solu
tions and methods. The demand that the new knowledge available for design
methodology places on design education is discussed in Chapter 14. In Chap
ter 15 designing for the entire life cycle of the product from manufacture to
retirement is discussed. The overall value of the information from several
persons, as is the case in concurrent design, can be computed through com
patibility measures. In Chapter 16 a workflow management tool that facili
tates timely information management and decision making in the product
realization process is discussed. In Chapter 17 total quality improvement
principles applied to product design are discussed.

Reference
Fisher, C. A. et al. "Design Methodologies and New Paradigms for Design." In

Innovations in Engineering Design Education. New York: American Society of
Mechanical Engineers, 1993. pp. 81-84.

www.manaraa.com

2
The Influence of the Designer's
Expertise on the Design Process

MANJULA B. WALDRON AND KENNETH J. WALDRON

Abstract. Designers bring their prior experience and expertise to the design
process whenever they read drawings, draw, or design or when they observe.
It is for this reason that one cannot separate the process from the expertise
of the designer. What is designed is integrally tied to the designer. The
question then arises: "Are there notable differences between experienced and
not-so-experienced designers, and if there are, what form do they take?" In
this chapter we summarize our previous work on identifying the differences
between the approaches of designers with different levels of expertise. These
include the differences in recall of drawings, in reasoning about motion, in
reasoning about drawings, and in designing. We present the implications of
this work on the design process.

Introduction

There is a widely accepted conjecture that visualization is an important
component of the conceptual mechanical design process and that humans
need to visually interpret drawings and blueprints in order to recognize
features and to evaluate designs for manufacturability (Luby, Dixon, &
Simmons, 1986). The impact of experience with mechanical design on the
speed and accuracy of recognizing and identifying appropriate design func
tions, features, and other factors that contribute to the interpretation of the
drawings has not been studied exhaustively. The papers summarized in this
chapter examine the manner in which experienced and inexperienced me
chanical designers differ in the utilization, reasoning, and abstraction of
information about mechanical design. Before we discuss these papers it is
pertinent to examine the nature of expertise as reported in the literature.

The differences between experts and novices within a variety of knowledge
domains have been reported. Experts solve problems in their domains more
quickly and accurately than novices (Newell & Simon, 1972). The reasons for
this are that experts have more extensive knowledge, and they have a repre
sentation of the domain in their memory. They construct an abstract and

5

www.manaraa.com

6 Manjula B. Waldron and Kenneth J. Waldron

organized representation of the knowledge domain, which allows them to
make inferences about component relations. Early studies suggested that
the information units formed by experts correspond to abstract functional
relations between items. For example, Chase and Simon (1973), found that
the information units (i.e., chunks) formed by expert chess players corre
spond to abstract structures, such as attack and defense relations on the
board. Novices do not exhibit this structure in their recall. By examining
engineering graphics drawings, Cooper (1983) found that spatial informa
tion representation is sensitive to changes in information processing de
mands and levels of expertise in problem-solving skills. Adelson (1981) con
cludes that experts develop cognitive structures based on abstract functional
principles of their area of expertise. These structures guide perception and
recall of material in their domain. One implication of the difference in knowl
edge representation between experts and novices is that experts can process
information from their domain more efficiently than novices. However, if
experts perform a task that is incompatible with the underlying structure of
their memory representation, performance deteriorates. For programmers,
Adelson (1984) found that expert performance was superior when the ques
tions asked were functional in nature, but novice performance was better
when the questions focused on the concrete knowledge of the code itself.

Simulation is important in the development of mechanical designers' abil
ity to engage in visual and spatial reasoning. For human designers, recog
nizing the functioning of a device may involve mental models of the device.
Hegarty, Just, & Morrison (1988) asked subjects to judge which of two
pulley systems required more force to lift a weight. In the series of problems,
the alternative pulleys differed in mechanical advantage along one or more
dimensions (e.g., number of load-bearing ropes). The researchers collected
the subjects' verbal protocols and the number of accurate responses during
task performance. The subjects in this experiment employed different mental
models to determine the mechanical advantages of the pulley systems. Low
scoring subjects considered all relevant attributes and had no preference
among the rules for the mechanical device, whereas high-scoring subjects
used rules for judgment based on the configuration of the device and pre
ferred rules based on determining attributes. While they did not relate their
studies to the expertise of the subjects, they did establish that the accuracy
of identifying mechanical device functioning depends on noticing relevant
features and on the mental model used to simulate the device operation.
Clearly, one would expect that experience within the domain should facili
tate this process. Formal course work, as well as actual design experience,
should augment a person's ability to engage in mental simulation of a device.

This chapter is organized to first present the visual recall differences, and
differences in reasoning about motion of mechanical devices and mechanical
engineering drawings, between experts and novices. We also look at the
differences in their ability to form mental models and to design conceptually.
Finally, a discussion on the implications for the design process is given.

www.manaraa.com

2. The Influence of the Designer's Expertise on the Design Process 7

Visual Recall Differences

The purpose of the research summarized in this section was to look at
short-term recall differences between expert and novice mechanical designers
when they were viewing mechanical engineering drawings. These differences
were studied by tracking the errors they made while copying the drawings
from memory, and the number of times they needed to reference the draw
ings when engaged in this task. By analyzing their video protocols, as they
performed the tasks, we were also able to track their recall strategies. Por
tions of the work reported in this section were presented earlier in a confer
ence paper by Waldron et al. (1987).

Method

The format of the study was as follows: six mechanical engineering drawings
were presented to three groups of six subjects in each group. The subjects in
the first group were engineering professionals considered by their peers to be
expert mechanical designers. The subjects in the second group were consid
ered to be semiexperts. This group largely consisted of graduate students in
mechanical design. The third group consisted of engineering students who
had had a one quarter duration course in engineering graphics. This group
was considered to be novices in terms of engineering design experience. The
six drawings that were chosen spanned a range of detail and complexity so as
to be sufficiently challenging to subjects with different levels of experience.
The level of complexity of each drawing was judged by an experienced
mechanical designer. He determined that the drawing number 1 was the
simplest, drawing numbers 2 and 3 were a level more complex, and drawing
numbers 4, 5 and 6 were the most complex.

Subjects were asked to look at a drawing and to reproduce it from memory
on a sheet of paper. They were also requested to name the part and to think
aloud while completing the task. The total number of references to the
drawing, and the average time between references were recorded. Further
more, a detailed study of the first reference to the drawing was made by
retaining a carbon copy of the work done up to that point. Subjects were not
allowed to erase. Rather they used a different colored pencil after each
viewing. The order of the colors was the same for each subject. Thus, a
record of the number and types of errors made could be recorded. A verbal
description of the think-aloud work, by each subject, was also recorded.

Results and Discussions

Three-way analyses of variance (ANOV A) against group and drawing num
bers were performed on the following measures: total duration of references,
duration of the drawing period after the first reference, number of errors

www.manaraa.com

8 Manjula B. Waldron and Kenneth J. Waldron

made, number of references, drawing duration, duration of the longest refer
ence, and duration of the longest drawing period. Significant overall differ
ences among the groups were found. Overall, the expert group displayed the
best performance as was to be expected. This was also evidenced by their per
formance and by the significant group main effect differences in the analysis.

The drawing times increased with the assessed complexity. In both the
most complex and the simplest drawings, the mean number of references of
the experts was significantly lower than that of the other groups. Further
more, the mean reference time was also lower; that is, they needed signifi
cantly less time for the information to be available to them for recall. The
mean duration of the drawing time after the first reference showed that .the
expert designers consistently drew for a longer period before referring to the
original drawing than the novice designers. There was a continual increase
from novice to semiexpert to expert for each drawing. This suggests that
information specification and utilization are directly related to the level of
expertise of the designers. In both the simplest and the most complicated
drawings, the ratio of the drawing durations of the experts to those of the
novices was roughly 2 : I.

The number of errors made by the subjects was significantly lower for the
experts than for the novice subjects. The ratio was again I : 2. If one takes
errors to imply a misutilization or misordering of visual information, then
this, again, suggests an order in the organization of the visual information
that is dependent on the experience of the designer; that is, the more experi
enced the designer, the better is his/her organization of the visual informa
tion, leading to fewer errors. The experts made significantly fewer references
to the original than the novice subjects. The ratio between the number of
references made by the novice subjects to that of the experts, was once again,
roughly 2 : I for the simplest and the most complex drawings. This suggests
a higher level of "chunking" of information during the information pickup and
maintenance by the experts when compared with the novice designers.

The names assigned to the parts by the subjects were scored by an expert
mechanical designer on a 3-point scale: 0 = incorrect, I = partially correct,
and 2 = totally correct. One-way analyses of variance were performed to test
for significant differences among groups in accuracy of naming the drawings.
Significant differences were found between the groups for the mean score for
all drawings as well as their overall group score. The mean, overall group
score for novice subjects was 0.2, for semiexperts it was 1.0, and for experts
it was 1.5. This is shown in Figure 2.1; that is, the experts named the
drawings significantly more correctly than the other groups. As is to be
expected, naming of the parts is directly dependent on the domain knowl
edge, which would explain the performance gradient from novice to expert.
This suggests that the expert designers carry with them a large symbolic
visual associative knowledge that assists them in information pickup, main
tenance, and utilization of this knowledge.

One of the problems in using the verbal protocol was that the expert
designers chose to use fewer verbal utterances in their protocols, but drew

www.manaraa.com

C)

r::
(;
a:

2

::: 1.5
ell
r::
u
~ ...
0
0 1.0
r::
ca
ell
:E

0.5

2. The Influence of the Designer's Expertise on the Design Process 9

1 2 3 4

D naive Group

I:S1 semi-expert

• expert

5

• Group differences
significant on p < .05
level or better

6
overall
mean

Drawing Number

FIGURE 2.1. Mean correctness rating of names assigned by the subjects of each
group by drawing number and the overall drawings.

more than the novice subjects, despite the experimenter's prompting. As one
expert put it, "It is not easy to draw and talk at the same time, which would
you prefer we do?"

The results of this study support the original hypothesis that the efficiency
of information handling by mechanical designers is dependent on their level
of expertise in design. Both reference times and drawing durations support
this. Furthermore, higher-order information is dealt with at a higher sym
bolic level by experts than by novice designers. The latter seem to focus more
on lines and sizes, whereas experts focus on features, resulting in fewer
errors, fewer references to the original, and longer drawing duration between
references. That is, as experience in mechanical engineering design increased,
the efficiency of copying and naming the drawings also increased.

www.manaraa.com

10 Manjula B. Waldron and Kenneth J. Waldron

Differences in Reasoning About Motion

In this experiment, subjects with fo:ur levels of relevant experience attempted
to judge whether an animated mechanical device corresponds to a static
presentation of another mechanical device. In each problem, the animated
and static devices presented either were or were not the same device. Both the
static and animated devices were presented on the computer screen at the
same time, using the same scale for representation. One would expect expert
mechanical engineers to more accurately identify the correspondence be
tween mechanical devices and their operation. That is, compared to novices,
experts should more frequently indicate that the two devices match when the
devices are the same, and should more frequently indicate that the two
devices do not match when the devices are different. In addition, during
perception they should attend more to functional features of the mechanical
devices than novices. This section is a summary of an unpublished manu
script by Waldron and Herren (1994).

Method
The format of the experiment was as follows:

Three different types of device representing different principles of opera
tion-rotation, oscillation, and push rods-were presented to each of the
subjects. There were four devices of each type. Each of the devices differed
from the others in its direction and/or its speed of motion. Figure 2.2 shows
a schematic representation of one such device. For example, in rotational
devices, the output wheel turned in the same direction as the input device,
but at a slower or faster speed, or in the opposite direction to the input at a
slower or faster speed. Similarly for oscillating and push rod devices.

On each trial, an animated device, with its internal mechanisms hidden,
appeared on the left side of a computer screen. On the right-hand side of the
screen a static device, with its internal mechanism visible, was shown. The
subjects had to decide whether or not the two devices were identical. Thus,
chance level was at 50%. The computer recorded two performance variables
on each trial: (1) the response scored as correct or incorrect and (2) the
reaction time from the appearance of the problem on the screen to the
initiation of a choice response. The design was a 4 (subject category) x 2
(problem set-first versus second set) x 3 (device type-rotating, oscillat
ing, and push rod) x 2 (problem type-match versus nonmatch) x 12 (de
vices, four nested within each device type) mixed factorial. Subjects com
pleted a total of 144 trials during the experiment.

Forty-four males with four levels of mechanical engineering experience
participated in the study. Group 0 consisted of 11 undergraduate students
with no engineering background, Group 1 contained 15 undergraduate engi
neering majors, Group 2 consisted of 9 graduate students in mechanical
engineering, and Group 3 had 9 expert professional mechanical designers.

www.manaraa.com

2. The Influence of the Designer's Expertise on the Design Process 11

(A)

(C)

FIGURE 2.2. (A) Push-rod device; (B) rotary device; (C) osciliatory device.

Results and Discussions

Accuracy

The regression analysis was performed with the subject percent correct score
as the dependent variable. An inspection of type III sums of squares revealed
that all main effects were significant (p < 0.0001). More important, for the
subject categories, the overall accuracy for all device types increased linearly
from 56% correct for novice subjects to 76% correct for the experts, as is
shown in Figure 2.3. This confirms the prediction that as expertise increases
so does the ability to indicate accurately whether the static device is the same
as the animated device. Furthermore, it was found that rotating devices were
easiest (80% correct), oscillating devices were of intermediate difficulty (63%
correct), and push rods were the most difficult (55% correct). This effect may

be due to the relative frequency of use of the device types in natural settings
(i.e., rotating devices are more frequently employed in mechanisms than

either oscillating members or push-rod devices). Nonmatching problems

were more difficult (60% correct) than matching problems (73% correct).

The subject category by device indicated that undergraduate and graduate
mechanical engineering students performed equally well on oscillating de
vices. However, in the other two device categories, accuracy increased mono

tonically with increasing expertise.

www.manaraa.com

12 Manjula B. Waldron and Kenneth J. Waldron

80

50

~----~----~~----~----~~-----

Reaction Times

Novice
Undergrad

Engineering
Undergrad

Grad
Student

FIGURE 2.3. Accuracy by subject category.

Expert

Reaction times averaged 16.75 s overall, which is relatively long, indicating
that the subjects took the task seriously and that the task was reasonably
difficult. All main effects in the regression analysis were significant. The
reaction time increased from novices to graduate students, but dropped off
somewhat for experts. This can be explained by examining the accuracy and
reaction time in conjunction. Novices responded more quickly, but nearly at
chance level (56%) indicating that guessing was used. Experts responded
more quickly (20 s vs. 22 s) and accurately (76% vs. 69%) than graduate
students, thereby showing a greater engagement in the process.

Multidimensional Scaling Analyses

In order to determine the features of the devices to which members of the
different subject groups attended in making their judgments, matrices repre
senting dissimilarities among the devices within each device type were en
tered into a nonmetric multidimensional scaling. This technique produces a
spatial solution representing psychological differences as distances between
points, where the points represent devices.

Overall, the multidimensional scaling solutions indicated that subjects
attend to the relative speed (range of oscillation indicating how quickly the
device oscillates) and direction of motion of the devices in order to make their
judgments. In the task used in this study these features were most prominent

www.manaraa.com

2. The Influence of the Designer's Expertise on the Design Process 13

as indicators of the match between the static and animated devices. The
subjects discriminated more accurately between devices on the basis of phase
relations. Correct differentiation between devices because of phase difference
is correlated with expertise in mechanical engineering. Notice that speed and
direction are functional, rather than spatial, features of the devices, and thus
experts should be more sensitive to these features in their judgments than
novices. This was tested by using regression analysis. For both rotating and
oscillating devices it was found that the accuracy increased with expertise as
predicted (means of 46.2, 58.3, 66.6, and 76.9 across levels of expertise),
indicating that for these device types experts attended more to the relative
speed (hence function) of the input and output components than novices.
Whereas, when the difference in the appearance of the internal mechanisms
was the best indication that two devices differed, the novices performed more
accurately, thus indicating that they were more attentive to the form of the
device than experts.

The level of accuracy in the task is positively correlated with the amount
of experience with the domain. Not only does accuracy increase as expertise
increases, but it also increases as a function of device type. The more experi
ence one has with the devices the better one performs. Hence all subjects
performed better with rotating and oscillatory devices than with push-rod
devices. The results of this study also shed light on the development of
expertise. Highly accurate performance on this perceptual task is directly
related to the amount of mechanical design experience. Subjects with little or
no experience often resort to what appears to be a guessing strategy for task
performance. Novice undergraduates only perform better than chance on
rotating devices. Engineering undergraduates and graduate students perform
more accurately than chance on both rotating and oscillatory devices, but
not on push-rod devices. Experts perform better than chance on all devices.
Experience with mechanical design and mechanical drawings has a direct corre
lation to the skills of visualizing and simulating the internal workings of 2D
drawings.

The results of analysis also suggest that experts attend less to the form
of the device to discriminate than novices. The internal components of the
third oscillatory device look very different than those of any of the other
oscillatory devices. Novice undergraduates performed better on judgments
involving the static version of this device than on any other type of judg
ment. In fact, they performed better than experts on these judgments. While
novices correctly use the configuration of the internal components of this
device to differentiate it from other oscillatory devices, they perform more
poorly than experts, when form information does not discriminate between
devices.

The question of how experience influences this task has a complex answer.
Clearly, none of the subjects had ever been exposed to the specific 2D devices
included in this task. Experts have examined a wider variety of devices and
therefore can find an appropriate analogy to the device and use that informa-

www.manaraa.com

14 Manjula B. Waldron and Kenneth J. Waldron

tion to simulate the operation of the device in order to make a judgment. It
appears that the perceptual units upon which they infer an analog are the
speed and phase relations of the devices.

Differences in Reasoning About Drawings

In this section we discuss the differences in the knowledge and reasoning
used by designers with different expertise in interpreting mechanical engi
neering drawings. Engineering drawings provide a coded, schematic repre
sentation of a mechanical design. These established codes are intended to
communicate to others the spatial and functional aspects of the conceived
design. It is from these drawings that important manufacturing information
is derived. This interpretation issue was studied by presenting schematic
drawings to mechanical designers with different levels of expertise. The fol
lowing work is largely drawn from the papers by Waldron et al. (1989) and
Chovan and Waldron (1990).

Method
Thirteen drawings of various mechanical assemblies were used in this study.
The drawings were presented to the subjects in three forms: (1) the line
drawing alone; (2) the line drawing with a descriptive title; and (3) the line
drawing with a descriptive title and a brief written explanation. The drawings
were carefully selected with different levels of complexity. These drawings
included several types of couplings, valves, motors, and other mechanisms.

All13 drawings were presented to subjects in three groups, namely, expert
(six professional designers), semiexpert (seven graduate students, special
izing in mechanical design) and novice (six undergraduate non-mechanical
engineering students). Verbal reports were collected while the subjects were
viewing the drawings. The subjects were asked to describe what they saw in
each drawing, and if they knew the function of the device. Their responses
were videotaped. Each subject's videotaped protocol was transcribed and
analyzed for every drawing. Those design features, subassembly functions,
and overall function of the mechanism represented in the drawings that were
either included or excluded by the subjects in their responses were tallied by
drawing for each protocol. Two types of reasoning methods were identified,
namely, inverse reasoning (where the subject starts by recognizing the overall
function and, thereby, forming a hypothesis that can be tested by examina
tion of component parts and their functional relationships) and forward
reasoning (where the subject starts by recognizing one or more components
and proceeds by reasoning about the formal or functional relationships of
the components, thereby deducing the function). The identification was
taken to be correct if the subject explicitly or implicitly identified the compo
nents and an overall function that was similar to the one intended as iden
tified by the title and description.

www.manaraa.com

2. The Influence of the Designer's Expertise on the Design Process 15

Results and Discussion

Analysis of variance showed significant differences (p < 0.0001) between the
groups with the mean recognition rates being 67% for experts, 47% for
semiexperts, and 8% for the novice subjects. There were significant differ
ences in the reasoning methods used (p < 0.0001) with inverse reasoning
used by experts 75% of the time, by graduate students 33% of the time, and
by novice subjects only 27% of the time. This is shown in Figure 2.4. All
subjects were more successful at recognition when they used inverse rea
soning. Furthermore, experts used all the component functions and sub
functions present in the diagram in their verbal reasoning, whereas novice
subjects used few or none. Experts initially perceived the overall function,
semiexperts perceived the features in the drawing, whereas the novice fo
cused on the geometry of the drawing.

Each diagram was analyzed to enumerate all the functions and subfunc
tions used by each subject to further their reasoning, and the energy sources
used were identified. The results were subjected to discriminant function
analysis to uncover by which aspects (function, subfunction, reasoning, de
sign feature, etc.) the groups could be distinguished. We were thus able to
identify the variables that contributed significantly to the distinction between
the groups. We were able to establish, through this analysis, that for those
drawings that represented devices more likely to have been experienced by
the subjects, including functions such as valves and differentials, the semi
experts behaved more like the experts. They used inverse reasoning and the
functions and the subfunctions in their analysis. For the drawings of less
often-encountered functions, such as cams, special couplings, and a spring

Recognition Rate ("'o)

a b c
Drawing type Fig. only Fig. with label And with explanation

Experts 67 80 85
Graduates 47 54 62
Novices 8 38 58

p = 0.0001

Inverse Reasoning
Experts Graduates Novices

Use rate(%) 75 33 27
Success rate(%) 80 50 21

Forward Reasoning
Experts Graduates Novices

Use rate(%) 25 67 73
Success rate(%) 30 25 6

p = 0.0001

FIGURE 2.4. Recognition rate and the reasoning types for the three groups.

www.manaraa.com

16 Manjula B. Waldron and Kenneth J. Waldron

motor razor, the semiexperts behaved more like the novice subjects. When
ever reasoning was a significant contributing factor, the experts always used
backward reasoning, whereas the other groups did not. This study strongly
suggests that the meaning of the drawing varies significantly with the design
experience of the subject. To the experienced designer, the drawing indicates
its intended function but not to the inexperienced person. The function is
recalled when the drawing is viewed, suggesting that memory is organized to
retain the function in association with the drawing. Inverse reasoning sug
gests efficiency of storage.

Differences in Designing

The purpose of this study was to perform a systematic study of designers
with different expertise engaged in a robotic manipulator arm design activity.
Based on the analysis, it was proposed that the expertise of the designer can
be decomposed into a knowledge (knowing) and a skill component (doing).
The skill is responsible for providing the designers with a feel for their design
and is used extensively in error checking. This section forms a summary of
the paper by Waldron (1988).

Method

A descriptive statement of a problem requiring subjects to design an indus
trial robot manipulator arm was provided to subjects. They were asked to
carry out the design and to give verbal explanations while they designed. The
depositional method (Chapter 3) was used for data collection. The designers
were videotaped while they designed and talked about their designs thus
providing information about the design process they followed. No time limit
was set for the task. Subjects were free to take as long as they wished. The
subjects consisted of eight male designers with different levels of experience
designing manipulator arms. Five had more than 10 years of industrial
experience; two of the five had recently designed a similar manipulator.
Three subjects had less than 2 years of experience, and one of these had no
practical experience.

The videotaped design protocol was transcribed. The utterances, gestures,
and the items the designers used during design were annotated. From this we
attempted to answer the question, how does the designer perceive what is
required of himjher?

Results and Discussions

The data analysis showed that the experienced designers relied more on
commercial catalogs, whereas the inexperienced designers relied on texts
and handbooks. Recency of designing similar objects decreased the initial

www.manaraa.com

2. The Influence of the Designer's Expertise on the Design Process 17

problem set-up time considerably (75% in fact). All designers attempted to
find the total peak torque requirement-a principle taught in robot design
courses. The average time for obtaining the torque values was 6.8 s for
experienced designers, which was significantly different from 48.3 s for the
less experienced designers. This difference was largely due to the simplifying
heuristics employed by the experts to arrive at static and dynamic torque.

The experienced designers bring to the design heuristics that are based on
seemingly "simple," yet powerful, analytical models in the early stages of
concept development to set basic parameters and make configurational deci
sions. The more experienced the designer, the "simpler" is the model he used.
This supports the earlier observations of Waldron and Waldron (1988) that
the inexperienced designers have difficulty in applying the appropriate ana
lytical model to the design in the conceptual stage.

Furthermore, all designers but one (who had no practical experience)
spread their work out on the table and referred to it spatially while working.

Experience lends itself to opportunistic behavior in which the designers
were willing to commit to a procedure and patch if they ran into difficulty.
The less experienced designers relied on a systematic textbook approach that
required major changes in the procedures when difficulties were encountered.
Designers with practical experience tended to set design time as a major
design constraint, and physical analogs were important to them when con
ceptualizing a solution.

Implications for the Design Process

In Developing CAD Tools
The results summarized above strongly indicate that the interpretation, and
the manner of interpretation, of the drawings vary significantly with design
experience. Hence, drawings carry more than structural information to the
experienced designer. If the hypothesis that engineering drawings are the
most common mode of communication of information between the design
and manufacturing communities is accepted, then this study indicates that
any intelligent computer-aided design (CAD) system that stores the design
er's drawings must also carry with it some information about the level of the
designer's experience as well as the functional decomposition and function in
order to structure mapping of the particular design. CAD systems that adapt
to the expertise of the designers may thereby be of use to both experienced
and inexperienced designers.

In designing CAD tools, it is important to keep in mind the visual-spatial
orientation of designers by providing them with spatial as well as sequential
access to their designs. Since the initial interpretation is important in deter
mining how quickly and well the designs will get done, it is important that
the design heuristics of very experienced designers, in as wide a variety of

www.manaraa.com

18 Manjula B. Waldron and Kenneth J. Waldron

design situations as possible, be archived in order for successive design times
to be reduced and the quality of the designs improved.

Such smart CAD tools could carry out routine computation for designs of
devices with which the designer is already familiar. These systems would
have certain functional and subfunction hierarchies as well as subfunction to
structure mapping, so that the designer can guide the system in functional
decomposition. Likewise, such decompositions can provide large relational
databases for searches for new designs to accommodate varying degrees of
expertise possessed by designers. These systems would be of great benefit in
teaching design. The design students could gain experience in designing by
experiencing different designs.

In Education

The above studies indicate a strong correlation between the designers' expe
rience and the information to which they attend, and how they reason about
this information. The results presented above have implications for educa
tion and research. Since the efficiency of information handling by mechanical
designers is dependent on their level of expertise, these types of perceptual
tasks potentially could be used to evaluate the adequacy of an educational
curriculum. A perceptual task could be used to identify skill within a design
domain. Visual-spatial recognition and reasoning skills are very valuable
skills for designers. The above studies link these skills to the designer's
experience in designing. Currently, no college or professional entry examina
tion tests these skills. Exams presently used exclusively test analytical and
verbal comprehension and reasoning. While these skills are important, the
above studies show conclusively that design potential and ability are highly
related to visual-spatial perception. This important skill is ignored both in
curriculum development and in testing.

Design is learned by designing. No verbal or analytical presentation by
itself can teach the perceptual skills necessary to design. Apprentice mechani
cal designers need to attempt and encounter a wide variety of designs in
order to increase their knowledge of artifacts and to enhance their visual
spatial skill. Experienced designers combine appropriate analogies of previ
ously encountered designs and simulation to obtain new designs. Inexperi
enced designers need to increase their repertoire. The adaptive CAD system
proposed could provide the information for an intelligent CAD instructional
system, which could be used by design education programs to enhance de
sign education.

In Industry

Designers are visually and spatially oriented and like to be able to review their
work as they proceed through their design. The procedural sequence per se
is not of great significance, but the results obtained are. Time is an important
parameter through which designers organize and plan their design process.

www.manaraa.com

2. The Influence of the Designer's Expertise on the Design Process 19

The experience in a particular type of design has a direct impact upon
reducing the time used to set up the initial analytical model to be used. The
experience is further directly related to the sophistication of the model, which
manifests itself in the form of strategic, but physically simple, models, based
on powerful heuristics. Initially, exact computed numbers are not crucial,
but a ballpark figure is required to find the class and type of components that
would be directly applicable. Mechanical designers seem to depend on visual
and haptic associations (their own arms in the manipulator design example)
to see if the design will be successful or not. Hence, such simulation tools that
allow visualization and heuristic computations are necessary for designers,
and clearly mandated time limits for the design need to be specified.

In selecting teams to carry out new designs, it is important to include a
designer experienced in the particular design domain. The intent is that this
designer will initially establish the heuristic models from which the less ex
perienced designers can work. The availability of product catalogs is very
important to experienced designers in the conceptual design stage.

References

Adelson, B. (1981). Problem solving and the development of abstract categories in
programming languages. Memory and Cognition, 9, 422-433.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may in
crease with expertise. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 10, 483-495.

Akin, 0. (1978). How do architects design. In Latombe (Ed.), Artificial Intelligence
and Pattern Recognition in Computer Aided Design, IFIP North Holland.

Chase, W. G., and Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4,
55-81.

Chase, W. G., and Ericsson, K. A. (1981). Skilled memory. In J. R. Anderson (Ed.),
Cognitive Skills and Their Acquisition. Hillsdale, NJ: Erlbaum.

Chovan, J. C., and Waldron, M. B. (1990). The use of function and form when read
ing mechanical engineering drawings by experts and non-experts. Proceedings of
the Second International ASME Conference on Design Theory and Methodology.
Chicago, pp. 137-143.

Cooper, L. (1983). Flexibility in representational systems. In J. Beck, B. Hope,
and A. Rozenfeld (Eds.), Human and Machine Vision. Orlando, Fl: Academic
Press.

Earle, J. (1985). Engineering Design Graphics. New York: Wiley.
Cunningham, J. J., and Dixon, J. R. (1988). Designing with features: The origin of

features. Proceedings 1988 ASME Computers in Engineering Conf. pp. 237-243.
Cutkosky, M. R., Tenenbaum, J. M., and Muller, D. (1988). Features in process-based

design. Proceedings 1988 ASME Computers in Engineering Conf. pp. 557-562.

Dixon, J. R., Cunningham, J. J., and Simmons, M. K. (1987). Research on designing

with features. IFIP WG 5.2 First International Workshop on Intelligent CAD.
Cambridge, MA, Oct. 6-8.

Hegarty, M., Just, M. A., and Morrison, I. R. (1988). Mental models of mechanical
systems: Individual differences in qualitative and quantitative reasoning. Cognitive
Psychology, 20, 191-236.

www.manaraa.com

20 Manjula B. Waldron and Kenneth J. Waldron

Luby, S. C., Dixon, J. R., and Simmons, M. K. (1986). Designing with features:
Creating and using a features data base for evaluation of manufacturability of
castings. Proceedings 1986 ASME Computers in Engineering Conf. pp. 285-292.

Neves, D. M., and Anderson, J. R. (1981). Knowledge compilation: Mechanisms for
the automatization of cognitive skills. In J. R. Anderson (Ed.). Cognitive skills and
their acquisition. Hillsdale, NJ: Erlbaum.

Newell, A., and Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Reitman, J. S. (1976). Skilled perception in go: Deducing memory structures from
inter-response times. Cognitive Psychology, 8, 336-356.

Stauffer, L.A. and Ullman, D. G. (1988). A comparison of the results of empirical
studies into the mechanical design process, Design Studies, 9(2), 107-114.

Waldron, M. B. (1989). Observations on management of initial design specifications
in conceptual mechanical design. Engineering Design, Vol. I, Proceedings ICED
89, Harrogate, pp. 189-201.

Waldron, M. B., and Herren, L. T. (1994). The effect of expertise on judgments
requiring spatial reasoning. Unpublished paper, The Ohio State University,
Columbus, OH.

Waldron, M. B., Jelinek, W., Owen, D. H., and Waldron, K. J. (1987). Strategy
differences between expert and naive mechanical designers. In ICED Proceedings
1987, Boston, MA, pp. 86-94.

Waldron, M. B., and Waldron, K. J. (1988). A time sequence study of a complex
mechanical system design, Design Studies, 9(2), 95-106.

Waldron, M. B., Waldron, K. J., and Abdelhamied, K. (1989). The differences in
reading schematic drawings of mechanisms by expert and naive mechanical de
signers. Proceedings of the First International ASME Conference on Design Theory
and Methodology. Montreal, pp. 15-20.

www.manaraa.com

3
Methods of Studying
Mechanical Design

MANJULA B. WALDRON AND KENNETH J. WALDRON

Abstract. In this chapter we present different methods used for studying
mechanical design, including the process of creating designed artifacts. If we
wish to understand fully the manner in which successful products are created
and design specifications are converted into information for manufacturing
and use, then we need to comprehend better the design process that creates
them. While successful engineering products have been designed for cen
turies, understanding the process of this conversion has only begun. This has
been largely motivated by a need to create a more efficient process to de
crease time to market, requiring better design tools to assist designers in
coping with the increasing informational demands placed upon them. The
methods of study naturally involve interactions with designers or design
teams, be it through case studies, interviews, or observations. In this chapter
we survey different methods currently in use to study this process and pro
vide the context in which each method can be used.

Introduction

The development of design theories, or the creation of effective tools and
techniques for design engineers, requires one to examine not only the charac
teristics of the designer but also of the design process that created the de
signed artifacts. One must understand what knowledge is brought to the
process by the designer, how it is applied, and in what manner the design
process progresses from initial specifications to the final artifact. Designers
are an integral part of the process and are the source of information about
the knowledge and the rules that are applied to arrive at the designed arti
fact. Thus, the output of the study of the design process is information that
must, of necessity, be obtained from the designers who actually produced the
design. The goal of this chapter is therefore to discuss the methods in use
to put the designer in the driver's seat of creating computer-aided design
(CAD) tools. The chapter does not discuss the techniques or the computer
tools used for the representation of the designed artifacts. These aspects are

21

www.manaraa.com

22 Manjula B. Waldron and Kenneth J. Waldron

dealt well in other works, for example, Tong and Sriram (1992), Sriram and
Adey (1987).

The design process consists of the evolution of the artifact in time includ
ing the plans for manufacture, use, and (oflate) disposition of the artifact. It
has an initial input in the form of functional descriptions, specifications, etc.,
which form the starting point of any design process. This input may be
technically vague, in the form of goals rather than specifications, or very
tightly defined in terms of physical constraints and materials to be used, etc.,
providing very little flexibility of approach. The final product consists of the
designed artifact that is capable of performing the originally specified func
tions or attaining the stated goals. Everything which occurs between the
specification and the production of the artifact is then part of the process.
The development of the design is dependent on physical laws, the environ
ment in which the design must function, the designer's experience in the
domain, and the collective knowledge of all the persons active in the process.
In other words the design process takes the required function of the design
in the environment in which it must work, and transforms it into the form of
the designed artifact utilizing the knowledge of the designers in the process
(Waldron, 1989).

The only successful designers available for study are humans, and a con
siderable part of the information they use is not readily accessible. The study
of the design process therefore, of necessity, requires some study of human
behavior. The tools and techniques available for this must be borrowed from
observational and social psychology. These tools are often subjective and
require techniques different from those usually encountered by engineering
students and faculty. Because of this, the study of the design process is
considered to be more of an art, and traditionally trained engineers may find
these techniques difficult to accept. However, their acceptance by the artifi
cial intelligence and expert systems communities has provided credibility to
their application to engineering design. In fact, there is a definite recognition
that engineering education must move back from engineering science to
engineering practice, which must include the qualitative methods developed
by social scientists in addition to the quantitative analysis of physical sci
ences (Vest, 1994).

There are two basic types of methods used to study the design process: one
in which the researcher is in control, the other in which the designer is in
control. The first type includes methods based on interviews. In the second
type the researcher works with the designer. This type includes process trac
ing methods.

Process tracing methods allow development of an understanding of the
problem-solving processes of designers. The procedure is concerned with the
type of information used and its function in the design process while arriving
at the design. A representative, or sample design, is studied to obtain infor
mation about the process, so that tools for assisting designers to design more
efficiently and naturally can be developed (Waldron, 1985). Thus, this meth-

www.manaraa.com

3. Methods of Studying Mechanical Design 23

odology has the potential to allow the consumers (designers) to drive the
CAD development process in a manner that is natural to them. Examples
of process tracing methods are protocols, depositions, retrospective studies
(including case studies), and observational studies. These methods are de
scribed in detail in the following sections.

Interviews

The methods discussed in this section are more suited for knowledge elic
itation from experts than for the chronological study of the design process
per se, because these methods provide information about functional relation
ships and rules, and about the rationale behind different rules, but may not
provide accurate chronological information about how the design may have
proceeded. Nevertheless, these are important techniques traditionally used
to study human behavior and develop case studies and expert systems. We
feel that it is important to include these techniques. In addition to ensuring
the historical completeness of this chapter, the interviewing techniques pro
vide a powerful combination when used with protocols, as is noted in the
discussion of the depositional method.

Structured interviews have a fixed schedule of questions. Therefore, the
researcher must first develop an expertise in design and the design process
through prior review of pertinent literature (Boose, 1989). The questions can
be closed, open, or probing. Care must be taken to make the questions clear
and unambiguous and not to make them leading or loaded. The designer
can also be asked to scale responses. McCracken (1990) found the use of
unstructured exploratory interviews with experts in the design process to
be very important in facilitating the process of information gathering. He
argues that for large projects, a series of interviews, both structured and
unstructured, may be useful. The researcher must understand the design
sufficiently to ask relevant questions of the designer. The advantage of this
method is that the researcher can focus on direct acquisition of the informa
tion of interest to him or her, thus reducing the time needed for data analysis.
Following preliminary informal study and knowledge gathering, the re
searcher sets up the fact finding interviews (Hart, 1986; Waldron, 1986). The
interviews are often used in initial sessions with the designer, and are ofthree
types-descriptive, problem-oriented, or directed.

Descriptive interviews represent the earliest method and predate the con
venient video recording techniques available today. Initially, the designer
gives a lecture to familiarize the researcher with the domain. Then the
designer completes a worksheet describing the important characteristics
of the design and a step-by-step description (as opposed to a chronologi
cal ordering) of the design process. This method provides only an ideal
ized, textbook form of design and may omit critical strategies for decision
making.

www.manaraa.com

24 Manjula B. Waldron and Kenneth J. Waldron

In the problem-oriented interviews, the researcher presents a design prob
lem to the designer and asks a predetermined set of questions at each step of
design process. These are structured by the researcher to follow a predeter
mined plan of questioning, such as how and why certain decisions were
made, and verifying the context in which these were made for a given design.
The structure of knowledge the designer uses can be identified, but it is still
limited by the researcher's questions.

In the directed interviews, the interviewing technique depends on the type
of knowledge representation to be used. The frame representation is a com
mon knowledge representation scheme. Each frame consists of a series of
slots, each of which represents a standard property or attribute of the ele
ment represented by the frame. A slot is identified by a name associated with
the attribute. It can have default values specified or can include a range of
values for the attribute. Each slot can have procedural information attached
to it, indicating an action to be taken if certain values of the attribute are
obtained. The researcher creates a set of frames for the knowledge domain
and presents them to the designer to help fill in the slot values and pro
cedures associated with the information in the slot. In this method, the
familiarity of the researcher with the domain limits the knowledge that the
designer provides and critical information may be missed.

Both of these methods have the advantage of allowing the researcher to
direct the information acquisition process, so that the data are easy to ana
lyze. However, they are both sensitive to the capabilities and the time avail
ability of the researcher and the designer. These methods are dependent on
the researcher's grasp of the subject, and may not be a true representation of
the design process. If the researcher is ill prepared, or does not have good
communication skills, then the whole study is in jeopardy. While authors
such as Hart (1986) have provided general guidelines for conducting good
interviews, descriptive interviews still suffer from being subjective, haphaz
ard, and inefficient. Nevertheless, interviews provide a powerful fact-finding
tool for obtaining information from designers regarding their reasons for
taking a particular course.

Protocol Analysis

A protocol is defined as a description of the activities (ordered in time) in
which a subject engages while performing a task. The power of a protocol
lies in the richness of its data. Even though protocols may be incomplete in
themselves, they allow an investigator to see the cognitive processes by which
the task is performed. The manner in which this process is ordered in time
and the cognitive behaviors exhibited in performing the intended task can
also be examined (Ericsson and Simon, 1984). There are two types of proto
col methods proposed, namely, verbal or think-aloud protocols and discus
sion protocols.

www.manaraa.com

3. Methods of Studying Mechanical Design 25

Verbal or Think-Aloud Protocols
This method is described in great detail by Ericsson and Simon (1984).
Several researchers have used this method to study engineering design pro
cess (Ullman et al., 1988; Waldron, 1989; Christiaans and Dorst, 1992). In
this method, the designer is asked to speak aloud while designing. The expert's
solution process is recorded on an audio- or video-tape recorder. The role of
the researcher during data collection is to ensure that the designers continue
to think aloud if they should lapse into silence. Ericsson and Simon (1984)
suggest several techniques including training for increasing verbalization.
The researchers are not allowed to interrupt the problem-solving process,
and should be as unobtrusive as possible. The recorded session is analyzed
by the researcher for facts and procedural and judgmental knowledge.

The basic assumptions of protocol analysis are that the subject's behavior
provides information about his or her design knowledge. Each step observed
provides information about the task-relevant operators and the knowledge
available to the subject. The verbal reports are a reflection of the information
the subject holds in his or her short-term memory, including information
about the goals and subgoals, and the operators that bring new knowledge
to the short-term memory.

The analysis procedures proposed by Ericsson and Simon (1984) include
transcribing the tapes and the breaking the transcription into meaningful
episodes or segments. An episode is an aggregate level of problem solving
introduced by Newell and Simon (1972), while a segment is at a finer level
and is a statement (Ericsson and Simon, 1984). Each episode or segment is
coded, with or without a context, to extract the knowledge, relationships and
reasoning used by designers. The protocol contains words and expressions
that are indicative of what may be occurring. Coding of the data may be
done by identifying following types of statements:

Intentions, goals, or ideas, which can be recognized by verbs such as "must"
or "have to."

Cognitions, or the current situation, which are recognized by sentences indi
cating immediacy.

Planning, or sequences of possibilities are explored and include constructions
like "If x, then."

Evaluations, or comparison of alternatives, which are recognized by words
like "yes," "no," "fine," or expletives.

For mechanical design, researchers have identified other items such as draw
ings, gestures, simulation, constraints, and process and design decisions
(Ullman et al., 1987; Waldron et al., 1989).

The advantage of this method is that the designer guides the design and
the information collected provides information for a more normal task envi
ronment. The researcher must have acquired some background knowledge
of design to organize the data into meaningful episodes and relationships.

www.manaraa.com

26 Manjula B. Waldron and Kenneth J. Waldron

This method of generating and analyzing protocols has the distinct advan
tage of obtaining a designer's solution as it occurs. It helps in the collection
of information that is accurate and that truly reflects the designer's chrono
logical approach to the design. The researcher can study the protocol and
arrive at the information structure at leisure.

This technique nevertheless has disadvantages: Verbalizing knowledge
during designing may interfere with the task, or it may alter the expert's
usual approach. Protocol analysis is also difficult and time consuming.
Analysis requires a theoretical framework and a coding scheme for cate
gories and types of information. The researcher should be skilled in the area
of protocol analysis. Tracing the entire design process may not be feasible,
particularly if the expert must think about the solution, and the solution may
take days or months, as is the case in practical design tasks.

Discussion Protocols
Discussion protocols are more commonly used in the analysis of group
design activity. In this method, two or more designers engage in design
through discussion. These discussions are recorded for use in analysis. The
discussion provides the researcher with extra information about the design
from two perspectives: the decision-making alternatives and the strategies
for resolution of conflicts during design. The analysis procedures are similar
to those described above for use in think-aloud protocols. While this method
has advantages, such as that of obtaining more general and diverse designs,
it also has disadvantages. The designers discussing the problem may have a
mutual vocabulary and shared knowledge that may not be verbalized during
the discussion, and basic information may not surface in the discussion since
it is assumed in their higher-order understanding. These techniques have
been used in studying mechanical engineering design by Tang and Leifer
(Chapter 5) and Nagy et al. (1992).

Depositional Method

In some areas, such as the study of conceptual mechanical design, the think
aloud methodology may actively impede the designer's thinking. The de
signer may be literally unable to think and talk at the same time, thereby
forgetting to verbalize. If the designer forgets to verbalize this information,
then it is lost in the verbal think-aloud protocol. The researcher's prompting
may only produce partial information utterances.

In the depositional method proposed by Waldron (Waldron et al., 1989),
the best parts of the protocol and interview methods are combined. Here the
designers still have control of the process, but must provide the researcher
with a rationale for their actions and describe what they have done at conve
niently chosen intervals. The researcher is free to interrupt if the designers

www.manaraa.com

3. Methods of Studying Mechanical Design 27

should forget to make their deposition. Thus, the interviews are structured
by the design activity. At each step in a design the decisions and strategies
used to arrive at the result are theoretically available. The analysis of the
depositions (see example below) provides information about the design
goals, strategies (St) used, process (Pd) and design decisions (Dd) made, the
actions (A) carried out, the given and/or generated constraints (GC), negoti
ated constraints (NC), and the skills (S), knowledge, and metaknowledge
(Mk) used. This method was used to acquire conceptual design strategies and
provided a means to study expert novice differences in conceptual design
(Waldron and Herren, 1992).

For example, a depositional protocol from a person designing a robot
manipulator arm was analyzed. The result of the analysis is shown below. It
can be seen that a goal is followed by a strategy, which is followed by a
process decision, which is followed by an action based on skill or knowledge.
This temporal sequence was observed in the depositions analyzed from seven
designers of varying degrees of expertise.

A sample depositional protocol analysis of data from the manipulator arm
design problem:

A: Read problem
Goal 1: Conceptualize the problem

St: integrate the available information
Pd: relate text to diagram

A: look at diagram
A: reread problem
A: write DIMENSION-RECALL

Pd: seek additional information
Mk: doesn't understand the meaning of outer arm is a square tube
A: uses diagram to resolve

Pd: list questions about problem
S: metal, plastic, or alloy materials possible
S: mechanical, hydraulic power available
A: turns back and forth between diagram and description

Pd: try to figure out where to start
Mk: mind flips between range of motion, speed it has to operate, and

actuation and sensing systems
Mk: not sure what "motion of the joint should be resolved to 2 min of

arc" means
GC: BC has to be able to swing
Mk: doesn't know why elbow joint needs sensing system
A: looks at diagram
S: it would seem the sensing system would be allocated at the gripper

Pd: read problem for info. about sensing system
A: reads problem

This technique has the advantage of traditional verbal protocols in that it
captures detailed information about the designer's strategies and decisions
and information about the procedures used. It provides information on

www.manaraa.com

28 Manjula B. Waldron and Kenneth J. Waldron

design histories (sequence of choices and alternatives) and the corresponding
rationale. In addition, it has the advantage of being able to track designs that
take place over a period of several days. Furthermore it allows for design
oriented interviews in which the designer can clarify how, when, and why he
or she made a particular decision. It can capture the strategies the designer
uses to constrain the design process and information about the contexts of
design decisions by encouraging the designer to report available alternatives.
In this way, the researcher may identify decision alternatives that may not be
verbalized during verbal protocols or discussed in structured interviews, be
cause the designer is not in control and is therefore not actively seeking
alternatives.

The disadvantage of the method is similar to that of verbal protocols; that
is, the large amount of data that must be analyzed. Furthermore, inter
rupting the designer during the design may alter the activity. Rationaliza
tions about decisions or strategies may not be those used originally, since the
goal of the study is not to document the exact cognition of the designer
but to capture information about the design process, so this is not a serious
flaw. Nevertheless, when studying design, the advantage of this method
in obtaining information that is otherwise unobtainable far outweighs this
disadvantage.

Case Studies

This method is the earliest retrospective method. Case studies of designs
were compiled by Fuchs at Stanford in the 1970s. These were used to allow
design students to learn about designs, but were limited in value as far as
obtaining information about the design process because of a lack of estab
lished analysis techniques. These are more useful for their archival value.

Case studies such as those by Fuchs were designs that were documented
and compiled, and are now accessible to the researcher studying the design
process. They often contain detailed information about final overall design,
but the process information is sketchy. Likewise, the final selections are
documented, but seldom do they contain the unsuccessful designs that were
considered. Finally, exact chronological development of the design is not
available through the examination of case studies. Hence, the sequence of
relevant information and how it was used is absent. The researcher can look
at the case study and analyze it based on the information contained in the
document about the process. However, this can be ad hoc at best. Because
case studies were often idiosyncratically documented, it is difficult to develop
analysis techniques that will apply to all of them. Process observation tech
niques have been more successful in obtaining meaningful information about
the design process.

More recently, case studies have employed three types of data sources,
namely, observations, interviews, and archival documents. Researchers rec-

www.manaraa.com

3. Methods of Studying Mechanical Design 29

ord the design protocol of designers while working, either by videotaping or
by sitting in on meetings and observing how people interact and taking
notes. These techniques, although ubiquitous in other domains, have not
been used extensively in the study of the engineering design process. This
may be because engineering design research began in the 1980s, when pro
tocol analysis was more in use to develop expert systems.

In obtaining data for case studies, researchers may conduct face-to-face
interviews with designers engaged in the design process and other members
who are relevant to the particular design exercise. In addition, the archival
data sources, such as catalogs, papers, books, and other sources used during
the design process, are also gleaned for the information used in developing a
particular design. Case studies are considered to be an appropriate research
tool for looking at complex design processes and are therefore considered
exploratory and descriptive in nature.

In a complex and long-term design process, case studies allow researchers
to look at more complex questions and to answer the how and the why of the
design process, particularly when they have little control over the manner
in which the design will progress who the players might be, and when the
designing activity may take place.

Yin (1989) lists the steps that necessary to carry out a case study. The first
step is to have a theory that is being tested, and then select a design that
embodies the theory under scrutiny. Next develop a design data collection
strategy prior to actually conducting the research. During the research, the
data are collected via observation, interviews, and archival sources. These
data are then analyzed using the techniques that are usually employed in
analyzing such data. Naturally, the data are qualitative, and will usually be
in a text form, and may contain drawings that were used to describe the design
to other team members. These may come from field notes collected during
observations, as well as the transcripts of interviews which may have been
structured or unstructured, that were obtained from team members involved
in the design process. The qualitative data analysis techniques are based on
content analysis (Weber, 1985), and domain analysis (Spradley, 1979).

A grounded theory is also sometimes used in analyzing data obtained in
qualitative research (Glaser and Strauss, 1967). This analysis involves ob
taining data categories of context-specific knowledge that are important and
meaningful to designers involved in the design process, and allowing one to
obtain relationships between the categories and the data collected through
an inductive process. These relationships or hypotheses can then be tested
against new design data, which in turn allows one to refine one's categories
and hypotheses further.

Content analysis, on the other hand, allows one to make inferences from
the data collected through using specialized procedures for processing such
data. These procedures include partitioning the transcribed data into sets of
units that can be clustered to define categories. These can then be examined
to determine if they are indeed mutually exclusive. A coding system can be

www.manaraa.com

30 Manjula B. Waldron and Kenneth J. Waldron

devised based on a sample of the text that can then be used to code the entire
transcript. These categories are often devised to explain relationships that
exist among similar data in the protocol or the transcript.

Retrospective Method

In order to overcome the noninteractive nature of case studies and yet capi
talize on the wealth of already completed designs, Waldron and Waldron
(1988) proposed the retrospective method in which the designers provide a
detailed record of the design process through recall and reference to written
records. This approach is similar to case studies, but with the addition of
chronological information about the design process, and when and how
major decisions were made. The designers provide the written trace suitably
coded, showing the major events of the design, including the design decisions
and completion of subphases, etc., which directly impact the design process.
These traces properly register the times and indicate the major information
pathways utilized directly and indirectly to show the factors that influence
the design process including the environment. The researcher, after review
ing the material, then interacts with the designer to obtain the details of the
process information. The difference between this and the descriptive inter
view method is the control. In this process the designer is in control and the
researcher is organizing the information about the process in a manner
useful for analysis and computer simulation. It does require the researcher to
learn something about the domain and have good interviewing skills. Since
the designers are documenting their own solution, the data will be more
accurate than in the descriptive interview method.

The advantage of this method over the protocol method is that larger
problems that take longer time periods to solve can be accommodated. This
is possible because the real time records can be supplemented by the retro
spective information from the designers or the group leaders who may be
able to provide chronological records of the process. Good design practice
includes the use of designer's notebooks containing and documenting all
written work performed. It is common practice to date each page as it is
used. The structural elements identified could be used to guide the interpre
tation of individual or group protocols. In content-intensive areas such as
mechanical design, the interpolation of knowledge and solution may take
considerable time. The integration of this information is not visible in the
protocol or depositional methods, but may be identified through retrospec
tive examination. The disadvantage of this method includes loss of memory
or incomplete written records. The designer may forget to describe some
aspect of the process or may rationalize it to be unnecessary. The errors and
dead end paths may not be recounted. The designer may not think it neces
sary to provide small but important details, because these may have been
negotiated automatically, with little conscious thought by the designer.

www.manaraa.com

3. Methods of Studying Mechanical Design 31

Waldron and Waldron (1988) used this technique to trace the design
process of a complex design project (the Adaptive Suspension Vehicle).
Using this technique they were able to identify complex decision making and
information structures.

Process Observation

In this method, the researcher observes the designer(s) engaged in designing
with no interference to the normal activities. He or she simply records all the
interactions relating to the design. This technique provides information not
obtained by other techniques, such as each person's role in the design pro
cess. The method is very useful in large industrial settings where multiple
persons are involved in the design process. The researcher can set up a
context for each decision and create partitioned knowledge bases for individ
ual designers. This method may help to see how these designers interact to
make decisions and solve problems.

This technique is obviously an extremely time-consuming method of pro
cess information elicitation. The transcripts require extensive analysis to
glean useful information. In addition, it is a more intrusive technique, since
the designer's conversation and movements related to the design must be
recorded at all times, by either the researcher or the designer. This adds
an element of uncertainty and may make consent harder to get from the
designers.

Hales (1987) used this technique to study the design of a system for evalua
tion of materials in a coal gassification environment. He observed the project
for 2.8 years. He recorded 1373 interchanges from 37 people covering 2368 h
of work effort with resolution down to 0.1 h. His field data consisted of 76 h
of audio tapes, 1180 pages of diary notes, 116 weekly notes, and 6 design
reports. He reduced these data by color coding the notes according to the
participants. These were entered into a computer database for analysis by
indexing, sorting, and grouping of information. He found that the obvious
problem in objective analysis was that many of the human exchanges do not
lend themselves to objective analysis other than for time and work effort. For
this reason he added the notion of context to his work effort data. By context
he meant what the work was, with whom, where and when it was done, and
the techniques and the tools that were used at that time. He was thus able to
track the project costs with the number of persons involved, and was able to
identify the types of activities carried out in addition to designing, such as
planning, social contact, information retrieval, reviewing, helping others,
etc., and the percent of times these were done. He identified communicating
techniques to be important and found that the "mood" of the designer
contributed to the design process. This method allowed him to represent this
design process in the context of environment, marketing, management, and
the project. He found an iterative relationship among these.

www.manaraa.com

32 Manjula B. Waldron and Kenneth J. Waldron

Waldron and Brooks (1994) used the sense-making methodology pro
posed by Dervin (1989, 1992) to analyze data obtained from a collaborative,
concurrent group design through process observation techniques. They tran
scribed the observational protocols and partitioned the design process into a
series of situations about which the designers were trying to obtain informa
tion from each other. They used a two-step coding scheme to identify inter
and intragroup information exchanges among designers. The sense-making
methodology allows one to identify situations in which the designers were
stopped, that is, faced a gap and sought resources or help in order to pro
ceed. This analysis allowed them to trace the inter- and intragroup gaps,
help, and decisions made. The results showed an underlying structure to the
basic information exchange in the design process. The gaps faced were much
larger than the help received, which were much larger than the decisions
made by the groups.

Conclusions

In this chapter we have described a number of methods that can be and have
been used in the study of the design process. Because of the nature of the
study of the human behavior, analysis of the data collected follows a general
description rather than a prescription. There are general analysis techniques,
but the data in each situation will need to be partitioned in an ad hoc
manner, reducing their scientific validity. However, they provide informa
tion about the design process that is not available by any other means.

Protocol analysis is the most commonly reported technique in the litera
ture reporting the study of the design process. However each researcher has
had to adapt the analysis technique proposed by Ericsson and Simon (1984)
somewhat, because of the audio-visual nature of the data to be collected.
However, the data collection procedure was followed as originally proposed.
The depositional method was a further modification to obtain strategic
knowledge from the designers. This method allows better collection of the
decision-making process. In order to study large cooperative design projects,
the retrospective and process observation techniques may be of use.

References

Boose, J. H. (1989). A survey of knowledge acquisition techniques and tools. Knowl
edge Acquisition, 1, 3-37.

Christiaans, H., and Dorst, K. (1992). Cognitive models in industrial design engi
neering: A protocol study. ASME Proceedings Design Theory and Methodology DE
42, pp. 131-142.

Dervin, B. (1989). Users as research inventions: How research categories perpetuate
myths. Journal of Communication, 39(3), 216-232.

www.manaraa.com

3. Methods of Studying Mechanical Design 33

Dervin, B. (1992). From the mind's eye of the user: The sense-making qualitative
quantitative methodology. In Glazier, J. D. and Powell, R. R. Qualitative Research
in Information Management. Englewood, CO: Libraries, Unlimited, Inc. pp. 61-
84.

Dixon, J. R. (1988). On research methodology towards a scientific theory of engi
neering design. Artificial Intelligence for Engineering Design, Analysis and Manu
facturing, 1 (3).

Ericsson, K. A., and Simon, H. A. (1984). Protocol Analysis: Verbal Reports as Data,
Cambridge, MA: The MIT Press.

Glaser, B. G., and Strauss, A. L. (1967). The Discovery of the Grounded Theory:
Strategies for Qualitative Research. New York: Aldine Publishing.

Hales, C. (1987). Analysis of the Engineering Design Process in an Industrial Context.
Hampshire, England: Gants Hill Publication.

Hart, A. (1986). Knowledge Acquisition for Expert Systems. New York: McGraw
Hill.

McCracken, J. R. (1990). Questions: Assessing the structure of knowledge and the
use of information in design problem-solving. Ph.D. Dissertation. Ohio State Uni
versity. UMI Dissertation Information Service.

Nagy, R., Ullman, D., Dietterich, T. (1992). A data representation for collaborative
mechanical design. Research in Engineering Design 3, 233-242.

Spradley, J. P. (1979). The Ethnographic Interview, New York: Harcourt, Brace,
Jovanovich College Publishers.

Sriram, D., and Adey, R. (1987). Knowledge based expert systems in engineering:
Planning and design. Surrey, UK: Computational Mechanics.

Tong, C., and Sriram, D., eds. (1992). Artificial Intelligence in Engineering Design,
Vol. III. New York: Academic Press.

Ullman, D. G., Stauffer, L.A., and Dietterich, T. G. (1988). A model of the mechani
cal design process based on empirical data. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 2, pp. 33-42.

Ullman, D. G., Stauffer, L. A., and Dietterich, T. G. (1987). Toward expert CAD.
Computers in Mechanical Engineering, 56-70.

Ullman, D. G., Wood, S., and Craig, D. The importance of drawing in the mechani
cal design process. Proceedings 1989 NSF Engineering Design Research Conference,
31-52.

Vest, C. (1994). Our revolution. ASEE Prism, 40.
Waldron, M. B. (1989). Observations on management of initial design specifications

in mechanical design. In ICED 89 Proceedings, August, pp. 157-166.
Waldron, M. B. (1990). Understanding design. In H. Yoshikawa and T. Holden

(Eds.). Intelligent CAD II. North Holland, pp. 73-88.
Waldron, M. B., and Brooks, R. L. (1994). Analyzing inter and intra group informa

tion exchanges in conceptual collaborative design. In Proceedings of ASME Design
Theory and Methodology Conference, DE-68, American Society of Mechanical
Engineers, New York, pp. 241-248.

Waldron, M. B., and Herren, L. T. (1992). Using depositions to acquire conceptual
design strategies. Working paper, The Ohio State University.

Waldron, M. B., and Waldron, K. J. (1988). A time sequence study of a complex
mechanical systems design. Design Studies, 9, 95-106.

Waldron, M. B., and Waldron, K. J. (1992). Knowledge acquisition methodology in
selection of components in mechanical design. In Tong, C., and Sriram, D., (Eds).

www.manaraa.com

34 Manjula B. Waldron and Kenneth J. Waldron

Artificial Intelligence in Engineering Design, Vol. III. New York: Academic Press,
pp. 57-77.

Waldron, M. B., Waldron, K. J., and Herren, L. T. (1989). Empirical study on
generation of constraints which direct design decisions in conceptual mechanical
design. In Proceedings 1989 NSF Engineering Design Conference, 15-30.

Waldron, V. R. (1985). Process tracing as a method for initial knowledge acquisition.
Proceedings of 2nd IEEE AI Applications Conference, Miami, pp. 661-665.

Waldron, V. R. (1986). Interviewing for knowledge. IEEE Transactions on Profes
sional Communication. PC-29 (2), 31-34.

Waterman, D. A., and Newell, A. (1971). Protocol analysis as a task for artificial
intelligence. Artificial Intelligence 2, 285-318.

Weber, R. P. (1985). Basic Content Analysis. Newbury Park, CA: Sage Publications.
Yin, R. K. (1989). Case Study Research Design and Methods. Newbury Park, CA:

Sage Publications.

www.manaraa.com

4
Design Characterizations

MANJULA B. WALDRON AND KENNETH J. WALDRON

Abstract. In this chapter we present a discussion of engineering design and
the differences between the design as an artifact and the design as an activity.
Hence, different taxonomies of design, as well as different models of the
design process, are discussed. Furthermore, their relationships to intelligent
computer-aided design are also discussed. The purpose of this chapter is
to present different facets of design characterization as discussed in the
literature.

Introduction

In characterizing mechanical design it is important to make a distinction
between what the designers create, that is, the designed artifact, and the
design process. The design process can be viewed as a sequence of steps, such
as clarification of the specifications and the environment in which the design
will function, understanding the behavior, and establishing the operational
constraints, including manufacture, servicing, marketability, usability, and
disposability. Or the design process may be viewed as creating conceptual
design for the artifact, testing and evaluating the designed artifact, and,
based on the results, refining and optimizing the design, until some satisfying
criteria is reached.

The models of these processes can be created from a theory, or a set of
axioms, or can be based on observations. One could define the designer as
"somebody who creates something that will be used (practically) by others";
that is, the designer is concerned with how things ought to be in order to
attain certain goals and functionality. The designer is an integral part of the
design process, and the artifact to a large extent depends on the designer.
Designers may work by themselves or in groups. The designs may be totally
new, that is, created from scratch, or, as is more usually the case, they may
be an improvement on the performance of or the modification of existing
artifacts.

35

www.manaraa.com

36 Manjula B. Waldron and Kenneth J. Waldron

Today's designer faces the challenge of integrating information from many
domains. There is increasing need for designers to consider the life-cycle
issues during design. This requires that they have information available on
the knowledge and the methods used in diverse fields. In order to transfer
knowledge, so that units from different domains can access it, one needs a
consistent model along which such knowledge can be transferred and the
appropriate methods that can be applied in a timely fashion. These models
should be capable of collective learning so that the information gained from
one design process can be used again during successive design processes. The
models through their predictive powers enable the units engaged in the
design process to foresee problems that may arise from different possible
candidate designs. In Chapter 15, Ishii discusses this aspect in greater detail.

In this chapter we describe engineering design and the classification of
mechanical design, and then present characterizations of the design process
by different researchers.

Engineering Design

Dym and Levitt (1991) define engineering design as a "systematic, intelligent
generation and evaluation of specifications for artifacts whose form and
function achieve stated objectives and satisfy stated constraints." Dym
(1994) states this definition incorporates many assumptions such as that the
designed representations include form and function and can be translated
from these representations into a set of fabrication specifications for the
production of the designed artifact. The problem-solving, design, and/or
fabrication process incorporates the evaluation criteria for design.
· The process of designing is different from the design as a product (artifact).
The process is something that depends heavily on time and the units involved
in creating the artifact, whereas the artifact may or may not depend on time.
The process has an initial input in the form of functional descriptions and
specifications, however vague, that form the starting point of any design
process. The final output consists of the designed artifact, which is capable
of performing the initial specified functions or attaining the stated goals.
Everything in the middle is then the process that is dependent on the physical
laws, the environment in which the design must function, the designer's
experience in the domain, and the collective knowledge of all the persons
engaged in the design process.

The artifact can be simple or complex. A simple artifact stands alone, and
may have relatively simple geometry. A complex artifact may have complex
geometry or it may consist of assemblies, which may in turn consist of simple
artifacts. Thus, one could describe artifacts through enumerated strings and
an associated grammar (Fitzhom, 1989).

A design process has an underlying direction; it is more than trial and
error. During design the designer formulates an idea, compares it to com-

www.manaraa.com

4. Design Characterizations 37

peting ideas, or tests for constraint satisfaction. Based on the evaluations,
new ideas may be generated and the designer learns about the design situa
tion, which will be actively used in the next design process. Any model of the
design process must accommodate this underlying learning for it to be suc
cessful (Bucciarelli & Schon, 1987).

Models of the design process are necessary as a basis for interpreting the
observations, for prescribing a design procedure, or for designing a com
puter system to perform the design. The models constructed require the
power to describe what is observed and the what might be observed, given
certain conditions. These models, if based on provisional theories, may
prove faulty; nevertheless, they serve an important function by allowing the
research to proceed. Modeling the design process provides us with a system
atic description that can fill gaps in knowledge and enumerate design strat
egies, decisions and knowledge, etc. It can provide us with an understanding
of how current computer-aided design (CAD) tools are being used, which
can assist in the removal of inadequacies in the current CAD tools by im
proving the human/machine interface and providing computer aids to differ
ent stages in the design process. One can learn about the logical and spatial
reasoning necessary in design and create better representation and presenta
tion methods for designed artifacts.

Dixon (1987) described three theories of design: prescriptive, descriptive
(cognitive), and computational. The study of the human designer leads to the
descriptive or cognitive theories. The computational theories, on the other
hand, need not depend on anything a human does.

The sequence from process to model to theory is a continuum. One
can start from an abstract notion of a theory and move in the direction
of the process or vice versa. No matter how one starts, the two must con
verge, if we want to avoid the situation where we have a useless theoreti
cal structure, or a large amount of process knowledge without a theoretical
basis.

Provisional theories could be built on empirical observation or on self
observations, although introspection on cognitive activity can be misleading.
The study of the designer's behavior as a part of the design process can lead
to the creation of tools that can augment the designer's thinking. Such data
can provide information on the types of environment that will be useful to
make the designer more efficient. Based on these theories models that repre
sent the design process can be created. These models assist in creating better
CAD tools. These tools could be purely for drawing, or creating the geomet
ric or form representation of the artifact, or, as more knowledge-based tools
have become available in recent years, they can represent the function of the
artifact, which is often termed intelligent CAD (!CAD). As more persons
become involved in creation of the design, the CAD models become increas
ingly complex and the information management becomes crucial. Thus,
ICAD tools need the support of work flow management tools as described
by Ramanathan in Chapter 16.

www.manaraa.com

38 Manjula B. Waldron and Kenneth J. Waldron

Classification of Engineering Design

Dixon (1987) argued that a classification (called taxonomy) of design may
lead to relationships among different design models due to certain shared
characteristics. This may facilitate the manner in which underlying knowl
edge and its representation may be organized to create a scientific theory
of design.

Classification of Mechanical Design Problems
Dixon et al. (1989) proposed that at the highest level of abstraction one
could view the design as consisting of an initial and a final state of knowl
edge. Furthermore, each state could be characterized by knowledge types,
such as perceived need (for the initial state that is the motivation), function
(of what it does), physical phenomenon (or underlying principles), embodi
ment (concept), artifact type (attribute), artifact instance (value,) and feasi
bility (for the final state). As an example, choose the initial state of knowl
edge of design of a plug. The need is to fill a hole. The function is to stop a
leak. The phenomenon is friction. Embodiment might be a wood peg in the
hole. The artifact type may be a cylindrical piece of wood, and its instance
may be of dimensions i in. diameter, 1 in. length.

Ullman {1992a) extended this classification to include the design environ
ment and the design process in addition to the artifact design. The process
transforms the initial state into the final state, and the environment stipulates
the constraints on those doing the design. Hence, the environment consists of
the participants, resources, and design specifications. The problem consists
of the initial and the final state representations and the satisfaction criteria.
The process consists of the plans, the action, the effect, and the evaluation or
the failure criteria.

In addition, Ullman proposed the representation languages to be graphic
(drawings), numerical {computations), textual {writing), and physical {proto
types). For the process the plans and processing actions could be fixed,
selected from a list, parametrized, or searched. The effects could be refine
ment {improvement on the initial state), decomposition {breaking the design
into smaller designs), or patching {modification of the design based on some
failure criteria).

Routine, Innovative, Creative, Conceptual, and
Selection Design

Brown and Chandrasekaran (1985), in examining problem solving, observed
that the knowledge acquired from previous experiences simplifies the task of
designing. These experiences may make the design fairly routine, where no
new knowledge is involved, but new configurations of existing designs may

www.manaraa.com

4. Design Characterizations 39

be sought. They proposed three classes of design. Class 1 designs are those
that require substantially new knowledge or are creative in nature. In Class
2 or variant designs some knowledge preexists, while Class 3 designs are
routine. This type of design classification will be further described.

In routine design, all possible solution types are enumerated (that is, all the
attributes, applicable useful methods, and the strategies are known a priori).
The goals are fixed; hence, no overt planning on the part of the designer is
required. The values of the individual variables may change, but the ranges
and types of variables do not. Hence, these types of designs lend themselves
well to the creation of knowledge-based expert systems. Brown and Chan
drasekaran (1989) report an expert system to design an air-cylinder using the
concept of routine design. In Chapter 9, Brown discusses routine design in
greater detail.

In innovative design, the knowledge base is already known and available to
the designer. The requirements of the design are the same, but its application
may become different; hence, the solutions are novel, but no new knowledge
is added. This kind of design requires planning, since new strategies may be
employed and possible solution types may be novel; hence, all attributes of
this design may not be known a priori and some of the values of the variables
may be outside of the normal range.

In creative design, on the other hand, neither the attributes nor the strat
egies are known ahead of time. Once these are known, the design becomes
"innovative" or "routine." If, in a design, new variables and new knowledge
bases are added to the system, then this design becomes creative design. As
soon as the design is completed, it becomes innovative or routine.

Based on individual experience, a designer may be able to go directly from
function to some structure because of having encountered similar conditions
previously; hence, the design is routine to that designer. Another designer,
who is not experienced with this function-to-structure mapping, may have to
go more deeply into the decomposition before a structure can be identified.
For that designer, then, this design is not "routine." Whether or not a design
is accepted as "creative" is a social activity. However, for the person doing
the design, if they have done it without having prior knowledge, and if they
have added new variables, then to that person the design is "innovative" or
"creative," whereas to society it may be just "reinventing the wheel," and is
therefore a routine design. For example, the design of the first automobile
was creative, or a new automobile design may be creative, but the millionth
automobile of the same kind is not. Nevertheless, for an individual, for
whom this is a new project, the process of creating the millionth automobile
may be creative. Hence, there is a tremendous difference between social and
personal creativity and it may be dependent on the environment. For this
reason this classification scheme has limitations.

To clarify this terminology further, it is worth noting that the conceptual
design is the initial design that is different from routine and creative design.
The conceptual design can be studied and modeled. One could have a very

www.manaraa.com

40 Manjula B. Waldron and Kenneth J. Waldron

routine conceptual design when the specifications are tightly defined, which
may lead to very creative artifacts! One can gather information about con
ceptual but not creative designs, since the creativity may be in the process or
the artifact. Conceptual design is in a continuum with detailed design, pro
duction, distribution, and recovery. Hence, it is traceable in the design pro
cess. Selection design, on the other hand, deals with selection of alternatives,
for example, from catalogs~

The problem and process types of taxonomies were used to classify con
ceptual and selection types of design by Ullman (1992a).

Process Representation

One model may not capture all the unique models of each individual de
signer. Rather than developing a single model of the design process, it is
more useful to have a framework in which multiple models of different
researchers can be incorporated. Conceptually, a design can be thought of as
moving from function (specifications) to structure (form or artifact) along
the axis of a cylinder. Each designer's experience is the spiral bound around
the axis with creativity as the radius of the cylinder.

Figure 4.1 shows a possible framework to accommodate design process
models. There are a given set of functions that the designed artifact must
perform. The designer's task is to attach the appropriate structures that will
perform the specified functions. Designers with less experience may require
functional decomposition until they know of an associated structure for each
decomposed function that may accomplish that function. The mapping to
the structure is then performed at the subfunctional level in the form of

Functional
Decomposition

Structure to Function Mapping

Routine Design

Creative Design

Function to stucture mapping

(Physical Laws constrain the map)

Structural
Composition

s

;•\

S1 •••••••••••••••••• Sn

FIGURE 4.1. A possible design framework to accommodate design models.

www.manaraa.com

4. Design Characterizations 41

substructures, which must be recombined to achieve the overall structure.
This is the synthetic aspect of design. Analysis of this structure ensures that
the overall function would meet the original specifications. Designers with
extensive experience in a particular design may already know the associated
structure that could accomplish the intended function. Therefore, they may
proceed opportunistically to select the appropriate structure(s) to attain the
function. This is more of a routine design. The depth of functional decompo
sition and structural recomposition on which the designer must rely would
be a measure of the creativity in the design process. Hence, for each designer
there is a unique process model for each design.

It is important to note that the function-to-structure mapping contains
both the form and the design knowledge that can be used in future. In
specific representations and models one would need to retain the design
history and the design rationale (Ullman, 1992b). The design history is de
fined as a sequence of choices, the alternatives, and the descriptions of these
alternatives that are available to designers because of previous encounters.
The design rationale is the reason behind these choices. Furthermore, the
design is complete only when someone declares it to be so or when all the
stated specifications are achieved. The latter does not assume satisfaction but
only guarantees completeness.

The output of the design process is the knowledge that a plan for creating
the artifact exists, either in the form of prototypes or working models or
drawings that guarantee such production. This output also contains the
resultant change in the process as a result of traversing through the steps of
the design process. The representation of this learning is important and as
yet not satisfactorily studied or represented. Further analogical reasoning
plays an important role in the process. This too is rarely studied and modeled
in design.

Specific Models

Finger and Dixon (1989) provide an excellent review of the research in
mechanical engineering design. In Part I of their paper, they discuss the
descriptive, prescriptive, and computer-based models of design. The reader is
referred to this excellent reference for both an extensive review and brief
descriptions of each type of models. In this chapter we present specific
models for each type of design in detail.

Descriptive Models

These models are based on the observation of designers designing. Protocol
or depositional methods are used for collecting information on the process
(Chapter 3). The analyzed results provide information on what is important
to designers, and permit construction of models that can describe the pro-

www.manaraa.com

42 Manjula B. Waldron and Kenneth J. Waldron

social
cultural
environ
mental

~·························~ ,.-----·-,
11 Initial
11 design
II---=-
11
II
II

,I,....,. -,1 ·: _..___._

Conceptual/
preliminary Design

System function
implicit information

(preliminary design)
Layout assembly dwg
logic of the system
assembly, analysis

to fit function

I

manufacturing,
marketing,
assembly
knowledge

maintainability
knowledge
(diagnostic)

------ trainabillty
knowledge

(user Interface) _____________ ,
r---.L.--.....1..-,

Embodiment

Scheme

System form
explicit information

FIGURE 4.2. A functional model of the design process.

cess. Most of these studies have been conducted on the conceptual phases of
design (Ullman et al., 1988; Waldron et al., 1989)

One such model is the knowledge flow model described by Waldron and
Vohnout (1989). Figure 4.2 shows this design process model based on the
flow of information among different units engaged in the design process and
accounts for the knowledge used and the realization of the functionality. The
conceptual, preliminary, and detailed design stages interact so as to reflect
design-evaluate-redesign. In addition, this model takes into account the
knowledge designers must use to ensure the success of designs, such as,
manufacturing, marketing, assembly, maintainability, disposability, and us
ability. It accounts for the knowledge that the designer is using to create the
design, which can be readily communicated to the manufacturing environ
ment. The design knowledge organization strongly influences the way in

www.manaraa.com

4. Design Characterizations 43

which the process planners may use the information contained in the knowl
edge base.

The approach is to examine the designer's knowledge and its organization
in the mode of communication used in the design process. In Figure 4.2, the
conceptual design block represents the beginning of the design based on the
initial problem definition, which also forms the transactional part of the
conceptual design as well as the driving force for it. The initial design phase
takes the problem definition and converts it into functional specifications.
Based on the designer's social, cultural, and environmental knowledge, the
problem statement and the functional specifications may be negotiated until
a set of functional specifications are found that satisfy the designer and allow
him or her to proceed to formulate embodiments of design schemes which
can be used to create detailed and working drawings (French, 1992).

In the preliminary design process the artifact is conceived so that it can
carry out the prescribed functions. The designer ensures that the logic of the
design is satisfactory in the layout drawings. These drawings, once detailed,
will be used by the manufacturer of the artifact. In this phase, in order to
produce successful and efficient design, the manufacturing knowledge that
will be used to produce the artifacts is helpful. The layout and detailed
drawings, after performing the associated analysis, contain the information
about the shape, geometry, dimensions, and tolerances so that the manufac
tured artifact will indeed perform as intended. In creating the assembly
drawings, the designer must also have the assembly knowledge to ensure that
the drawings contain enough information. This will ensure that the manufac
tured artifact, when assembled, will achieve its intended function. Paying
attention to the servicing (maintenance) during design will also ensure prop
er and easy service of the product during its use. Knowledge of its intended
use and the customer needs will ensure that the product will be used to
accomplish the intended function. Finally, incorporating the knowledge of
product disposal during the design phase will ensure a minimal impact on the
environment after the useful life of the product is over.

This additional knowledge may be part of the existing knowledge the
designer possesses, or it may be that it is acquired through interactions with
the appropriate persons in the design team. Hence, this model incorporates
concurrent engineering practices. The actual manufacturing, assembly, use,
maintenance and disposal of the product is its explicit manifestation. The
evaluative feedback knowledge, to the designer, from the manufacturers,
users, field technicians, and people dealing with waste disposal is important
to contribute to the improvements of future designs.

The separation of the model into blocks is necessary for representational
purposes so that the construction of computational models is possible. In
observing designers working one may not see a clear separation of these
blocks. Rather this information is inferred from the observed data. Human
designers, through their integrated, associative, experiential knowledge, may
flow fluently from the problem statement to the formulation of functional

www.manaraa.com

44 Manjula B. Waldron and Kenneth J. Waldron

specifications and then to using their accumulated knowledge to arrive at the
drawings and specifications that are used for the manufacture of the product.

The designer at the conceptual level cycles back and forth between the
system, subsystem hierarchy until all the constraints are satisfied and a solu
tion is specified. The choices are made based on the context of the design,
which depends on the negotiable and the nonnegotiable constraints. The
model allows the design process to be represented by three levels based on
context. The highest level or the semantic level allows the goodness of the
design to be assessed. The next or the syntactic level allows the logic of the
design to be evaluated. The lowest level allows the selection of the shapes and
dimensions so that the functional constraints specified in the other two levels
can be achieved. This paradigmatic representation allows a computer system
to be developed which can be orchestrated by the designer.

Williams (JV aldron, 1990) proposed a model based on the reasoning cycle,
which is employed by the designers using three frameworks of knowledge.
His model was derived from the results of protocol studies done by others,
and is based on the premise that designers have a desire to do something and
a cognitive ability to do it. In designing, the designer faces two types of
situations that depend on complexity and uncertainty. Complexity is when
the designer has too much knowledge and uncertainty when the designer has
too little knowledge. These are interrelated. The standard observations were:

1. That chunking is ubiquitous in the design process and the designer orga
nizes the elements of the problem into a hierarchy.

2. Knowledge is used to guide the designer; that is, it is not a blind search.
3. The designer needs feedback from the results of a prototype or a design

simulation, in order to improve the design further.
4. Conjectures are initially made, by designers, based on abductive reason

ing, and then deductive reasoning may be used to from hypotheses. Once
they have a clear hypothesis designers act to arrive at a problem solution
and then proceed to a more generalized model.

The three frameworks of knowledge are the generic knowledge, the specific
knowledge and information or data about the knowledge. There is an interac
tion between these frameworks of knowledge, which directly affects the hu
man reasoning process in the design activity. The consequences of these
frameworks allow the computer systems to be isolated from designers and
allow them to use their personal effective knowledge, and not be constrained
by what is provided by the system.

Another model, task-episode-accumulate (TEA) model, was proposed by
Ullman et al. (1990). This model uses the information processing during the
design process as its basis. Here they argue that the design information may
be stored in the mind of the designer (internal environment), who uses short
term memory and long-term memory to retrieve the information and make
it available to the design state. Alternatively the information may be stored
in an external environment such as books, papers, drawings, or in the minds

www.manaraa.com

4. Design Characterizations 45

of team members. The evolution of the design is incorporated as a design
state in the TEA model. A design state contains the accepted design pro
posals and the constraints that these designs must satisfy. The design states
are modified by design operators such as select, calculate, simulate, etc.

Prescriptive Models

Prescriptive models, as the name implies, allow one to prescribe the se
quences of activities that constitute the design process. This is distinguished
from the axiomatic prescription for the attributes of the designed artifacts as
proposed by Suh (1990). In this chapter we present the design process model
proposed by Pahl and Beitz (1984), which formalizes the design process into
four systematic phases: clarification of the task, conceptual design, embodi
ment of the design, and detailed design.

In the clarification stage the specifications are elaborated and working
specifications result. During the conceptual design phase, the problems are
identified, functional structures are established, concept variables are firmed,
which are evaluated against the technical constraints. The embodiment
phase of the design results in design layouts through design refinements and
optimization. In the detailed design phase the design is finalized and detailed
drawings are produced complete with design documentation.

The assumption underlying this design process model is that the design
process can be decomposed into levels of abstraction and the design proceeds
in a sequence from the definition of subfunctions to selection of physical
principles, to embodiment of the design, to detail design, to production
planning. At this point, a new problem is defined and the cycle repeats until
a solution is reached. It is assumed that both the designers and the design
process go through the same cycle of design activities.

These activities consist of solving a series of problems into which the
design has been decomposed. A solution is found either from intuition or
from a known method and related information. This solution is analyzed by
simulation and calculation. The constraints are evaluated and a decision is
made whether to repeat this process or go on to the next problem identified.
Hence, each solution leads to another problem. Until this solution is arrived
at, one does not proceed to the next problem.

In this theory, the design solution is assumed to be a puzzle defined at two
levels, namely, the abstract and the solution level. The abstract level is
assumed to be mapped functionally onto a solution level. It is assumed that
the physical principles that will bear on a particular function are known a
priori, and the design is functionally well defined and decomposable. The
problem with the underlying theory is that it requires the process to be
independent of the designer. The theory does not allow for the use of anal
ogy, spatial reasoning, etc., which seem to be very important when humans
design. Furthermore, the theory assumes that a general problem-solving
model exists, which is not necessarily so.

www.manaraa.com

46 Manjula B. Waldron and Kenneth J. Waldron

Computer-based Models

In computer-based models, the information about the design process is en
tirely in the computer program. This is different from the cognitive model
where the human designer plays an important role and the model describes
what the human designer does. The computer-based models describe the
methods by which the computers themselves can accomplish the designing
task. These models do not necessarily have to be derived from human behav
ior although they may. Likewise the successful computer-based design pro
cess may or may not be used by humans. These may be entirely embedded in
another design problem. These reciprocal relations, between human design
activity and the computer programs are neither mandated nor essential
(Finger & Dixon, 1989).

Computer-based models have been developed on an ad hoc basis, al
though such models are being developed in research laboratories and have
been developed to solve specific design problems. There is as of yet no single
theoretical approach that can handle all aspects of design. The computer
based models largely describe computer programs that carry out, or assist
in specific design tasks. Since these models are still being developed and no
established procedures exist for the overall design process in industry, the
design process models really do not exist except in the form described below.

In parametric design the structure of the object to be designed is known
and in the design process appropriate values need to be assigned to the
parametric design variables. Constraints and criterion functions when ex
pressed numerically allow optimization techniques to be used (Finger &
Dixon, 1989). Dominic (Dixon et al., 1989) is one of the first computer
systems for knowledge-based parametric design of components; it uses
iterative redesign.

A computer model for "routine" design was created by Brown and Chan
drasekaran (1989). They devised a Design Specialists and Plans Language
(DSPL) in which the hierarchy of alternative design plans are contained. It is
a computer model for routine design consisting of cooperating agents such
as specialists, plans, tasks, steps, constraints, redesigners, failure handlers,
etc. (Spillane & Brown, 1992). These agents are hierarchically organized and
cooperate to configure the design. DSPL has been used for design of air
cylinders and gear pairs.

There are computer-based models for configuration design. Finger and
Dixon (1989) describe it as the transformation of physical concept into a
configuration with a defined set of attributes without specific assigned values.
Mittal et al. (1986) developed a configuration design software called PRIDE
(Pinch Roll Idler Design Expert), for designing paper handling systems in
side copiers. This computer program assists in the design of a paper trans
port mechanism for copiers by using a knowledge base to generate, evaluate,
and redesign the configuration of rollers. Figure 4.3 shows such a computer
based configuration design model. The configuration is defined in terms of

www.manaraa.com

4. Design Characterizations 47

FIGURE 4.3. Computer-based model for configuration design.

goals and each goal has its own method and subplans (which could have
goals of their own) with associated constraints. In addition the "advice"
feature guides the possible redesign paths (Waldron, 1990).

Computer-based programs for conceptual design are capable of synthe
sizing structural components from the functional or behavioral requirements
(Ulrich & Seering, 1989) or by reasoning from first principles (Cagan &
Agogino, 1987; Williams, 1992). However, these models are still in research
stages; how effective they will be in influencing the design process in future is
yet to be determined.

Modeling and the ICAD Systems

How do models of the design process affect what is produced? The interac
tion between the model and the product is important. What is the motivation
behind the study of the process and its relation to ICAD systems? What are
the issues that are important in design? Should one study the issues asso
ciated with the design process such as the methodological issues or the issues
associated with building computer systems that support design? These ques
tions are all important and bear investigation.

On one end, one may study the designers and find out what the designers
do, while, at the other end, one may make guesses as to what the designer
does, and create the computer system based on the assumptions and then
find out if this assists the designer. Perhaps the answer is somewhere in the
middle. One may want to get some information from protocol or deposi
tional studies, to obtain sufficient information on which to base valid
hypotheses, models, and conjectures from which the systems could be de
veloped and expanded upon through educated guesses.

www.manaraa.com

48 Manjula B. Waldron and Kenneth J. Waldron

The model and framework of the design process presented earlier, while
useful in tracking the design process, is too abstract to be very useful in
creating practical ICAD systems. In order to guide what the implementers of
the ICAD systems should do, we need to consider the separate environments
for design, and develop a specific model or models that help in the develop
ment of ICAD systems. The important aspect in this representation is not a
search for a proper representation of the process in the machine. Rather, the
search is for the information structure associated with the design process that
contains the strategies and the manner in which the process changes and the
design evolves. In the ICAD systems it is more important to consider the
control issue rather than the representation issue, so that a distinction can be
made between the artifact and the process in this system.

There is certainly a strong connection between the process and the object.
The model of the design process may be related closely to the artifact rather
than having a generic process for all artifacts. But one must study this
interaction and find out what actually takes place. How would the designer
interact with the system to facilitate the interaction? Should the system be
made more general rather than specific? How would the learning conse
quences of the designers be incorporated in the ICAD system? These are
important questions that must be tackled before reliable computer-based
models which are effective in directing the design process can be envisaged.

Comparison with Other Disciplines

When one considers the mechanical design process in relation to other designs,
one sees some analogies. For example, in architecture, one could view the
architect more as a product designer, a structural engineer as a mechanical
engineer, and a contractor more like a manufacturer, a person who must
physically realize the design created.

The input-process-output model poses the problem of how to characterize
inputs and outputs. In some domains, functionality may be the input and the
defined attributes of the object are the output, whereas in other domains, for
example architecture, this may be reversed because the vocabulary for the
function and form are often the same and the designers think of these
interchangeably. For example, the word "coupling" may mean both the
function of coupling two shafts or the form this coupling takes. Further
more, the design specifications of goals may be loose and may change during
the course of the design process. In some fields, artifacts may be defined in
the specifications, while in others these may evolve. Furthermore, one object
or artifact may perform many functions, and one function could be per
formed by many artifacts.

The function-to-form mapping could therefore be one to many or many to
one depending on the situation. By making many arbitrary or ad hoc as
sumptions, the designers overcome this problem. The assumptions may be

www.manaraa.com

4. Design Characterizations 49

based on acceptability of the product in the culture in which it will be placed;
hence, acceptability becomes a functional requirement. But the artifact has
to be realizable, which becomes a physical problem; hence, the input to the
design process may take the form of acceptability, realizability, or feasibility,
which are really qualifications on the result. To achieve this, one must have
the knowledge of both the process and the domain. In that case, one needs a
language to describe the models with "hard" and not "soft" vocabulary.
This is difficult to achieve in design because the designer's language is inher
ently "soft" or ambiguous. Acceptability is therefore harder to define than
realizability and feasibility (Waldron, 1989).

The following is a list of some domain-independent characteristics of the
design process along which the relative levels of difficulty for each domain
could be discussed.

Functional Specification

1. Difficulty of description
2. Static and dynamic relations for temporal analysis

and simulation
3. Ambiguity of environment
4. Function to form confusion

Artifact

1. Geometrical form is the main attribute
2. Tolerance and manufacturing as part of design
3. Assembly of many parts working together
4. Difficulty in standardizing
5. Not symbolic
6. Multifunctional component

Designing

Non-isomorphism between functionality and artifact
may be intuitive, concurrent

E>M>S >A

A>M>S >E
E>M>A >S
S >E >M>A

S >E >M>A
S>E>A>M
E>A >S >M
E >A >M>S
S >E >M>A
S >E >M>A

S>E>M>A

where S = software; E = electrical, including control; M = mechanical; and
A= architecture.

Conclusions

In this chapter characterizations of engineering design as described by dif
ferent researchers was described. Further, a taxonomy of engineering design
was discussed. The characterization of the design process was described in
detail. Different types of models based on various theories of design were
presented and compared. Furthermore, the use of models in creation of

www.manaraa.com

50 Manjula B. Waldron and Kenneth J. Waldron

CAD tools was discussed and the difficulty in design characterization in
different design domains was compared. From the discussions presented it is
apparent that the design process models are still evolving and there is, as yet,
no single, well-developed theory for design. While considerable effort is
being expended toward the establishment of such a theory, the progress is
still slow and somewhat tenuous.

References

Brown, D. C., & Chandrasekaran B. (1985). Expert systems for a class of mechanical
design activity. In J. S. Gero (editor) Knowledge Engineering in Computer Aided
Design. Amsterdam: North Holland.

Brown, D. C., & Chandrasekaran, B. (1989). Design Problem Solving: Knowledge
Structures and Control Strategies. Los Altos, CA: Morgan Kaufman.

Bucciarelli, L. L., & Schon, D. S. (1987). Generic design process in architecture and
engineering: A dialog concerning at least two design worlds. In M. Waldron (Ed.).
Proceedings from the NSF Workshop on the Design Process, Oakland, CA. 43-67.

Cagan, J., & Agogino, A.M. (1987). Innovative design of mechanical structures from
first principles. Artificial Intelligence for Engineering Design, Analysis & Manufac
turing, 1(3), 169-190.

Dixon, J. R. (1987). On research methodology towards a scientific theory of engi
neering design. Artificial Intelligence for Engineering Design, Analysis & Manufac
turing, 1(3), 145-158.

Dixon, J. R., Guenette, M. J., Irani, R. K., Nielsen, E. H., Orelup, M. F., & Welch,
R. V. (1989). Computer-based models of design processes: The evaluation of de
signs for redesign. In Preprints of the National Science Foundation (NSF) Engi
neering Design Research Conference, University of Amherst. MA. 491-506.

Dym, C. L. (1994). Engineering Design: A Synthesis of Views. Cambridge University
Press, NY.

Dym, C. L., & Levitt, R. E. (1991). Knowledge Based Systems in Engineering.
McGraw Hill, NY.

Finger, S., & Dixon, J. R. (1989). A review of research in mechanical engineering
design. Part 1: descriptive, prescriptive and computer based models of design pro
cess. Research in Engineering Design 1(1), 51-67.

Fitzhom, P. (1989). In Preprints of the National Science Foundation (NSF) Engi
neering Design Research Conference University of Amherst. MA. 221-231.

French, M. E. (1992). Form, Structure and Mechanisms. London, UK: MacMillan.
Mastow, J. (1985). Towards better models of the design process. AI Magazine Spring,

pp. 44-45.
Mittal, S. M., Dym, C. L., & Morjaria, M. (1986). PRIDE: An expert system for the

design of paper handling system IEEE Computer, 19(1), 102-111.
Pahl, G. & Beitz, W. (1984). Engineering Design. London, UK: The Design Council.
Simon H. (1969). The Sciences of the Artificial. Cambridge, MA: The MIT press.
Spillane, M. & Brown, D. (1992). Evaluating design knowledge compilation mech-

anisms. In D. Brown et al. (Eds.). Intelligent Computer Aided Design. Amsterdam:
North Holland. 351-374.

Sub, N. (1990). The Principles of Design. Oxford, UK: Oxford University Press.

www.manaraa.com

4. Design Characterizations 51

Ullman, D. G., Dietterich, T. G., & Stauffer, L.A. (1988). A model of the mechani
cal design process based on empirical data: A summary. In J. S. Gero, (Ed.). AI in
Engineering Design. New York: Elsevier, 193-215.

Ullman, D. G., Wood, S., & Craig, D. (1990). The importance of drawing in the
mechanical design process. Computers and Graphics, 14(2), 263-274.

Ullman, D. G. (1992a). A taxonomy for mechanical design. Research in Engineering
Design, 4(3), 172-187.

Ullman, D. G. (1992b). The Mechanical Design Process. New York: McGraw Hill.
Ulrich, K., & Seering, W. (1989). Conceptual design: synthesis of schematic descrip

tions in mechanical design. Research in Engineering Design, J(l), 3-18.
Wallace, K. N., & Hales C. (1987). The application and evaluation of formal design

engineering methods. Proceedings of the International Conference on Engineering
Design, ICED, Boston, MA: 94-101.

Waldron, M. B. (1988). Tristratallevel of design: A foundation for intelligent CAD
in mechanical engineering. Proceedings IFIPWG 5.2 Workshop on Intelligent CAD
Preprints, 468-475.

Waldron, M. B. (1989). Modeling of the design process. In H. Yoshikawa & D.
Gossard (Eds.).Intelligent CAD I. Amsterdam: North Holland, 13-29.

Waldron, M. B. (1990). Understanding design. In H. Yoshikawa & T. Holden (Eds.).
Intelligent CAD II. New York: North Holland, 73-88.

Waldron, M. (1991). Design processes and intelligent CAD. In F. Arbab & H.
Yoshikawa (Eds.).lntelligent CAD Ill. Amsterdam: North Holland, 56-75.

Waldron, M. B., & Waldron, K. J. (1988). Position paper on conceptual CAD for
mechanical designers. Proceedings of Computers in Engineering, August, 2. 203-
211.

Waldron, M. B., & Waldron, K. J. (1988). Time study of the design of complex
mechanical systems. Design Studies April9(2), 95-106.

Waldron, M. B., & Waldron, K. J. (1989). Empirical study on generation of con
straints which direct design decisions in conceptual mechanical design. 1989 NSF
Engineering Design Conference U Mass. June 15-30.

Waldron, M. B., Waldron, K. J., & D. H. Owen (1989). Use of systemic theory to
represent the conceptual mechanical design process. In Newsome et al. (Eds.).
Design Theory 88. New York: Springer Verlag, 36-48.

Waldron, M. B. & Vohnout, V. J. (1989). Formalizing knowledge in design for
CAD/CAM integration. In A. Samuel (Ed.). Managing Design and Manufacturing.
Amsterdam: North Holland. 42-64.

Williams, B. C. (1992). Interaction-based design: constructing novel devices from
first principles. In D. Brown et al. (Eds.). Intelligent Computer Aided Design.
Amsterdam: North Holland. 255-275.

www.manaraa.com

5
An Observational Methodology for
Studying Group Design Activity

JOHN C. TANG AND LARRY J. LEIFER

Abstract. A methodology for observing and analyzing group design activ
ity is presented. This methodology is based on ethnographic and interaction
analysis methods from the social sciences. Using it to study collaborative
design activity leads to a descriptive analysis that identifies what resources
the designers use and what obstacles they must overcome to accomplish their
work. Based on this analysis, a better understanding of the needs of designers
can be used to guide the design of tools to support group design activity. For
example, this analysis led to an understanding of the role of hand gestures in
collaborative design activity. Gestures are used to help demonstrate actions
and establish shared reference. Hand gestures are often conducted in relation
to sketches and other objects in the shared workspace. Descriptions of how
to record group activity on videotape, represent and analyze the data (using
a hypertext system), and abstract general observations from the data are
presented.

5.1. Introduction

The design process is a complex and creative activity that has long been the
subject of study. Several different methodologies have been applied to study
design activity, as reported in the overview papers ofBessant (1979), Wallace
(1987), and Finger and Dixon (1989). To name a few, Thomas and Carroll
(1979) conducted psychological experiments probing design activity, Ullman
et al. (1987) applied protocol analysis on individual designers "thinking
aloud," and Wallace and Hales (1987) used participant observation to study
an engineering design project for almost three years.

The research presented in this paper draws upon an exisiting methodol
ogy, known as interaction analysis, to study group design activity. Videotape

This paper first appeared in Research in Engineering Design, Vol. 2. 1991, pp. 209-
219. Reprinted with permission.

52

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 53

records of actual design activity are analyzed to identify how the designers
accomplish their work and what problems they encounter along the way.
This qualitative description of design activity leads to a deeper understand
ing of the design process and raises implications for the development of
technology to support it. This methodology was used in recent research to
study small group, conceptual design activity (Tang, 1989), leading to design
implications for tools to support that activity. In applying this methodology
to study a particular design activity, we also discovered ways in which it
could be used as part of any design process to understand the needs of the
end user.

This chapter presents a methodology for studying group design activity
based on interaction analysis methods, which are introduced in Section 5.2.
Detailed descriptions of how to observe and analyze group design activity
are presented in Sections 5.3 and 5.4. As an example of the kind of findings
that this methodology yields, Section 5.5 discusses observations on the role
of hand gestures in collaborative design activity. The advantages and con
straints of this methodology are discussed in Section 5.6, and applying it as
part of the design process is discussed in Section 5.7.

5.2. In Introduction to Interaction Analysis

The observational methodology presented in this paper is based on interac
tion analysis, a qualitative analysis method used in the social sciences. In the
fields of anthropology and sociology, qualitative methods are used to investi
gate human activity. Since group design activity is a complex social activity,
it is appropriate to apply these methods to study it. Other design researchers
[Bessant & McMahon, 1979; Darke, 1979; Wallace, 1987] have also advo
cated applying social science methods to study design activity.

In the field of anthropology, ethnographic studies observe the activities of
a culture by participating in it through an extended period of time. The daily
life of the culture is studied in its natural setting with minimal disruption to
that activity. The resulting ethnography is a description of the common
practices of that culture, as experienced by the observer. Recently, ethno
graphic methods have been used to study not only foreign cultures, but
professional subcultures in developed countries (Latour & Woolgar, 1979;
Lynch, 1985), and design activity in particular (Bucciarrelli, 1988).

Interaction analysis is a recent development in anthropology and qualita
tive sociology that integrates an ethnographic perspective with fine-grained
analysis of human interaction. This methodology involves analyzing records
of human activity in order to understand how that activity is accomplished
through the interactions among the participants and the artifacts in their
environment. Ideally, the participants should be observed in their natural
working environment addressing a real task. Logistics sometimes dictate that
the situation be structured to the extent that a realistic task is given to the

www.manaraa.com

54 John C. Tang and Larry J. Leifer

participants in an environment where they can be easily observed. A crucial
element of this approach is that the researcher not intervene in the group's
activity once they have begun working on the task. The participants are free
to organize their work as they wish, and it is the observer's responsibility to
record and analyze the activity that subsequently unfolds. The goal is to cap
ture samples of human activity in contexts in which they would naturally occur.

The activity is typically recorded on videotape, which is analyzed to iden
tify patterns in how the participants accomplish or are hindered from accom
plishing their work. By collecting and comparing among examples from the
data, specific resources that the participants use to help them accomplish
their work or obstacles that hinder their work can be identified.

Conversation analysis is a prominent form of this kind of analysis that
studies how people interact through conversation (Levinson, 1983; Sacks
et al., 1974). Interaction analysis extends beyond focusing only on the con
versation of the participants to include other aspects of how people inter
act with each other and their environment. Examples of video-based interac
tion analysis include the study of the accompanying nonverbal behavior in
conversation (Goodwin, 1981; Heath, 1986) and the interaction between
humans and technology (Suchman, 1987). Our research extends the use of
interaction analysis to study group design activity.

This approach contrasts with experimental methods where tightly con
trolled situations are constructed to test a preformulated hypothesis. Rather,
interaction analysis explores naturally occurring activity to identify and un
derstand what parameters and relationships are important to the interaction.
This approach also contrasts with participant observation, which relies sole
ly on the accuracy, completeness, and objectivity of notes collected by the
participant observers. Rather, the activity is recorded on videotape, which
can be reviewed again and again from a variety of perspectives. These under
lying tenets of interaction analysis are described in Suchman's (1987) study
of human-machine interaction:

This study proceeded, therefore, in a setting where video technology could be used in
a sort of uncontrolled experimentation. On the one hand, the situation was con
structed so as to make certain issues observable On the other hand, once given
those tasks, the subjects were left entirely on their own. In the analysis, by the same
token, the goal was to construct a characterization of the "interaction" that ensued,
rather than to apply a predetermined coding scheme. Both predetermined coding
schemes and controlled experiments presuppose a characterization of the phenomo
nenon studied, varying only certain parameters to test the characterization. Applica
tion of that methodology to the problem of human-machine interaction would be at
the least premature. The point of departure for the study was the assumption that we
lack a description of the structure of situated action. And because the hunch is that
the structure lies in a relation between action and its circumstances that we have yet
to uncover, we do not want to presuppose what are the relevant conditions, or their
relationship to the structure of the action. We need to begin, therefore, at the begin
ning, with observations that capture as much of the phenomenon, and presuppose as
little, as possible (Suchman, 1987, p. 114, original emphasis).

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 55

Our research is premised on the need to observe and understand what design
teams actually do in order to guide the design, development, and introduc
tion of tools to support their activity. Our research applies the interaction
analysis methodology to study the activity of design teams.

5.3. Observing Group Design Activity

In our studies, eight different sessions of small groups (3-4 people each)
working on conceptual design tasks were observed. The groups consisted of
peer participants who were not in the context of any formal authority hier
archy (i.e., no supervisors with people who report to them). The observed
sessions were the first time that the participants worked together as a group
on the task, thus capturing the earlier, more conceptual stages of the design
process. All of the tasks that the groups worked on were human-machine
interface design problems (see sample problem statement in Appendix). The
groups typically worked on the task for about l t hours, deciding on their
own when to end their session.

Videotape was used to record the design activity for later analysis. The
final configuration for the observational equipment used in our research is
depicted in Figure 5.1. Two video cameras were mounted on tripods: one
aimed at the shared workspace of the group, while the other captured a wide
angle view of the group as a whole. The cameras were "passive" in that they

FIGURE 5.1. Observational configuration. The participants were separated from 'the
observational equipment and the experimenter. One camera is aimed at the shared
workspace of the group, another captures a wide angle view of the group as a whole.

www.manaraa.com

56 John C. Tang and Larry J. Leifer

FIGURE 5.2. The recorded video image. The split screen image combines the wide
angle view of the group (top) with a close-up view of the group's shared workspace
activity (bottom).

were not moved or re-aimed during the session. This arrangement is consid
ered less distracting than having an active camera person in the room aiming
and focusing the cameras. The cameras were partially obscured from the
participants by a partition, and the experimenter and recording equipment
were located in a neighboring room.

The signals from the two video cameras were combined into one split
screen video image, shown in Figure 5.2. A time stamp that displays the date
and elapsed time in hours, minutes, and seconds was included in the video
image. This time stamp was used to index the contents of the videotape. The
split screen image with time stamp and the accompanying audio were rec
orded on videotape. An additional audio tape recording was made as a
back-up and for use in transcribing equipment to help make a transcript of
the verbal dialog.

5.4. Analyzing the Data

Videotape records of design activity contain a wealth of data for analysis, which
can initially be overwhelming. Reviewing the videotape data itself quickly
suggests more specific foci for analysis. Analyzing the video data involves:

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 57

• becoming familiar with the data
• developing a workable representation of the data for analysis
• abstracting patterns and general observations from the data

Although it is clearer to introduce this process of analysis as if these activities
occurred in a three step sequence, the actual analysis was much more com
plex. The three activities occurred concurrently and were informed by each
other. It was often the case that representing the data or identifying patterns
in the data led to a new perspective on it, prompting a re-familiarization with
the data or a modified representation for the data for further analysis. For
clarity of presentation, this section presents an idealized, three step frame
work for the analysis. However, the examples drawn from our study of
group design activity will indicate that the analysis that actually occurred
was a much more interrelated process.

5.4.1. Becoming Familiar with the Data

After videotaping the design sessions, the initial task in analyzing the data is
to review the tapes to become acquainted with the sequence of events in the
session and to note incidents for closer examination. A good exercise for
becoming familiar with the data is to make a transcript of the verbal dialog
of the session. Deciphering who said what and in what order is a prerequisite
for deeper understanding of the activity.

Figure 5.3 shows a section of transcript from a design session. The speaker
associated with the text is designated by the 'S' labels. Some indication for
the pacing of the speech is given through the punctuation and line format
ting. Turns of talk from different speakers with no line space between them
indicate overlapping talk.

In our study of group design activity, making a transcript of the verbal
dialog not only helped us become familiar with the data, but also revealed
that the transcript by itself did not adequately represent the recorded design
activity. Understanding the transcript often required attending to the accom
panying drawing and gesturing activity that was observable on the video
tape. This initial familiarization exercise led to the development of a repre
sentation that included these nonverbal activities as will be described later.

Another technique that is helpful for developing an overall perspective on
the data is to bring several different viewpoints to bear on the video data. At
the time of this research, a working group of designers, anthropologists, and
computer scientists (called the Interaction Analysis Lab) met weekly at the
Xerox Palo Alto Research Center to review videotapes of human activity.
These meetings brought together insights on the data from the different
perspectives of these disciplines. Since the researchers came from different
academic disciplines, they each brought different sensitivities to bear on ana
lyzing the video data. Furthermore, they were each forced to demonstr
ate their claims about the activity by observable evidence from the video
data, rather than relying on any single discipline's characterization of human

www.manaraa.com

58 John C. Tang and Larry J. Leifer

u~t omPhonf'-1 tr.,..\ocri.pt "'ret ion ~,, " ' , ~ ~ ''' '~".~Z~

53: What if on your machine you just had no screen, you just l"lad like, you could
have like a little written area that you write, just a little paper card with a little
plastic over it and there's a little LED next to it and

51 : Right. A button next to it, sure you could do that too. why not?
53: a button next to that, or maybe your button is a lit button, and you come

home and this one is blinking or not blinking and this is you, so you hit it

51: Yeah, and you pop it and there it, you get your messages.
53: Yeah

51 : Sure you could do it that way, too

53: There's no security on this but maybe we shouldn't worry about security
((pause))

52: Well.
For housemates it's not so important, but it would always be a n ice added
feature

51: Say you have a key slot here

53: ((laughs)} Then you have to carry this little key around
52: It could have, it could have, umm, fingerprint recognition
51 : Oooo! There you go, high technology ! Yay
53: Oooo! That's a good idea! Yeah !

So you put yourfinger on this to get your message, that's great!
Ok

((pause))

FIGURE 5.3. Sample transcript section. This sample section of a transcript illustrates
how the verbal dialog and its pacing are represented. The speaker is designated by
"S" labels.

activity. This emphasis on understanding human activity through the di
rectly observable interactions among people and their environment is a dis
tinctive characteristic of interaction analysis. This approach contrasts with
cognitive orientations that account for human activity by mental activity
that is not directly observable. Multidisciplinary group analysis is a practical
technique for assuring that the resulting observations are based on observ
able evidence from the data.

Selected segments of our video data on group design activity were re
viewed in the Interaction Analysis Lab. One issue that emerged from these
analysis sessions is the variety of activities that could be observed in the
recorded design activity and their interrelationships: talking, writing text,
drawing graphics, and gesturing. These sessions helped identify some of the
patterns of activity (e.g., instances of using hand gestures, classifying the
various uses of gestures, quick alternation among writing, drawing, and
gesturing) that we focused on in our research, as will be discussed later.

The videotapes can also be reviewed with the participants themselves to
elicit their perspectives and help focus the analysis of the video data. In our
research, the participants were invited individually to review the videotape.
This technique was modeled on the work of Frankel and Beckman (1982) in
their analysis of doctor-patient interactions. The participants were encour
aged to comment freely on what they saw; they could stop the tape at any
time to interject their thoughts. These sessions also provided us an opportu-

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 59

nity to ask the participants specific questions about issues that arose in our
prior examinations of the tape. We believe that reviewing the actual data
with the participants elicits more detailed recollections than if they were
asked in an interview to recall their thoughts from memory. These review
sessions were audio taped to record their comments.

5.4.2. Representation of the Activity for Analysis

Developing a representation for relating the verbal transcript, notes on non
verbal activity, and comments from other researchers and participants is
a major methodological issue. In our studies of group design activity, the
NoteCards software system was used to help manage this wealth of data and
organize its analysis. NoteCards is a hypertext system that runs in the Xerox
Lisp environment (Halasz et al., 1987). It is analogous to index cards, in that
it encourages breaking data down into small units, called cards. These cards
can be pieces of text, graphics, or other information representable in the
Lisp environment. NoteCards provides mechanisms for linking and group
ing these cards to facilitate organizing them. The cards can be connected by
links, which can be designated by type (e.g., comment, related, next). Cards
can also be grouped together into fileboxes. NoteCards offers several mecha
nisms for structuring, displaying, and navigating through large networks
of cards and links. It also allows users to program functions to execute
customized operations on the data.

An example will demonstrate both how NoteCards was used to develop a
representation of the activity and how that representation was used in this
analysis. After creating a transcript of the verbal dialog, the transcript was
divided into segments. Each segment consisted of an interactional exchange
over a particular focus of attention. When the group's attention shifted to a
new focus, a division between segments was marked. The segments averaged
less than a minute in length and typically comprised 3-7 turns of talk. No
claims in the analysis are based on the definition of these segments. This
segmentation was done to facilitate the analysis-to be able to distinguish,
identify, and group together different segments of the activity. While many
of the segment boundaries were clear-cut, some were rather arbitrary. An
alternative method proposed by Fish (1988) divided the data into segments
of fixed time intervals (i.e., 30-second segments) without attending to the
content of the activity.

Each segment of transcript was placed on a separate card, and linked to
the segment that followed it, creating a chronological chain of links through
all the cards. Each segment was linked to other segments dealing with a
related topic, or grouped together into fileboxes that collected segments
exhibiting a common pattern of activity. Segments were also linked to com
ments by the researchers or participants that refer to some part of the activity
included in the segment.

As mentioned earlier, our initial work on making a transcript and ana-

www.manaraa.com

60 John C. Tang and Larry J. Leifer

FIGURE 5.4. How segments are linked to other objects. Arrows from the link icons
indicate how a segment from a design session transcript is linked to other segments,
notes on the workspace activity, and comments of analysis.

lyzing the data as a group led to a focus on the listing, drawing, and ges
turing activity that occurs in collaborative design work. Portions of the
videotaped data were selected to investigate these drawing space activities
more intensively. For one entire 1 t hour design session and a 10-min section
of a second design session (where the group specified a design for one of their
ideas), each instance of listing, drawing, and gesturing was described on an
individual card. Each transcript segment was annotated by links to those
cards noting any instances of listing, drawing, or gesturing that occurred
during that segment. A sample segment from the transcript of Figure 5.3 and
the cards that it is linked to are shown in Figure 5.4. In this way, NoteCards
was used to manage and keep track of a variety of information, comments,
and relationships among the empirical data.

5.4.3. Abstracting Observations from the Data
The goal of this analysis is to identify generalizable observations about
design activity from the videotaped data. One strategy in this analytical
process is to look for "collectibles" -recurring patterns of activity that
can be collected throughout a session or across a variety of sessions. This
strategy is a common technique in conversation analysis [see for example
Levinson (1983)] that has been extended to interaction analysis (Tatar,
1989). Patterns of activity were identified and other examples of that pattern
were collected. Comparing and contrasting among several different examples
(while being sensitive to the contexts in which they were situated) leads to a
better understanding of that activity.

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 61

In particular, our interest in analyzing group design activity was to iden
tify implications for the design of tools to support that activity. We focused
on identifying collectibles that led to an understanding of what resources the
designers used or what obstacles they encountered in accomplishing their
work. Analyzing these collectibles led to an understanding of specific re
sources and obstacles for the designers.

For example, one pattern of activity identified as a collectible in our study
of group design activity was the use of hand gestures. Many instances of the
use of hand gestures were collected from the recorded design sessions. This
collection of data raised several research questions:

• What did these hand gestures accomplish?
• What relationship did these gestures have with the group's other ongoing

activity (e.g., talking, drawing)?
• What problems arose from the use of these hand gestures?

Comparing and contrasting among this collection of data led to an under
standing of what resources and obstacles are associated with gestures. For
example, the relationship of gestures to the drawing space is a resource for
interpreting them, since gestures often refer to marks in the drawing space.
On the other hand, visual obstructions that prevent collaborators from
sharing a view of their gestures can be an obstacle. These observations are
discussed in more detail in the next section.

In summary, the analysis consists of:

• identifying specific patterns of activity of interest
• collecting instances of that activity in a variety of situations
• comparing and contrasting among the collected instances to explain the

activity and its variation across different situations

The advantage of this approach is that the resulting observations are closely
tied to the empirical data. It is the data that initially suggest the collectibles
and groupings, rather than hypothesized groupings being imposed onto the
data. The disadvantage of this approach is that it is very time consuming.
Careful attention is required to identify collectibles and to collect enough
relevant instances of each collectible for analysis. Much qualitative analysis
is needed to compare and contrast among the collected instances in order to
gain an understanding of the activity that leads to generalizable observa
tions. Tang (1991) describes observations that were raised in using this
methodology to study group design activity.

5.5. Findings: The Uses of Hand Gestures

One issue that emerged from analyzing the data was understanding the use
of hand gestures. There is a long history of studying gestures in human
interaction [see for example Goodwin (1986) and Kendon (1986)] and the
prevalence of gestures in collaborative design activity is obvious. Our re-

www.manaraa.com

62 John C. Tang and Larry J. Leifer

53: a button ned to tnat. or maybe your
button is a lit button. ana you come
home and this one i' blinking or not
b linking and tnl ~ i:!!l you . so you hit it

51 ' Yeah. and you pop it and there it. you
your me,,age3.

53: Yean

52: It could nave. it could have , umm.
fingerJ:Jrint recognition

51 : Oooo! Tnere you go, hign teen
Yay

S3: Oooo! That' s a good idea! Veah!

FIGURE 5.5. Annotated transcript section from design session. A section of transcript
from a design session, linked to notes on the instances of listing, drawing, and
gesturing that occurred. The area of the paper being worked on during this section is
shown at the right.

search focused on what gestures accomplish in group design and how they
could be supported by collaborative tools. We observed that gestures can be
used to: enact a simulation of an idea; help mediate the group's interaction;
and possibly help store information. An important feature of gestures is their
relationship to drawings and other objects in the drawing space. These obser
vations are illustrated with an annotated transcript representing a scene from
the video data, shown in Figure 5.5.

5.5.1. Scene from the Video Data
The section of transcript shown in Figure 5.5 is annotated with brief descrip
tions of every instance oflisting, drawing, and gesturing that occurred during
the section. An icon is placed in the text of the transcript at approximately
the point where the listing, drawing, or gesturing activity begins. That icon is
linked to a note describing the activity. The line numbers along the left
margin are used throughout this section to index locations in the transcript.

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 63

The region of the paper where the participants are making their marks and
sketches is included to the right of the transcript.

The designers have chosen to design a custom phone answering machine
to service a household that has several different inhabitants (see Appendix
for complete problem statement). At this stage of the session, they have
established that the answering machine routes incoming phone messages to
particular recipients in the household. In this section, they talk about how
those recipients retrieve their phone messages, and especially how they could
prevent their own messages from being accessed by others.

In this section, S3 first proposes a "namepad" configuration where each
recipient has a slot and can select to hear their own phone messages when a
flashing LED indicates that their slot has messages. However, S3 realizes
that this solution does not prevent other people from accessing the phone
messages directed to a particular person, a security issue that the group had
previously raised. Sl proposes that each button could be locked with a key.
Then S2 proposes that the machine sense the person's fingerprint when
pressing the button to access messages, and recognize whether to grant
access to them or not. This idea gets an enthusiastic response, culminating in
S3 imitating the fingerprint recognition gesture and documenting it.

5.5.2. Observations on the Use of Hand Gestures
One observed use of hand gestures is to enact ideas that involve a dynamic
sequence of actions. Hand gestures can be an effective way to express these
ideas to other group members. For example, in the gesture noted in line 25
of the transcript in Figure 5.5, one designer acts out the fingerprint recogni
tion idea. This gesture is shown in Figure 5.6. By holding her finger over a
button on the sketch of the phone machine, S2 demonstrates how she imag
ines the phone machine recognizing her fingerprint and subsequently playing
her phone messages. Enacting a sequence of actions through gestures is a
convenient way of demonstrating behavior, especially how people will inter
act with the design. These gestures range from abstract motions to more
detailed enactments, often done in relation to existing sketches or other
objects in the drawing space.

Hand gestures are also commonly used to mediate the interaction of a
group, such as raising a hand to indicate wanting the next tum in the
conversation. As part of the gesture marked in line 25 of the transcript, S2's
hand moves deliberately toward the namepad sketch, effectively command
ing a tum in preparation for her acting out the fingerprint recognition idea.
Gestures are also used to direct the group's attention by pointing to or
otherwise referring to drawings or areas in the drawing space.

Gestures are not typically thought of as a medium for storing information
because they do not leave behind any persistent record. However, the data
showed some evidence that information can be chunked and preserved effec
tively through gestures, especially if the gesture is imitated by others and

www.manaraa.com

64 John C. Tang and Larry J. Leifer

FIGURE 5.6. Gesture example. S2, on the far right, enacts the fingerprint recognition
idea by pressing her finger on a sketch of a button.

labeled in text or graphics. For example, on line 30 of the transcript, S3
imitates S2's gesture of the fingerprint recognition idea from line 25. The idea
is later written down by S3, as noted in line 33, but the essence of the idea is
encoded in the gesture, which is not otherwise persistently documented. The
fact that the fingerprint recognition idea is not readily apparent just by
looking at the marks made in the workspace is evidence that much of the
idea is not preserved except through the gesture.

A most important characteristic of hand gestures is that they are typically
made in relation to existing objects in the drawing space. Gestures that enact
an idea are often acted out in the context of a sketch or other object in the
drawing space (e.g., the fingerprint recognition gestures over the namepad
sketch on lines 25 and 30). Gestures are often used to direct the group's
attention by referring to sketches or other objects (e.g., pointing to another
group member) in the drawing space. These observations indicate that it is
important to not only see the gesture, but also to see it in relation to the
workspace and the other participants.

One observed problem concerning gestures is that they are sometimes not
perceived by other team members, because their attention is focused else
where. Being able to clearly view gestures can be difficult, especially in meet
ings with many participants. Meetings in computer-augmented rooms [e.g.,

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 65

Colab (Stefik et al., 1987)] that are cluttered with computer equipment,
or meetings involving participants in physically remote locations present
greater challenges in sharing gestures.

Tools could be applied to convey gestures so that all of the participants
can share in viewing them. Such tools should also preserve the relationship
between gestures and their referents in the shared drawing space. Video Draw
(Tang and Minneman, 1991) is an example of a prototype tool that uses
video to convey gestures in support of collaborative drawing activity. Hand
gestures are captured by a video camera aimed at the drawing surface. This
video image is presented as part of the shared drawing surface that the other
collaborators view, so that everyone can see those gestures and see them in
relation to the marks that they refer to on the drawing surface.

5.6. Advantages and Constraints of the Methodology

Video-based interaction analysis is a useful methology for studying human
activity. Studying how people actually accomplish an activity leads to a
better understanding of the resources and hindrances that exist for the par
ticipants and suggests the design of tools to augment those resources while
eliminating obstacles in their work. This methodology results in an analysis
that is strongly tied to examples from realistic work activity.

Interaction analysis enables a new understanding of design activity that
cannot be obtained by the previously discussed methods that have been
applied to study it. For example, with respect to studying hand gestures,
interaction analysis has enabled an understanding of how gestures are used
in the context of collaborative design, leading to specific design implications
for tools to support that activity. Psychological experiments would have
studied gestures in isolation, possibly missing the importance of the relation
ship between gestures and their referent sketches. Protocol analysis would
depend on people being sufficiently aware of their use of gesture to report on
it in their thinking aloud. Yet, it is because gestures are so naturally and
effortlessly used that they are an effective resource for designers in collabora
tion. The time scale of participant observation studies would not lend them
selves to focusing on the role of hand gestures in the design process.

However, video-based interaction analysis has some constraints that sug
gest when it is and is not appropriate to use. Interaction analysis is limited to
observing a tractable time period of activity (typically hours, rather than
weeks or months). This may seem like a limited amount of observed activity,
yet it contains a wealth of data that requires a large amount of time to
analyze. Consequently, only a limited sample of activity can be studied using
this fine grained analysis.

A related concern is how the observations gained from this methodology
can be generalized. Certainly, other kinds of activity might occur under
different situations than those observed. Thus, it is important to present the

www.manaraa.com

66 John C. Tang and Larry J. Leifer

findings in terms of the context in which they were observed. Those findings
that are based on evidence that goes beyond that particular context (such as
the observations reported here on the use of hand gestures) can be more
broadly generalized. However, some findings will be more dependent on the
specific context (e.g., that only one person tends to work at the chalkboard
at a time), and can only be generalized to certain similar contexts.

A concern that is often raised in observational studies such as these is that
observing the activity may affect the activity itself. There is evidence in the
psychology literature that the initial effects of being observed fade quickly
with time (Kelley & Thibaut, 1969, p. 6). There is no rigorous test that can
determine the effects of being observed. We assert that the passive observa
tional method presented in this paper is less disrupting than the controlled
experimental and protocol analysis methods used in other design studies. In
the sessions that we have observed, there were only isolated references to the
fact that the participants were being videotaped ("Don't mind the 'explosive'
television cameras", "Oh I did that on TV"); otherwise the activity was
focused on the design task. Besides these isolated references, there was no
visible evidence that the observation affected the group's activity.

5.7. Applying this Methodology in the Design Process

In applying interaction analysis to study group design activity, we discovered
that it could be used not only to study the design process but also as part of
the design process. In the research reported in this paper, the work activity
of design teams is studied in order to help develop tools to better support
group design activity. This research models a design process where the de
signers first understand the needs of their end users (which in this case are
designers engaged in group work) before building tools to support the users'
work. Applying interaction analysis to study the activity of the target end
users could be used in any design process to understand the users' needs and
guide the design of tools to support their work activity.

While designers are often encouraged to understand the users' needs and
design technology that meets those needs, the designers are typically not
equipped with any methodologies to help them accomplish this need-finding.
Interaction analysis could be applied to study the work activity of target end
users in order to help designers identify what resources are used and what
hindrances are encountered by their target users. This understanding could
help guide the designers in designing technology that augments resources
while eliminating hindrances in users' work. In this way, interaction analysis
can be an integral part of the design process.

When applying this methodology as part of the design process, a trouble
some concern arises. Since this methodology depends on observing actual
interaction with an artifact, it is difficult to apply it to the design of future

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 67

technology that does not yet exist. The participants must have an artifact of
some form to interact with in order to use this methodology to observe their
interaction with it. A starting point is to study a related work activity in
order to understand where to begin intervening with new technology. The
research presented in this chapter an example of that approach: collaborative
design activity using conventional tools (paper, pen, chalkboard) was studied
in order to guide the design of new tools to support that activity.

Additionally, a rapid prototyping design approach that functionally pro
totypes or simulates the imagined new technology can give some indication
of how the users will interact with it. Vertelney (1989) describes some tech
niques using computers and video to quickly prototype user interfaces. By
iterating between observing prototypes in use and developing new proto
types, a new technology can emerge that is designed to fit the needs and
capabilities of its users. Early experiences in applying the observational
methodology as part of the design process to understand the needs of users
are reported by Tatar (1989), Tang et al. (1990), and Suchman and Trigg
(1990).

5.8. Conclusions

Video-based interaction analysis is a qualitative methodology that can be
used to study group design activity. This methodology results in a descriptive
analysis of the activity, leading to an explanation and understanding of how
the group accomplished their work. It has been applied to study the colla
borative drawing activity of design teams (Tang, 1989). In this research, the
methodology identified prominent features of group workspace activity (e.g.,
gestures, the process of creating drawings) and a better understanding of
specific aspects of those features (e.g., the relationship of gestures to the
workspace, the use of the drawing process to mediate interaction). Using this
methodology to study design activity leads to a better understanding of the
design process.

This methodology can also be used as part of the design process, to
understand the needs of the users and guide the design of technology to meet
those needs. In our studies of collaborative design activity, this methodology
helped identify specific implications for the design of tools to support that
activity. Using this methodology as part of the design process leads to the
design of better artifacts that fulfill users' needs.

Acknowledgments

We would like to acknowledge Lucy Suchman for her consistent guidance
and support, and for introducing us to a new perspective on studying design
activity. Austin Henderson provided extensive comments on an earlier draft

www.manaraa.com

68 John C. Tang and Larry J. Leifer

of the paper. We also thank Sara Bly, Chuck Goodwin, Scott Minneman,
and Deborah Tatar for their insights and discussions that they shared in this
research. We acknowledge the Xerox Palo Alto Research Center (PARC) for
funding this research, and the members of the Interaction Analysis Lab there
for their comments and help in analyzing the videotapes. The Center for
Design Research at Stanford University and the System Sciences Laboratory
at Xerox PARC provided environments that fostered this research.

Appendix

Problem statement for the design session:

In teams of three or four, design a custom multifunction telephone for the user and
environment of your choice.

It should have at least three of the following functions: auto-dial and redial,
answering machine, calendar and clock, log or diary, call waiting and forwarding,
hold and transfer, conferencing, call-back, speaker-phone or any other you might
think of relevant to your particular user(s).

The goal of this project is for you to be able to design complex computer-based
products which are easy, efficient, safe and satisfying to use. You should be able
to use scenarios to describe users and environments, task analysis to determine
information needs, keystroke models to predict efficiency and simple prototypes and
storyboards to check learning.

References
Bessant, J. R., & McMahon, B. J. (1979). Participant observation of a major design

decision in industry. Design Studies, 1(1), 21-26.
Bessant, J. R. (1979). Preparing for design studies: ways of watching, Design Studies,

1(2), 77-83.
Bucciarelli, L. L. (1988). An ethnographic perspective on engineering design. Design

Studies, 9, 159-168.
Darke, J. (1979). The primary generator and the design process. Design Studies, 1,

(1) 36-44.
Finger, S., & Dixon, J. R. (1989). A review of research in mechanical engineering

design. Part 1: Descriptive, prescriptive, and computer-based models of design
processes. Research in Engineering Design, 1(1), 51-67.

Fish, R. S. (1988). "Comparison of remote and standard collaborations. Conference
on Technology and Cooperative Work, Tucson, AZ, pp. 1-11.

Frankel, R. M., & Beckman, H. B. (1982). IMPACT: An interaction-based method
for preserving and analyzing clinical transactions. In L. Pettigrew (Ed.), Explora
tions in Provider and Patient Interactions, Nasvhille: Humana, Inc.

Goodwin, C. (1981). Conversational Organization: Interaction between Speakers and
Hearers. New York: Academic Press.

www.manaraa.com

5. An Observational Methodology for Studying Group Design Activity 69

Goodwin, C. (1986). Gestures as a resource for the organization of mutual orienta
tion, Semiotica, 62(1/2), 29-49.

Halasz, F. G., Moran, T. P., & Trigg, R. H. (1987). NoteCards in a nutshell.
Proceedings of the Conference on Computer and Human Interaction and Graphics
Interface (CHI+ GI). Toronto, pp. 45-52.

Heath, C. (1986). Body Movement and Speech in Medical Interaction, Cambridge,
MA: Cambridge University Press.

Kelley, H. H., & Thibaut, J. W. (1969). Chapter 29: Group problem solving. In G.
Lindzley and E. Aronson (Eds.), The Handbook of Social Psychology; Volume
Four: Group Psychology and Phenomena of Interaction. Reading, MA: Addison
Wesley Publishing Company, pp. 1-101.

Kendon, A. (1986). Current issues in the study of gesture. In Jean-Luc Nespoulous,
Paul Perron, and Andre Roch Lecours (Eds.), The Biological Foundations of Ges
tures: Motor and Semiotic Aspects, Hillsdale, NJ: Lawrence Erlbaum Associates,
pp. 23-47.

Latour, B., & Woolgar, S. (1979). Laboratory Life: The Social Construction of Scien
tific Facts, Beverly Hills, CA: Sage Publications.

Levinson, S. C. (1983). Conversational structure, Pragmatics, Cambridge, Cam
bridge University Press, pp. 284-370.

Lynch, M. (1985). Art and Artifact in Laboratory Science: A Study of Shop Work
and Shop Talk in a Research Laboratory. London: Routledge & Kegan Paul, 1985.

Sacks, H., Schegloff, E., & Jefferson, G. (1974). A simplest systematics for the organi
zation of tum-taking for conversation, Language, 50, 696-735.

Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., & Suchman, L.
(1987). "Beyond the chalkboard: Computer support for collaboration and problem
solving in meetings. Communications of the ACM, 30(1), 32-47.

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine
communication. Cambridge, MA: Cambridge University Press.

Suchman, L. A., & Trigg, R. H. (1990). Understanding practice: Video as a medium
for reflection and design. In J. Greenbaum and M. Kyng (Eds.), Design at Work,
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 65-89.

Tang, J. C. (1989). Listing, drawing, and gesturing in design: A study of the use
of shared workspaces by design teams, Xerox PARC Technical Report SSL-89-3
(Ph.D. Dissertation, Stanford University).

Tang, J. C. (1991). Findings from observational studies of collaborative work."
International Journal of Man-Machine Studies, 34(2), 143-160.

Tang, J. C., & Minneman, S. L. (1991). VideoDraw: A video interface for collabora
tive drawing. ACM Transactions on Information Systems, 9(2), 170-184.

Tang, J. et al. (1990). Observations on the use of shared drawing spaces. Videotape,
Xerox Corporation, Palo Alto Research Center, 1990.

Tatar, D. (1989). Using video-based observation to shape the design of a new tech
nology. SIGCHI Bulletin, 21(2), 108-111.

Thomas, J. C., & Carroll, J. M. (1979). The psychological study of design. Design
Studies, 1(1), 5-11.

Ullman, D. G., Stauffer, L. A., & Dietterich, T. G. (1987). Toward expert CAD,
Computers in Mechanical Engineering, 6, 56-70.

Vertelney, L. (1989). "Using video to prototype user interfaces. SIGCHI Bulletin,
21(2), 57-61.

www.manaraa.com

70 John C. Tang and Larry J. Leifer

Wallace, K. M. (1987). Studying the engineering design process in practice, In Nadler
G. (Ed.), International Congress on Planning and Design Theory: Plenary and Inter
disciplinary Lectures, Boston, MA, pp. 29-34.

Wallace, K. M., & Hales, C. (1987). Detailed analysis of an engineering design
project. In Eder W. E. (Ed.), Proceedings of the 1987 International Conference on
Engineering Design, WDK 13, Vol. I, Boston, MA, pp. 94-101.

www.manaraa.com

6
Representation of Conceptual
Mechanical Design Knowledge

ALBERT ESTERLINE, MEGAN ARNOLD, DONALD R. RILEY, AND
ARTHUR G. ERDMAN

Abstract. Conceptual design is typically not well represented by traditional
engineering mathematics. This work is concerned with eliciting and repre
senting the knowledge used in the conceptual stage of mechanism design.
This is the first stage of design, and, along with formulating the problem,
establishes a function structure and selects processes and geometries for
components realizing the functions. A formally based representation is de
veloped that reveals conceptual connections and explicates terms and their
valid patterns of use. The formalisms are largely adopted from theoretical
computer science. Two knowledge components are formulated: one reveals
the designer's view of the problem as it evolves, and the other captures
aspects of control and strategy. The reliability of these schemes is discussed
and characteristics of limited conceptual design are identified. We describe
our methods of collecting and encoding protocols and discuss how our
formalisms could underlie a software toolkit for acquiring and representing
conceptual mechanical design knowledge. Finally, we relate our formalisms
to paradigms of conceptual design.

1. Introduction

This work is concerned with one tool used in the application of AI to design:
protocol analysis [(see, for example, Ullman and Dietterich (1988) and
Waldron and Waldron (1989)]. A protocol is a record of a problem-solving
session in which the subject thinks aloud. Analyzing the protocol reveals the
concepts brought to bear in the problem area and the inferential relation
ships among the concepts. Protocol analysis is thus a primary tool for
acquiring knowledge used in knowledge-based systems (KBSs). We are con
cerned with the analysis of mechanical design protocols and especially with
the conceptual stage of design (Pahl and Beitz, 1984), which establishes a
function structure and chooses the physical processes and geometries for
components realizing the functions. Conceptual design is followed by em
bodiment design, which determines the layout. The problems we present to

71

www.manaraa.com

72 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

our subjects are intermediate in the innovative-routine spectrum of design
(Brown, 1985). Initially, the function structure is only roughly known, and
there is no hint of the structure of the solution, yet our subjects solve them in
1 or 2 h. While the problem-solving strategies are not known in advance,
they are largely determined by the designer's understanding of the problem.
We call the sort of design revealed in our protocols limited conceptual me
chanical design.

This chapter presents a constellation of formally based schemes to repre
sent what is revealed in these protocols and is one step toward integrating
"scruffy" and "neat" aspects of AI as they apply to design (Esterline et al.,
1989). The fact that knowledge-based design approaches generally ignore
problem formulation originally motivated our use of protocol analysis. Our
study of problem formulation led to the entire conceptual stage. Indeed,
insufficient attention is given to how a problem is initially elaborated even
though some sort of structure is assumed by AI approaches to design, such
as constraint propagation (Sussman and Steele, 1989), qualitative simula
tion, and case-based reasoning [see, for example, Riesbeck and Schank
(1989) and Sycara and Navinchandra (1989)]. We emphasize the importance
of a sound representation, which is reliable in the sense that two people
encoding the same protocol into the representation tend to agree, which also
allows one to judge the similarity of design approaches and to evaluate
prescribed techniques against practice, and which, finally, suggests testable
generalizations.

A formally based representation is desirable since we wish to capture
conceptual relations that allow the design to carry through and we wish to
explicate with computational notions the terms we introduce. In addition to
predicate logic, we borrow formalisms from theoretical computer science
(denotational semantics, formal language theory, and Petri nets). Note that
we use computational formalisms for representing a design problem and its
evolution. This shows an emphasis different from that traditionally asso
ciated with computers in engineering, where typically one attempts to find
efficient algorithms for solving problems that can be handled with simple
data structures. The formalisms we use come from programming language
semantics and the study of concurrent systems. They have been used in
software engineering, where representing what is required or specified, rather
than stating how to compute the solution, is emphasized. Knowledge repre
sentation in AI has drawn some from formal areas of computer science.
Formulating results in computational formalisms not only enhances rigor
but also makes these results more accessible to implementation in software,
thus promoting the AI goal of modeling intelligent activity computationally.
In our case, results become accessible for design automation, the ultimate
practical goal of our work.

Our attempt to represent the problem aspects that are significant in a
sequence of design steps may be compared with the drill students in philoso
phy and linguistics go through translating English sentences into logical

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 73

formulas. Since the goal of this drill is to determine whether an inference is
valid, the task is to reveal a sentence's logical form relevant to the inference
at hand. The level of detail in this logical form depends on the inferential
mechanisms involved. Often detail in the English sentence is suppressed, but
often what is only implicit in the English sentence must be explicitly repre
sented in the formalism. Likewise, in encoding design protocols, we capture
the conceptual relations that allow the design to carry through; a major goal
is to encode at the appropriate level, and this requires encodings of protocol
fragments to be both backward- and forward-looking. A related issue is the
vocabulary to use in the encoding. On the one hand, we would like to use a
uniform vocabulary with a mathematical flavor for all protocols. This would
allow conceptual relations to be expressed in a uniform and perspicuous
manner. On the other hand, we would like to keep contact with the designer
and the design context by using terms from the protocol. We have accepted
a compromise.

We first present the structured instance diagram (SID), which represents
the designer's view of the problem state evolving through time. Static aspects
of this diagram (the "static ontology") are discussed in Section 2, while
dynamic aspects (the "dynamic ontology") are discussed in Section 3. Sec
tion 4 formulates the static and dynamic ontologies in the domain equations
of denotational semantics. These ontologies can be viewed as type systems
such that a SID is composed of interrelated instances of items declared in the
ontologies and values associated with these instances. Section 5 presents our
representation of control knowledge in terms of modified Petri nets. These
nets consist of "foci" and transitions among foci, which are controlled by
conditions relating to a SID. Each focus has as its name a phrase that
describes the focused, coherent aspect of design represented by the focus.
Focus names and atomic conditions are described by formal languages
(grammars) to ensure that they are formally well-defined.

Note that a SID is specific to a particular protocol. The ontologies, in
contrast, are type systems that govern the construction of any SID. The
design nets are likewise general. When a protocol is encoded, a document
called a trace is produced that partitions the protocol into episodes identified
with net transitions. The conditions and changes in the SID associated with
each episode are noted, and the SID is accordingly updated. As a protocol is
encoded, new items may need to be added to the ontologies to sanction
needed constructs in the SID and new foci or transitions may need to be
added to the nets to reflect new kinds of transitions, but these additions are
permanent and are available when future protocols are encoded.

We defer to Section 6 a detailed discussion of our encoding process and its
reliability so that the formal framework presented in Sections 2-5 may be
assumed. Section 7 discusses software support for our encoding schemes. We
review several toolkits and indicate how a software toolkit for our schemes
could borrow from these. A prior question is whether the general models
underlying these toolkits are appropriate for protocol analysis in our do-

www.manaraa.com

74 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

main. We assess in these terms the most influential toolkit, Shelley, and the
KADS model of expertise underlying it. Section 8 addresses the difficult
notion of strategies, conceived as abstract control patterns with scope greater
than but encompassing that of the transitions in the design nets. We review
the various computer-science formalisms used to capture the temporal order
of events as possible ways to represent strategies in conceptual mechanical
design, and again modified Petri nets are found most appropriate. Capturing
strategies, however, strains our representational resources and, note, the
resources of any formally based schemes. In section 9, we discuss two para
digms of design that together subsume most paradigms that have been advo
cated recently. We consider how these paradigms relate to and supplement
our framework and especially how they interact with our representation
schemes. Section 10 is the conclusion.

It is important to realize the limitations of the research reported in this
chapter. We do not claim that protocol analysis is the only valid method for
investigating conceptual mechanical design. Indeed, in Section 9.1 we de
scribe a method (the "critical instance technique") we have developed to
supplement our protocol analysis, and there are many other knowledge
elicitation and acquisition techniques that could be applied to our domain.
But we do claim that protocol analysis, along with representation of the
knowledge thereby revealed, is the principle tool for investigating how con
ceptual design is performed. The spontaneous flow of a protocol is required
to get a handle on the progressive structuring of the problem state that
characterizes conceptual design. One devises representation schemes to cap
ture this structure and its evolution and to express control patterns and
strategies. In the first instance, knowledge elicitation is not appropriate here
since it imposes representation schemes on the problem solving.

Again, problems remain with our schemes. The SID and allied notions are
largely worked out, but there remain problems with the design nets, espe
cially as these are intended to support our representation of strategies. There
is, however, no need to follow our framework in toto. Protocol analysis is a
very time consuming endeavor. We tend to select only the more revealing
protocols and analyze them from start to finish. One could, however, skip or
lightly analyze large parts of a protocol. Again, one could use only part of
our representation scheme or use only part in outline. For example, one
could construct only a skeletal SID for a protocol and attach comments to
the structure it presents.

What is presented in this chapter is not an account of conceptual mechani
cal design but rather aframework of techniques and especially representation
formalisms. (Still, this framework sets limits for an acceptable account.) The
ultimate practical goal of these formalisms is to facilitate automation of
aspects of conceptual mechanical design. Again there is no need for the
representations to be automated in toto. For automation of conceptual de
sign, the control patterns represented by the design nets, and especially
strategies, are particularly important since conceptual design generally offers

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 75

a multitude of options and picking up a viable line of reasoning is critical.
We envisage such automation as human-machine cooperation in part be
cause specifications often need to be added, modified, or refined.

To represent control patterns, we use formalisms intended to capture
concurrency. This may seem odd since we usually think of a train of thoughts
as serial, although perhaps this is because speech is necessarily serial. The
concurrency assumed by the formalisms is the existence of concurrent se
quences of events, and this does not imply that the individual events occur at
the same time. The usual picture is an interleaving of sequences that is
nondeterministic regarding whether certain events in one sequence precede
or follow certain events in another sequence. We identify episodes in the
protocol that correspond to transitions in the design nets. Using formalisms
that admit concurrency allows us to look for patterns that abstract from
insignificant ordering and fluctuations. Its is also useful to consider episodes
that overlap or coincide. This is natural since lines of reasoning often
overlap.

In this chapter, we discuss a significant number of formalisms and we
describe our rather extensive representation schemes. Space restrictions,
however, prohibit detailed discussions and all but a few examples. Generally,
we give just enough information on the various formalisms to compare them
on critical points and to highlight their strengths and weaknesses as means of
representing aspects of conceptual mechanical design protocols. We give a
few examples of skeletal SIDs, but we do not show examples of design nets;
we give fragments of the semantic grammars for generating focus names and
atomic conditions, and it is hoped that the reader will generate several focus
names and atomic conditions to get a feel for the nets. We give the key
references for each formalism discussed, and the interested reader is encour
aged to refer to the appropriate references for a presentation of the formal
ism; the issues raised here should be kept in mind when the references are
consulted. What inevitably is lost in our presentation is a clear picture of
how the various formalisms support rigorous reasoning; the reader is asked
to accept this on faith until he/she consults the references.

2. The Structured Instance Diagram (SID):
A Representation of the Designer's View

The structured instance diagram (SID) is a representational device, con
structed as a protocol is analyzed, that represents the designer's view of the
problem state evolving through time. It makes explicit the ontology inherent
in the problem state. Our graphical representation involving entities, rela
tions and properties elaborates the entity-relationship model used in da
tabase modeling (Chen, 1976), although our representations denote instances
of concepts (thus "structured instance diagram") and not sets of tuples. The
SID is a framework for tabulating information about the things referred to

www.manaraa.com

76 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

(if only implicitly) in the protocol. It captures this information by relating
instances of general concepts of entities, tasks, relations, and properties in a
structured way that generalizes graphical representations using nodes and
arcs. The SID can give a snapshot of the design at any specific stage. It also
includes special relations (which appear as special kinds of arcs) that indicate
how the design evolves. Section 3 discusses how the evolution of the design
is represented; this section is restricted to the snapshot aspects of the SID.
The elements of a SID are, in the first instance and as discussed below,
formal elements that feature in domain equations of denotational semantics.
They are secondarily elements of a graphical representation that is an intu
itive tool allowing one not only to comprehend at a glance the major features
of the protocol but also to encode all but the fine points of a protocol with a
limited background in computer science formalisms. As a protocol is ana
lyzed, the ontological items are tabulated in a structured way as indicated
below. This tabulation translates directly into the graphical representation.
Each item tabulated must be declared in the static ontology (discussed in
Section 4), and the structure of the SID must be consistent with the type
constraints imposed by this ontology. (The evolutionary aspects of the
SID-discussed in Section 3-are declared in the dynamic ontology, also
discussed in Section 4.) In this section, we first (in 2.1) present and illustrate
the basic notions involved in a SID. The representation of time and change
(in the task or artifact being designed) is an important special area and is
discussed separately (in 2.2).

2.1. Basic Notions

The items represented in the SID include not only entities, properties, and
relations, but also tasks.

• Entities (represented by rectangular nodes) include not only devices but
also operands, obstacles, and more.

• Tasks (represented by hexagonal nodes) are functions required by the
design.

• Distinguished relations (represented by special arcs) are usually among
tasks or among entities and tasks.

• A nondistinguished relation (represented by a diamond node connected
by arcs to the items it relates) typically (but not always) relates entities.

• A property (represented by an oval node connected by an arc to what it is
a property of) is typically (but not always) a property of an entity.

In general, a relation could be among any kinds of items and a property
could be of any kind of item. To relate items in the diagram to tabulated
items, either names (preferably taken from the protocol) or reference num
bers may be used.

Figure 6.1 presents a problem specification that we have given to de
signers: to design a device that will tie together bundles of plastic tubes.

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 77

Device
B A

000
to tie o0o 0000
Bundles

0000 < o0o0o0o0o0o
000 Bundle of Plastic Tubes

FIGURE 6.1. Problem specification. (1) A device is required to tie mechanically a
bundle of flexible plastic tubes. (2) Each tube will be 12" long and will have an outside
diameter of 1/2". The tubes will be presented to the device already loosely grouped in
a bundle, as shoWn above at A. The bundle will always have 12 tubes. (3) The device
should return the tied bundle to approximately the same place where the bundle was
presented to the device (that is, A and B are at approximately the same location).
(4) The device is to use the relative inexpensive paper enclosed wire "twist-ons" to tie
the bundle of tubes.

Figure 6.2 is the tabulation of that part of the SID representing the infor
mation in this specification. This was completed after only the specification
was read, but it is subject to revision in light of statements later made by the
designer that indicate his/her interpretation of the specification. There are
three tasks and two entities in Figure 6.2, each labeled with a unique positive
integer. Item I is the main task of the problem: tying the bundle of tubes.
Entity 2 is the bundle of tubes, task 3 returns the bundle, task 4 receives the
bundle, and entity 5 is the twist-on used to tie the bundle. Entities and tasks
are labeled with consecutive integers, beginning with 1, roughly in the order
they appear in the protocol. Relations, properties, and most other informa
tion are listed under the appropriate entities and tasks. A relation is listed
under its first argument. Additional properties and relations of a given task
or entity may appear any time in the protocol, so it is advisable to list each
entity or task on a separate sheet of paper. A reference in square brackets to
one or more protocol fragments is included as justification at the end of
a tabulated entry. The references in Figure 6.2 have the form [O.X] or
[O.X, O.Y]. "0" indicates the problem specification and X andY indicate the
specification (1-5) or the figure (fig) in the specification; the second form
indicates that two specifications are relevant. Before a protocol transcription
is encoded, it is divided into large sections numbered 0 (for the specifica
tions) on up, and each section is segmented into phrases. (Partition into epi
sodes, reflecting transitions in the design nets, comes later, as part of the en
coding process.) Figures (supplied or drawn by the designer) are associated
with protocol sections and are enumerated within these sections. A square
bracketed justification in a tabulated entry is a list of one or more references
of the form M.X, where M is a section number and X is either the number
of a segment or a reference to a figure in that section. (This form of refer
ence to segments is also used to relate episodes to parts of the protocol text.)

www.manaraa.com

78 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

1. Compact-typing (task) (0.1]
Operand (l, (2, 5)): the operands of 1 are 2 and 5 [0.1, 0.4]

(WR(1) n R(2))som• # 0 (0.1]
(WR(1) n R(5))som• # 0 [0.4]

2. Bundle (of flexible plastic tubes) (entity) [0.1]
Rei-Joe (2, 5): the relative location of 2 to 5 [0.4]

initial: 2 distant from 5 [0.4]
-+ I [0.4]
final: 2 tied to 5 [0.4]

a (2): orientation of 2 (quality) [O.fig]
value: The axis of 2 is horizontal and is normal to the direction 2

moves to and from the device realizing 1.
b (2): compactness of 2 (accident) [0.2]

initial: no (0.2]
-+ 1 [0.2, 0.3]
final: yes [0.2, 0.3]

collection (2) [0 .2]
collection(2). cardinality (quality); value: 12
collection(2). type (quality); value: tube

collection(2). type. a: flexible (accident)
collection(2). type. b: material (quality); value: plastic
collection(2). type .length (quality); value: 12"
collection(2). type. c: inside diameter (quality); value: 1/2"

length (2) (0.2] (quality); value: 12"
3. Returning (task) [0.3]

Operand (3, (2)): the operand of 3 is 2 [0.3]
end (1)::;;; end (3) (0.3]
Postrequisite (3, I): 3 is a postrequisite of 1 [0.3]

4. Receiving (task) (0.3]
Operand (4, (2)): the operand of 4 is 2 (0.3]
begin (4) ::;;; begin (1) [0.3]
Prerequisite (4, 1): 4 is a prerequisite of 1 [0.3]

5. Twist-on {tie} (entity) (0.4]
a (5): composition of 5 (quality) (0.4]; value: paper enclosed wire
dimensions (5) [0.4]; value:

(>the perimeter of the cross section of 2nnal(l)• ::;;; 1-2", negligible)
deformed-shape (5) (quality)

initial:
-+ 1 [0.4]
final: the largest dimension is deformed to follow the perimeter of a

cross section of 2nnal(l)· (0.4]
b (5): tied (accident) [0.4]

initial: no [0.4]
-+ I [0.4]
final: yes (0.4]

FIGURE 6.2. The tabular form of the SID for the specification in Figure 6.1.

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 79

FIGURE 6.3. Graphical representation of major items in the SID tabulated in Figure
6.2. Prereq, Postreq, and Op stand for the relations Prerequisite, Postrequisite, and
Operand. Rel-loc is the relative location relation. Tasks are represented by hexagonal
nodes and entities by square nodes. The reference numbers refer to the tasks and
entities as in Figure 6.2, viz.,l: Compact tying (task); 2: Bundle (entity); 3: Returning
(task); 4: Receiving (task); 5: Twist-on (entity).

Figure 6.3 shows the major items in the graphical representation of the
SID for the specification given in Figure 6.1. For simplicity, this suppresses
much of the information in the tabular form of the SID presented in Figure
6.2.

A task generally has one or more operands, the entities on which it oper
ates, and instances of the distinguished relation Operand are listed under the
appropriate tasks in Figure 6.2. For example, under 1, there is Operand
(1,(2,5)), indicating that the operands of 1 are 2 and 5. In general, the
second argument is ann-tuple indicating that all n elements are operands of
the first argument. The arguments of relations in general are listed as far as
possible in the order they appear in their English reading, with the subject
first; it is thus natural to tabulate a relation under its first argument.

We frequently use the term "relation" or "property" to mean an assertion
that a relation holds among certain items or that a property (which mathe
matically is a unary relation) holds of an item. That is, we often use "rela
tion" or "property" to mean an instance of the relation or property, with all
argument positions filled in. In contrast, when we say that a relation is
distinguished, we mean that the relation itself (with its argument positions
unspecified) is accorded special status and its name is part of the established
terminology. Names for other, nondistinguished relations must be coined as
they are encountered. There are also distinguished properties. For example,
length(2) refers to the length of entity 2 (the bundle). This has an associated
value, 12", and so it is what we term a quality. Other properties (such as the
compactness of the bundle) are aU-or-nothing (at least at this stage of the
analysis): if one is asserted of an item, there is no need to specify a value for
it. We call such properties (as with "quality," with apologies to Aristotle)
accidents.

More explicitly, a quality fmay be seen as a binary relation/(-._) that is a
functional relation: given i (of the appropriate type), there is a unique v such
thatf(i, v) holds. We could thus represent/explicitly as a function and write

www.manaraa.com

80 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

f(i) = v.lfwe allow that i may not be of the appropriate type, thenf(i) may
or may not be defined [that is.f(-) would be a partial function not necessar
ily total on this larger domain]. The values of i for whichfis defined (that is,
the values constituting the "appropriate type" for i) are the domain of
definition off. When we consider/(-) to denote a property, we takef(i) to
be true or false depending on whether i is in the domain of definition of the
function/(-); if it is, then we may further ask about the value off(i), where
f(-) is now treated as a function. In database terms, f is an attribute, i is a
key (or denotes the individual uniquely determined by a key), vis the value
of attribute f for the individual i, i is of the appropriate type if it is in the
domain of the database relation in which f appears as an attribute (and
possibly must also satisfy certain other integrity constraints), and v is of the
appropriate type if it is in the domain off[which, by an unfortunate linguis
tic twist, is the case if mathematically it is in the range of the function/(-)].
A parallel analysis of an accident g shows that, in any instance g(i) of g, g is
an attribute, i is a key, and the only possible values for g are true and
false. The usual database way to handle this is to have a database relation
(that is, a table) in which i occurs as a key iff (if and only if) g holds of i. We
thus see g(_) as a predicate without a corresponding function. Because the
emphasis is on functions in denotational semantics, we shall indeed later
view an accident as a function with range {true,fa/se}. For now, however, we
use the natural distinction that a quality has an associated (functional) value
while an accident has not. The quality-accident distinction also applies to
relations. For example, the Operand relation is an accident relation: Ope
rand(/, L), where I is a task and Lis a list of entities, is true or false, and no
value is indicated if it is true. In contrast, Re/-loc(l, J), where, for example, I
and J are entities, is true if there is a relation of relative location between I
and J; if there is, then we may ask for an associated value, say, a direction
and a distance.

Properties that are not distinguished are given consecutive lower case
letters, starting with a, as names [see, for example, a(2) and b(2) under 2 in
Figure 6.2] so the SID may be annotated without clutter. Each task or
entity has its own sequence of names. Each nondistinguished property is
accompanied in the tabulation by an English phrase to explain its meaning.
Nondistinguished relations are treated similarly but with upper case letters
since our convention is that a relation name begins with an upper case letter.

Properties of properties are represented by recordlike structures. As an
example, col/ection(2) in Figure 6.2 asserts that the distinguished pro
perty collection holds of entity 2 (the bundle). Accident collection has pro
perties cardinality (a quality whose value is the number of repeated parts)
and type. The quality type has a value but also has its own properties. At this
stage, we have three levels of properties, giving expressions such as a(type
(collection (2))). Our conventions allow us to write this as collection(2).type.a.
Property collection(2) also illustrates that, for an item that does not change

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 81

throughout the protocol, a single reference can apply to that item and all
its subordinates.

The values recorded for quality properties and quality relations in Figure
6.2 undoubtedly strike some as strange. The values that pass without ques
tion are real numbers, which may be associated with measurements. No
measuring procedure, however, is defined early in the protocol and it would
be a mistake to distort the protocol by overspecifying the problem state
even if the additional precision were accompanied by such qualifications as
intervals or probabilities. Sometimes the problem state, by virtue of the
specification or a pronouncement by the designer, does afford a real number,
as when length(2) in Figure 6.2 has the value 12". Sometimes all that is
available is something similar to a constraint, like the value for a(2), the
orientation of the bundle. A value might have components, only some of
which relate directly to real numbers-see the value of dimensions(5), the
dimensions of the twist-on. In finding an appropriate level of detail at which
to encode a protocol fragment, we try to decompose the problem state into
ontological items that give the most direct translation consonant with the
minimum structure that allows the content of subsequent fragments to be
treated as an elaboration of the structure and constraints already present.
Values are to be no more precise than the fragment warrants and no more
decomposed than references later in the protocol require. One can always
revise the encoding of a fragment in light of the detail needed to support later
design activity. In fact, we have discovered that usually almost all elabora
tion can be attributed to new tasks and entities (and their properties and
relations) that are introduced as the protocol evolves (see Section 3).

The values of qualities typically are the types of items that further qualify
items that have already been identified. For example, an entity must be
identified before the question of the numerical value (or any other value) for
its length can arise. Our approach emphasizes from the start the ontological
items that impart structure on the problem state. Within the structure, it
locates restrictions and constraints; these lead to the numerical values ex
ploited by familiar engineering techniques. Not only may a problem state fail
to suggest values for familiar qualities, but it may also be mute about in
stances of certain very general and universally applicable properties and
relations. For example, it may be pointless to assert a relation of relative
location (Rel-loc in the terminology of Figure 6.2) between a certain pair of
entities.

2.2. Representing Time and Change
It is essential to represent changes that certain items undergo. For example,
the relation Rel-loc(2, 5) in Figure 6.2 is a quality relation that changes value
when the top-level task is performed. This is indicated by recording, in lieu
of a single value, an initial value and a final value; the -+ 1 between these

www.manaraa.com

82 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

values indicates that the top-level task (1) intervenes. In general, the changing
values of a relation or property are listed under it in chronological order,
with tasks that contribute to the change from one value to another listed
between them. Since an accident either holds or does not hold, the "values"
for a changing accident are yes or no.

Tasks potentially exhibit the richest temporal nature. When a task is
sufficiently specific, a time profile is listed under it; this has the form

initial: (description) [Ref0]

ei: (description of e 1) [Refd

en: (description of en> Refn]
final: (description) [Refn+d

The e~o 1 =::;; i =::;; n, are events and are listed in the order they occur and [Refd
is a reference to the segment(s) in the protocol referring to event e1• If the
task is repetitive, then .final is replaced by repeat and information about such
things as period is included in the accompanying description. With constitu
ent events identified, changes in relations and properties can be correlated
more finely with events within tasks; we use the notation e1(/) for the ith
event of the task whose reference number is /.

To state the spatial information available, WR(l) is used to denote the
working region of the task with reference number I, the region where that
task operates. Similarly, if J is the reference number of an entity, then R(J)
denotes the region occupied by this entity. [Regions and working regions are
histories in the sense of (Hayes, 1985).] To represent a temporal cross section
of an item A, we use an expression of the form AT. Here T is a temporal
reference of the form initial(/), final(!), or e1(/), where I is the reference
number of a task. Relations among regions and working regions, or tempo
ral cross sections thereof, are expressed in set-theoretical notation. Examples
are shown under task 1 in Figure 6.2, where the operator some (meaning
sometime) is applied as a subscript to entire intersections; the first of the two
statements asserts that WR(J) and R(2) intersect sometime.

Representations for temporal relations have been extensively studied in
the AI literature and elsewhere [see, for example, Allen, (1983), McDermott,
(1982), and van Benthem (1983)]. We use the usual relation symbol for
total orders (=::;;) and what can be defined in terms of it and equality to
represent temporal relations among events that, at the current level of
analysis, are thought of as happening at instants. Events thought of as oc
curring over time intervals are accommodated by introducing expressions
begin(lnt) and end(lnt) to refer to the initial and final instants (or greatest
lower bound and least upper bound) of interval Int. All these temporal
relations are distinguished and are accidents with a mathematical flavor
since there is an underlying total order. Indeed, there generally is significant
temporal structure explicit in a design problem state. There are also distin
guished relations with a temporal aspect that presuppose something more

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 83

than a mere underlying order. For example, Prerequisite(4, 1) in Figure
6.2 indicates that task 1 could not be done unless task 4 is done, and
Postrequisite(3, 1) asserts that a successful conclusion of task 3 be done.
Another distinguished relation is Causes(/, X), where I is a task and X
can be (the value of) a relation or property or could even be an entity. The
last three relations are accidents and have temporal implications (for exam
ple, a cause cannot occur after its effect), but they also presuppose some
underlying mechanism (usually still to be designed).

Most distinguished relations and properties have a mathematical flavor,
yet, unlike temporal relations, are qualities (they have values). Even though
the distinguished spatial relations (several of which appear in Figure 6.2)
themselves have a mathematical flavor, their values, like the descriptions and
values of nondistinguished relations and properties, tend at the beginning of
the design process to be stated informally. The distinguished relations and
properties, whose names are uniformly imposed independently of the terms
used by the designer, frequently are only implicit at the beginning of the
design process. The exceptions are temporal relations.

3. Evolution of the SID: Representing the Designer's
Changing View

The SID thus far has been considered as it appears at one point in the design
process. To capture its evolution as the design progresses, we introduce
several distinguished relations. These relations are declared in the dynamic
ontology, discussed (along with the static ontology-relating to the SID
aspects discussed in Section 2) in Section 4. In this section, we first (in 3.1)
present the distinguished relations in question along with some examples and
introduce the notion of a "task DAG," which is a skeletal representation of
a SID emphasizing evolutionary relations. As the designer's view evolves,
alternatives arise and are evaluated. This requires additional representa
tional resources, which are discussed in 3.2. This section concludes with a
summary (in 3.3) of how the character of the SID changes as the design
activity progresses.

3.1. Basic Notions
One way for a design to progress is for a task to be decomposed into
subtasks. If I is a task and h ... , In are subtasks of /, then Subtask(l~o /)
holds for all i, 1 ~ i ~ n. Another way for a design to progress is by introduc
tion of an entity to realize (partially or wholly) a task. Sometimes a new,
more specific entity is introduced to realize a less specific entity; a similar
relation can obtain between tasks. Finally, an entity may require one or more
tasks to be realized for it to perform as required. The distinguished relations
we have just mentioned (after Subtask) are encoded as Realizes(E1, T1),

www.manaraa.com

84 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

FIGURE 6.4. The major features of the initial expansion of the diagram of Figure 6.3,
following A's protocol. Task 7 and entity 12 play a minor role and are ignored here.
The labels Prereq, Postreq, Op, and Sub are abbreviations for the relation names
Prerequisite, Postrequisite, Operand, and Subtask. The reference numbers refer to the
tasks and entities as follows. 1: Compact-tying (task); 2: Bundle (entity); 3: Returning
(task); 4: Receiving (task); 5: Twist-on (entity); 6: Compacting (task); 8: Gathering
(task); 9: Jiggling (task); 10: Compacting device (entity); 11: Tying (task); 13: Two
"C"-clamps (entity).

RealizesE(EI> E2), RealizesT(Th T2), and Sustains(Th E 1), where T1 and T2

are tasks and E 1 and E2 are entities. Note that, for fixed T2 , there is at most
one T1 such that RealizesT(Th T2); if there were several tasks realizing Tb
these tasks would count as subtasks.

We illustrate these relations from our encodings of two protocols in which
the problem shown in Figure 6.1 is solved. The first subject (henceforth
called A) is a member of the mechanical engineering faculty at a major
university. The second subject (henceforth called B) has more than 20 years
industrial experience and is undegreed. At the level of detail shown, Figure
6.3 (the graphical version of the SID for the specification in Figure 6.1) is
valid for both subjects. Figure 6.4 shows how this was initially expanded by
designer A, and Figure 6.5 shows how it was by designer B. To emphasize the
general structure of the diagrams, with two exceptions (the tied property and
the detached-part-of relation in Figure 6.5), only tasks, entities, and destin
guished relations are shown, and the Rel-loc relation shown in Figure 6.3 is

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 85

FIGURE 6.5. The major features of the initial expansion of the diagram of Figure 6.3,
following B's protocol. The labels Prereq, Postreq, Op, and Sub are abbreviations for
the relation names Prerequisite, Postrequisite, Operand, and Subtask. The reference
numbers refer to the tasks and entities as follows. 1: Compact-tying (task); 2: Bundle
(entity); 3: Returning (task); 4: Receiving (task); 5: Twist-on (entity); 6: Hopper
(entity); 7: Wire (entity); 8: Detaching (task); 9: Feeding (task); 10: Winding (task);
11: Spindle (entity). The relational reference A(5, 7) indicates that 5 is a detached part
of7.

ignored. Relations that give the history of the design are shown with double
headed arrows.

Designer A decomposed the top-level task into a compacting task and a
tying task, with compacting a prerequisite for tying. B, in contrast, decom
posed the top-level task into a detaching (of the twist-on from a uniform
length of paper enclosed wire) task, a feeding (of the wire through a groove
on the inside of a hopper holding the bundle) task, and a winding (to tie the
twist-on) task. The subtasks A chose exhausted the parent task, while those
chosen by B did not. A decomposed the compacting subtask into a gathering
(the tubes together) task and a jiggling (the bundle so it assumes a stable
shape) task but then realized (see the relation Realizes) both tasks with a
single entity, called simply a compacting devise; it was ultimately realized
(Realizes E) more concretely as a device consisting of two "C" -shaped
effectors. (This remained conceived as a single entity throughout the proto
col.) B partially realized the top-level task with a hopper then accounted for
the remaining aspects of the task with subtasks. He introduced a spindle to
do the winding and detaching, but this introduced the need (Sustains) for a
new task (not shown in Figure 6.5) of rotating the spindle.

www.manaraa.com

86 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

If we restrict the SID to entities and tasks and the evolutionary relations
among them, the result is nearly a tree or a forest (a set of trees), where the
children of a node are those items derived directly from it by one of the
evolutionary relations. Because of "function sharing" (where an entity real
izes more than one task-see 10 in Figure 6.4 and II in Figure 6.5), however,
the skeletal diagram may fail to be a tree or even a forest. Still, the set of
nodes and the set of arcs in question is formally a graph and it is never
possible to find a directed path consisting of evolutionary arcs that cycles
back on itself. That is, the skeletal diagram is formally a DAG (directed
acyclic graph)-we call it the task DAG. This implies that, if two nodes in
the task DAG are on a common directed path, then one unambiguously
occurs earlier in the path than the other. This imposes a certain (partial)
order on the nodes of the DAG, which we envision as ordered top (for
items appearing earlier in the protocol) to bottom. The task DAG is similar
to what Pahl and Beitz (1984) term a function structure. They see elabora
tion of a function structure as an initial phase of conceptual design. Our
subjects, in contrast, intermingle elaboration of the task DAG with other
aspects of design.

Relations and properties are generally inherited along directed paths in the
task DAG. The most obvious items not inherited are aggregate properties.
This inheritance takes two forms. Relations and properties are inherited in a
weak sense when several descendants taken together fulfill the role of an
ancestor. For example, if a task is a prerequisite for another, then the sub
tasks of the first are collectively prerequisite for the subtasks, taken collec
tively, of the second. A relation or property is inherited in a strong sense
when, if it holds of an ancestor, it holds of each descendent on its own. For
example, if a task precedes another task, then all subtasks of the first precede
the second and all subtasks of the second follow the first. Certain relations
and properties (such as temporal relations) that may hold of tasks are not
applicable to entities, and some that may hold of entities do not apply to
tasks. Thus inheritance may skip items in the task DAG. Still, temporal
relations among tasks, for example, impose constraints on the entities re
alizing those tasks.

The task DAG shows how the problem is decomposed into subproblems.
In the simplest case, a subproblem consists of a task, an entity realizing it,
the information listed under both in the tabular form of the diagram, and
any tasks or entities that evolve from the task and entity in question (that is,
any of the subproblem's subproblems). The SID tends to cluster into sub
problems; this allows the graphical form of the diagram to be modularized
so that the top level of each subproblem may be represented separately. A
relation among items both in and outside a cluster represents, from the point
of view of that cluster, an externally imposed constraint; such constraints
make the diagram an a/most-hierarchical constraint network in the sense of
Sussman and Steele (1980). Inheritance can be exploited to give succinct
tabular and graphical representations of subproblems and to avoid redun
dancy across subproblems.

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 87

3.2. Alternatives and Evaluation

Thus far all nodes in the SID have been considered AND nodes. For exam
ple, realizing a task requires realizing all its subtasks; the node representing
the task is an AND node since it relates to the conjunction of the nodes that
are reached from it along single evolutionary arcs. When, however, there are
n > I alternative realizations of an item, we make n copies of the item, each
connected to an arc from the original item. Each arc from the original to a
copy represents an alternative path in the elaboration of the problem state,
and the original node is an OR node since it relates to the disjunction of the
nodes reached from it along each such arc. In the tabular form of the SID,
each of the n alternatives is assigned a unique number J, 1 :s;; J :s;; n, and is
listed separately and numbered /. J, where I is the number assigned to the
original; each alternative is annotated with a summary of the alternatives
to it.

Each alternative is the starting point for a separate elaboration of the
problem state. These elaborations may involve large parts of the structure
beyond the alternatives themselves. Any arcs to or from the original node are
present for each copy, although inheritance can be invoked to avoid explicit
repetition. Even inheritance, however, cannot avoid detail that arises be
cause relations with other parts of the problem are elaborated differently.
Furthermore, function sharing in an alternative may cause paths from other
parts of the problem to converge on that alternative. The problem state can
become complex when there are alternatives for several nodes concurrently,
for then in principle each combination of alternatives is a possible starting
point for further elaboration. In fact, however, experienced designers are
adept at avoiding this combinatorial complexity. There are practical mea
sures to cope with such complexity in the graphical representation of the
SID. A picture of the task DAG that suppresses most detail is a useful
summary of the overall problem state. Separate sheets of paper can be used
for the graphical representation of alternatives and repeated detail can be
accommodated by drawing common structure once and photocopying.

Often an alternative is not articulated until another alternative has been
worked out in detail. There is apparently a preference for evaluating alter
natives against each other rather than on their own merit. The SID thus
contains dead parts, representing failed alternatives, dormant parts, corre
sponding to unexplored alternatives, and growing parts, corresponding to
the options currently considered.

Evaluations are encoded as separate items. Such an encoding lists the
alternatives being evaluated, their rankings according to any criteria that are
mustered, records of which alternatives met whatever conditions are raised,
and any facts cited. The encoding concludes with the decision to reject or
to accept (possibly tentatively) various alternatives. An evaluation is repre
sented graphically by enclosing its scope within a dashed oval; "accept" and
"reject" are written next to the appropriate items.

A typical protocol revealed much less alternative development and explicit

www.manaraa.com

88 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

evaluation than was anticipated. What generally occurs, however, is a review
at the end of the design activity to ensure that nothing has been overlooked
and that the proposed solution is consistent. Such reviews usually also hap
pen at least once earlier in the protocol; they guard against wasting effort
developing results that are already vitiated by a careless mistake. A review
may reveal deeper problems with the current (partial) design and occasion
further elaboration. For example, the design may violate some condition; if
the condition has not already been articulated, noting its violation is an
occasion for doing so. The design may also fare poorly according to some
criterion, which again may not be articulated until applied. In either case,
further facts may be invoked to support the judgment, and, in general, more
information is articulated and the diagram is accordingly modified. We do
not introduce new representational resources to capture these reviews. We
record when a review happens and any features it exhibits in common with
evaluations: criteria and how well they are met and any facts raised. Also, if
an error is uncovered, the diagram is changed to reflect the corrections the
designer makes, but the old version is retained so that the steps taken may be
recovered.

The SID brings together all views the designer had during the design, but
there is no guarantee that the designer actively retains all the information
represented therein or that the designer has at any one time a global compre
hension of the current problem state. Our encoding does not represent such
limitations on the designer's cognitive facilities. A good designer is aware of
his/her limitations and engages in review as frequently as needed to be
reasonably assured of consistency and comprehensiveness.

Alternative accounts can be given of the modifications imposed when the
current design is found unacceptable. One popular account views design as
driven forward by propose-evaluate-accept/reject cycles. Capturing such
cycles in our representation, however, would burden it with unjustifiable
detail. For one thing, the individual propose-evaluate-accept/reject cycles
and the relation of an accept or reject to a subsequent propose would impose
many more relations of temporal order than in our scheme. Also, informa
tion articulated at any one of the three steps in a cycle could not be assumed
to be of the same nature as the information articulated at the other two steps.
Finally, since the decomposition of problems into subproblems can carry
on arbitrarily far, propose-evaluate-accept/reject cycles can be arbitrarily
deeply nested within other such cycles. In fact, given a proposal, the corre
sponding evaluation or acceptance/rejection could be indefinitely delayed by
intervening proposals.

In contrast, our account of the modifications imposed when the current
design is found unacceptable is simply as further elaboration of the SID.
Alternatives are listed together even when formulated at very different times,
so a modification is seen as rejecting one alternative in favor of another. In
general, the SID (in contrast to the nets discussed in Section 5) only roughly
captures the sequence in which steps are taken. The task DAG captures only

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 89

a partial order on the tasks and entities articulated in the protocol. If two
items are not on a common path, then they are incomparable: we cannot
recover from the task DAG which was articulated before the other.

3.3. The Changing Nature of the SID

The SID changes character as it evolves. Entities and tasks at the top are
concrete but typically only roughly described and are embedded in the con
text of the design problem. Early in the design process, entities and tasks are
introduced that are more abstract and, in particular, are abstracted from the
specific application context. Designers differ on how abstract they make the
problem. Identification of the (largely spatia-temporal) properties relevant
to mechanical design and especially relations (which are more important
than properties in the abstract view) is a major part of abstracting from the
context. As the design progresses, the number of tasks and entities increases,
increasing the opportunities for relations and the general amount of detail.

Accidents (both properties and relations), which are ali-or-nothing, tend
to give way to qualities, which may assume various values. Some values are
simply topological, expressing relations (such as above and below) among
items without specifying distances, time intervals, and so on. Other values
are dimensional or metric, and express such notions. Apart from quantitative
information given in the specification, metric notions initially tend to be
expressed qualitatively ("close", "far", "soon after") yet with an intended
foundation that supports the comparisons (~) and operations(+, x) valid
for the real number system. Increasing detail restricts the range of the vari
ous dimensions relative to the dimensions in the specifications. Causal rela
tions give way to mechanical relations, and temporal relations become con
sequences of device structure. Our protocols conclude with all tasks realized
by entities, and all mechanically relevant relations identified, although their
values often remain fuzzy or even qualitative.

4. Ontological Analysis and Domain Equations

We now show how more formal rigor can be achieved with the representa
tional techniques we have presented. Such rigor is necessary to explicate the
meanings of terms and valid patterns of their use. Defining the method in
this way allows it to be applied consistently by different researchers. The
following owes a great deal to Alexander, Freiling et al. [see Freiling et al.
(1985), Alexander et al. (1987), and Freiling (1988)]. Their ontological
analysis

is a technique for the preliminary analysis of a problem solving domain. An ontology
is a collection of abstract and concrete objects, relationships and transformations
that represent the physical and cognitive entities necessary for accomplishing a task.
(Alexander et al., 1987)

www.manaraa.com

90 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

In this section we introduce ontologies, which are type systems available
for declaring items that are instantiated in SIDs. While a SID is part of an
encoding of a specific protocol, the ontologies are type systems for all SIDs
hence for encoding any protocol. When a term is introduced for the first time
in a SID (for example, it might be the name of a property taken from a
protocol), it must be declared in a domain function equation in the static
ontology. New domains (types) can be defined by domain equations, which
impose explicit (and possibly extensive) constraints on how the declared
terms can be instantiated together in a SID. The basic notions of ontological
analysis are presented in 4.1. We use two of the three ontologies introduced
by Alexander et al. The static ontology (presented in 4.2) gives the types of
the items discussed in Section 2, that is, items that are instantiated in a SID
insofar as part of the SID presents a snapshot of the problem state. The
dynamic ontology (presented in 4.3) gives the types of the relations repre
senting in a SID the evolution of the problem state, as discussed in Section 3.

4.1. Basic Notions
Ontological analysis is based on the domain equations of denotational se
mantics [see Gordon (1979) and Stoy (1977)]. For our purposes, domains
may be considered sets. There are two basic statement types: domain equa
tions (for example, SITE = BUILDING x CAMPUS) define domains or
types, and domain function equations (for example, cscLbuilding: SITE) de
clare the domains to which elements belong. The right-hand side of a state
ment is composed of one or more domains (whose names contain upper case
letters) or constant elements (whose names are those used in the SID) with
operators relating them. Some domains (such as BOOLEAN and REAL) are
given as primitives. There are five kinds of operators:

• the discriminated union (generalization) of domains D and E, written D +
E, defines the domain composed of each member of D and E, with original
domain identity preserved;

• the cartesian product (aggregation) of D and E, D x E, defines the domain
composed of all ordered pairs whose first element is a member of D and
second element is a member of E;

• the mapping of D onto E, [D -+ E), defines the domain of all functions
mapping D onto E;

• the power set of D, D**2, defines the domain consisting of all subsets of
D;and

• the collection of ordered subsets of D, D*, defines the domain of all se
quences of zero or more elements of D.

Ontological analysis classifies statements into one of three groups (or
"ontologies") according to their function. The static ontology defines the
primitive objects of the problem space. The dynamic ontology defines the
actions that transform the problem from one state to another. Finally, the

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 91

epistemic ontology defines the control knowledge applied to the static and
dynamic ontologies. In our terms, the distinguished relations, such as Real
izes, that govern the evolution of the ontology network relate to the dynamic
ontology. All other items of the SID relate to the static ontology. In section
5, we introduce design nets that do the job of the epistemic ontology but are
more concrete. We preempt the epistemic ontology because, we believe,
control knowledge is not adequately treated in the manner of a type system.
Rather, control knowledge essentially relates to sequences of events and to
how one set of events establishes a condition for a subsequent event.

While a SID is specific to a protocol, the static and dynamic ontologies are
general and may be thought of as supplying a type system (in the computer
science sense) for the items that are recorded in any SID. Distinguished
properties and relations are declared (via domain function equations) in
advance and may be used in the SID encoding any protocol. Items that are
introduced as a protocol is analyzed (and a SID is constructed) must be
declared. (One can annotate the tabular form of the SID with type informa
tion for each item. Alternatively, one can maintain in parallel a separate
dictionary with this information.) Requiring that all items be thus declared
is the most fundamental step in promoting the logical coherence of the
encoding of a protocol. Experience with protocol encoding indicates that
logical coherence, while absolutely vital, is difficult to achieve without ex
plicit formalisms. Also, enforcing a type scheme on the items of an encoding
greatly facilitates the move to executable code for a KBS.

4.2. The Static Ontology
Figure 6.6 shows a fragment of the static ontology simplified to avoid the
notion of time. The standard primitive domains NAT _NUMBER (natural
number) and REAL are used. The domains ENTITY and TASK are defined
as domains of atomic objects, and SORTAL and MATERIAL are defined
by enumeration. The definitions ofiNF_DISTANCE, INF_REGION, and
TOPOLOGICAL-REL have not been shown because they are complex and
involve informal notions. INF _DISTANCE (respectively, INF _REGION)
is the domain of informally specified distances (respectively, regions);
TOPOLOGICAL_REL can be thought of as the domain of spatial vectors
specified only by topological relations (such as above). A quality property
(for example, length) is represented as a mapping from the domain of things
of which it holds to the domain of its possible values. A quality relation is
similar. Note that [X--+ [Y--+ Z]] is the type of a two-argument function
whose first argument is in X, second argument is in Y, and value is in Z. An
accident property, which either holds or does not hold of an element, may be
thought of as a Boolean-valued function, of type [X --+ BOOLEAN]; a simi
lar comment applies to accident relations (such as Prerequisite). Note that
the value of collection may be false, allowing for entities that are not collec
tions. Also, the type of collection has been defined in terms of COLLEC-

www.manaraa.com

92 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

ENTITY= (atomic object)
TASK= (atomic object)
RR =REAL+ INF_DISTANCE
length: [ENTITY -+ RR]
SORTAL ={tube, ... }
MATERIAL = {plastic, ... }
COLLECTION_RECORD =

NAT_NUMBER x SORTAL x
BOOLEAN x MATERIAL x RR x RR

collection: [ENTITY-+ (COLLECTION_RECORD +
{false})]

3D = RR x RR x RR
LL = 3D + TOPOLOGICAL_REL
dimension: [ENTITY -+ LL]
Operand: [TASK-+ [ENTITY•-+ BOOLEAN]]
Prerequisite: [TASK-+ [TASK-+ BOOLEAN]]
Prerequisite: [TASK-+ [TASK-+ BOOLEAN]]
REGION = LL + INF _REGION
WR: [TASK-+ REGION]
R: [ENTITY -+ REGION]
n: [REGION-+ [REGION-+ REGION]]

FIGURE 6.6. Fragment of the static ontology when time is omitted.

TION_RECORD, which specifies sextuples that obviously address the cur
rent case of a bundle of tubes. In other contexts, we might want a relation
type with fewer, more, or even different argument types. Thus, for the gen
eral case, we want a polyadic relation, and the right-hand side of the domain
equation for COLLECTIQN_RECORD would list all the alternatives, sep
arated by'+ 's; such prolixity is the wages of accuracy.

Figure 6. 7 shows how time is handled. The domain equations state that a
time point is either a primitive time point or a relative time point. A primitive
time point is an event in the time profile of a task, and the duration of this
event is not considered significant for the problem at hand. A relative time
point is a primitive time point with an offset, which is a (temporal) distance.
The definition of time interval is similar. A time is either a time point of a
time interval. The last line in Figure 6. 7 shows the declaration for the prop
erty length when values are allowed to change. It indicates that an entity
at a time (point or interval) has a length. The definition of the entire time
profile of a task has been omitted since it requires more sophisticated notions
from denotational semantics.

In Figures 6.6 and 6. 7, domains that are generally thought of as consisting
of real numbers are augmented to allow for values denoted by informal
descriptions. This is necessary to allow the values of properties and relations
to be refined as the design progresses. ·

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 93

POINT _EVENT = (atomic event)
INTERVAL_EVENT = (atomic event)
PRIMITIVE_ TIME_POINT = TASK x POINT _EVENT
TIME_OFFSET = RR
REL TIME_POINT = PRIMITIVE_ TIME_POINT x TIME_ OFFSET
TIME_POINT = PRIMITIVE_ TIME_POINT x REL TIME_POINT
PRIMITIVE_TIME_INTERVAL =TASK x INTERVAL_EVENT
DERIVED_ TIME_INTERV AL = TIME_POINT x TIME_POINT
REL_ TIME-INTERVAL=

(PRIMITIVE_TIME_INTERVAL + DERIVED_TIME_INTERVAL) x
TIME_ OFFSET

TIME-INTERVAL =
PRIMITIVE_ TIME-INTERVAL+ DERIVED_TIME_INTERVAL +
REL_ TIME_INTERV AL

TIME = TIME_POINT + TIME_INTERVAL

length: [ENTITY -+ [TIME -+ RR]]

FIGURE 6.7. Fragment for the part of the static ontology defining temporal domains.
The declaration of length indicates how qualities are declared when their values are
allowed to change.

4.3. The Dynamic Ontology
The dynamic ontology, as presented in this paper, is quite simple:

Realizes: [ENTITY-+ [TASK-+ BOOLEAN]]
RealizesT: [TASK-+ [TASK-+ BOOLEAN]]
RealizesE: [ENTITY -+ [ENTITY -+ BOOLEAN]]
Subtask: [TASK-+ [TASK-+ BOOLEAN]]
Sustains: [TASK-+ [ENTITY-+ BOOLEAN]]

5. Design Nets: Models of Control Knowledge

To do the job of the epistemic ontology of Alexander et al., which defines
control knowledge, we introduce a set of three design nets. In this section, we
first (in 5.1) introduce the basic notions and the three design nets we have
found necessary for encoding the control patterns in our protocols. In 5.2 we
describe the trace encoded for a protocol, which (among other things) en
codes sequences of protocol episodes as sequences of net transition events.
Since a problem decomposes into smaller problems and we maintain that
design nets are general structures that govern the evolution of problem
states, we must allow that there are different, concurrent activations of the
nets for different subproblems that are still evolving. In 5.3 we explain the
notion of a net activation. Having outlined what we require of design nets,
we address in 5.4 how the nets can be formalized. The standard automaton

www.manaraa.com

94 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

used in computer science for modeling concurrent sequences of events is a
Petri net. To capture the salient aspects that we find in control patterns that
occur in conceptual mechanical design, we add certain enhancements to Petri
nets. Later, in Section 8, after characterizing strategies, we address the
advantages for our purposes of Petri nets over other computer-science for
malisms that capture the temporal order of events. A Petri net has "places"
that are connected by "transitions." We call a place a "focus," a term more
appropriate for our application since we relate a focus to a coherent aspect
of the problem considered at a particular step in a design process. Each
focus has as its name a phrase describing the aspect to which it relates. The
major enhancement we make, described in 5.5, is to associate a condition
with each transition. A condition states something about the SID and a
transition can "fire" only if its associated condition is true. Transition condi
tions are seen as Boolean combinations of atomic conditions. Thus, certain
phrases-focus names and atomic conditions-are integral parts of a design
net, and we must ensure that their functions-denoting problem aspects
and stating conditions-are formally defined. A phrase must be constructed
from a vocabul_ary with fixed meanings and so that the meaning of the phrase
is composed in a well-defined way from the meanings of its constituents.
Section 5.6 presents "semantic grammars" that generate these phrases. The
control patterns in the traces for conceptual mechanical design protocols are
often quite indeterminate, so the design nets have a difficult role. In Section
8, we relate more abstract control patterns-strategies-to design nets.

5.1. Basic Notions

Like the static and dynamic ontologies, the design nets are general structures
that govern the construction of any SID. They are an attempt to identify
control that is common across diverse designers and mechanical design
problems while allowing for differences. Unlike the static and dynamic
ontologies (and unlike the epistemic ontology of Alexander et al.), the design
nets represent sequences of events and how events establish conditions for
subsequent events. An event in this context is a transition from one design
step or state to the next, as indicated by an episode in a design protocol. Each
net (or, more accurately, net activation-see below) can be in one of several
states; the state of a given design activity is captured by the vector of states
in the simulation of that activity by the various nets. The simulation of a
design activity is a sequence of such vectors of states, and the events of
interest are transitions from one state vector to another. Alternatively, we
can think of the fundamental kind of event as a state transition in one net; a
transition from one state vector to another is determined by one or more
simultaneous net-specific events. Furthermore, we can think of the simula
tion of a design activity as fundamentally a sequence of (possibly simultane
ous) net-specific transitions (events).

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 95

We recognize three design nets. The task net relates to the task DAG and
simulates design steps that decompose tasks into subtasks, find dependencies
among tasks, and decide which tasks should be realized together. The
behavior/structure net simulates design steps that articulate items represented
in the SID that become manifested in the artifact, such as locations of inputs
and outputs. Finally, the environment net simulates design steps that flesh out
the problem setting by considering such things as the operands of a task and
obstacles that exist in the environment. Nets interpret the SID. For example,
the behavior/structure net might identify certain changes of location of
entities as output motion for the artifact being designed. Again, the environ
ment net might identify a certain entity as an obstacle.

5.2. The Trace Encoded for a Protocol
An encoding of a design protocol using our methodology results in two
documents: a SID and a trace of the net transitions. The trace is a collective
document, with a separate document for each net. It records each transition,
with (among other things) references to the episode(s) in the protocol that it
simulates, the (pre)conditions in the SID that (along with the state of the net)
enabled it, and the postconditions it established in the SID. The trace is
specific to a protocol, but the nets (like the static and dynamic ontologies)
are general. The SID is typically more complex than the bare sequence of
transitions recorded in the trace since nothing in the structure of the nets
represents items (entities, tasks, properties, or relations) in the design state.
As a SID is constructed during the analysis of a design protocol, the dynamic
and especially the static ontology are updated to declare new items and
distinguished properties and relations that are needed to represent the
evolving design state. Similarly, as the trace is constructed, the nets are
updated to allow for steps, transitions, and conditions that are required by
the encoding of the protocol but that have not previously been registered in
the nets. The updates to the nets made while encoding a given protocol are
typically more involved than the updates to the ontologies. The latter are
usually declarations of items introduced specifically for the protocol and are
largely independent of each other-the interactions of items are recorded
in the SID. Updates to the nets, in contrast, allow steps and transitions that
interact with those already allowed, and often a significant proportion of the
steps and transitions recorded in the trace require new steps or transitions in
the nets.

Recall that the SID has a meager representation of the order in which
items are added. The only ordering is supplied by the evolutionary arcs,
which impose a partial order on the items in the task DAG. The episodes
into which the protocol is partitioned are totally ordered since human speech
is necessarily serial. The trace allows for concurrency of events since the
nets support such concurrency-so an episode could correspond to several

www.manaraa.com

96 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

design-step transitions. The nets, furthermore, show how the sequence of
events recorded in the trace could be reordered without affecting the design
activity recorded in the protocol. The nets thus "make sense" of the trace
and allow arbitrary sequencing and fluctuations to be abstracted away.
Thus, notions such as strategy and initiating, pursuing, or abandoning a line
of reasoning are captured by the design nets and the sequence of design
events they simulate.

5.3. Net Activations
To explain how the nets interact, it is helpful first to review the fundamental
notions of concurrent processes as supported by parallel or distributed
computing systems. A process is a running program, or an activation of a
program, where a program may be considered a block of code. Any number
of processes may correspond to a given block of code since the code is
unchanged by being executed and each process has a distinct state, which
changes as the process proceeds. A process state includes the values of
program variables, the status of the 1/0 streams, and the address of the next
instruction (in the code block) to execute. Concurrency exists when several
processes, which may share code blocks, proceed concurrently. The 1/0
streams accessed by a process may allow communication with processes
concurrent with that process. Concurrent processes may also communicate
via shared memory, which allows one process to change the values of some
of the variables in certain other processes; thus, one process may change the
state of another. Processes can be recursive in the sense that one process, an
activation of a given code block, may initiate an activation of the same code
block to handle a subproblem of the problem the parent process is handling.
A process can recursively spawn any number of new processes, and a recur
sively spawned process can itself recursively spawn additional processes.

The design nets correspond to code blocks. Corresponding to a process
an activation of a code block-is what we call a net activation. The sequence
of instructions (with variable values) executed by a process is referred to as
an execution trace. This corresponds to the trace that we encode from a
protocol except that such a trace generally records transitions from (possibly
several) activations of the three nets; more accurately, our trace corresponds
to the merged traces of several concurrent processes. We allow a given state
of a net activation to include more than one currently active step; in this
respect, a state of a net activation is more complex than a state of a process,
which has a unique next instruction. Similarly, more than one transition in a
given net activation between sets of steps may be recorded in the trace for a
single protocol episode. We do not admit message passing (via 1/0 streams)
within or among net activations, but we view the SID as a global data
structure accessible to all net activations-as if it were in memory shared by
all these activations. The SID, however, is not held to contribute to the state
of a net activation, which relates only to the currently active steps. Yet we

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 97

have (see below) the transitions between sets of steps depend on conditions
in the SID and active steps are responsible for changes to the SID.

Conceptual design is typically recursive in the sense that a problem is
decomposed into subproblems, which themselves may be further decom
posed into smaller subproblems. A major role of the task net is to decompose
problems (or tasks to be realized) into subproblems (or subtasks). Each
subproblem corresponds to activations of the three design nets. The activa
tion of the environment net for a subproblem handles the interface between
that subproblem and the larger problem of which it is a part. Different parts
of the SID are elaborated in response to different subproblems, and the
recursive decomposition of the entire design problem is given by the struc
ture of the task DAG. The trace produced as part of the encoding of a
protocol associates each net transition with a subproblem, in effect iden
tifying the net activation in which the transition takes place. Subproblems
generally relate specifically to a topmost task or, occasionally, entity. The
identifier for the task or entity is used to identify the corresponding sub
problem in the trace. For brevity, we shall often in the sequel refer to nets
when more accurately we should refer to net activations. What is intended
will be clear from the context.

5.4. Design Nets as Modified Petri Nets
Petri nets (Peterson, 1981) are used to model sequences of events in systems
in which events establish conditions for subsequent events and concurrency
is allowed. We thus formulate our design nets as modified Petri nets. A Petri
net consists of places (represented by circles in Figure 6.8), transitions (repre
sented by bars), and arcs. An arc is either from a place to a transition or from
a transition to a place.

A place Pis an input place of a transition T if there is an arc from P to T;
Pis an output place of Tifthere is an arc from Tto P. We assume that there
is at most one arc from a given place to a given transition and at most one

Input Places

Transition T (PT I F T)

Predicate - Action

Output Places

FIGURE 6.8. A Petri net transition along with its input and output places. All places
shown except the left output place are marked, that is have at least one token. The
right output place has two tokens. This transition, T, is part of a predicate-action
system since it is labeled with a predicate-function pair, (PT,FT)· Ignoring the
predicate, the transition is enabled since all inputs are marked.

www.manaraa.com

98 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

arc from a given transition to a given place. (We thus restrict ourselves to
ordinary Petri nets; relaxing these conditions on the arcs allows general
Petri nets.) A marking of a Petri pet is an assignment of zero or more tokens
(represented by filled circles in Figure 6.8) to each place. A transition may
fire when it is enabled; it is enabled if each input place has at least one token.
A transition fires by removing a token from each input place and depositing
a token in each output place. Each place may be an input place for zero or
more transitions and an output place for zero or more transitions. A place
may even be both an input and an output place for a given transition.

Events are modeled by Petri net transitions. The fact that a condition
holds is modeled by the presence of a token in the place corresponding
to that condition. The input places of a transition then represent the
preconditions of the event in question and its output places represent its
postconditions. A generally accepted limitation is that events are modeled
as instantaneous and nonsimultaneous; such events are primitive. Petri net
models are inherently parallel since two enabled transitions that do not share
an input place may fire independently. They are also inherently nondeter
ministic since any one of several concurrently enabled transitions may be the
next to fire. Also, the firing of one enabled transition that shares an input
place with another enabled transition may disable the latter.

A Petri net place is what we have called a "design step". We now refer to
it as a focus to emphasize that it identifies features the designer is considering
at a certain point. The firing of a transition corresponds to an event recorded
in the trace encoded for a protocol and thus relates to an episode in the
protocol. In fact, what is encoded for an episode covers a transition plus
the activity of the set of newly active foci. The state of a net (or, more exactly,
of an activation of a net) is simply a marking of the net. The parallelism
inherent in Petri nets supports the intra-net concurrency we have noted.
Finally, Petri net nondeterminism allows the nets to indicate how the se
quence of events recorded in a trace could be reordered without affecting the
design activity. Since several transitions could correspond to a single proto
col episode, the nonsimultaneity requirement must be dropped; this does not
violate the spirit of Petri nets since we view the synchronization of transitions
as something added onto the basic net model.

A focus, then, is a coherent aspect of the problem. When a focus contains
a token, the corresponding problem aspect is under consideration and the
focus is considered to be active in the sense that it can elaborate part of the
SID. How a focus elaborates the SID is not encoded from the protocol and
need not be addressed, yet the trace records which parts of the SID are
elaborated by which foci. We associate each focus with a descriptive phrase,
taken to be its name, that identifies the aspect of the problem it handles.
These phrases are generated by semantic grammars (Freiling et al., 1985)
(as discussed in Section 5.6), one for each net. The phrases that correspond
to foci that have been noted in our protocols form a proper subset of the
total set of possible phrases; some corresponding foci are unlikely ever to
appear.

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 99

5.5. Conditions

A predicate-action system (Keller, 1976) is a modified type of Petri net in
which each transition T has a label of the form (PT, FT)-see Figure 6.8-
where PT is a predicate and FT is a partial function defined only when PT is
true. In such a system, for a transition to be enabled, not only must the input
places contain tokens but also PT must be true. The predicate, PT, thus adds
another condition to the event represented by the transition. When the tran
sition fires, the function (action) FT is executed. When a predicate-action
system is used to model execution of a program, program variables are used
as arguments of PT and FT.

We label each transition in a design net with a predicate, which we call
a condition. Instead of program variables, a condition contains referring
expressions that denote items in the SID ofthe appropriate type (as declared
in the static or dynamic ontology). The conditions on transitions thus help
coordinate transitions in various design net activities and restrict the possible
problem states. We associate actions with foci, not with transitions, since an
aspect of the problem is associated with a focus. Although transitions are
instantaneous, the residence of a token in a focus-the period during which
the focus can contribute to the elaboration of the SID-is limited only by
the occurrence of a transition that requires that token as input. We exploit
this indeterminacy by allowing the various active foci to collaborate in
elaborating the SID. This collaboration generally requires several sequen
tially coordinated actions hence an interval of non-zero duration.

Conditions, like foci, interpret the ontology network. The evidence for the
condition on a transition is tied up with the evidence for the input foci for
that transition since the marking of the input foci, as well as what we term
the condition, make up the condition in the broader sense of what enables
the transition. Three kinds of conditions are recognized: epistemic, require
ment, and factual conditions. Conditions can also be simply enabling or
transformation-requiring. A condition is enabling insofar as, when it is met,
the transition may fire if the input states are marked. A condition is also
transformation-requiring if, when it is met and the transition fires, it should
be changed by one of the foci activated by the firing. In some sense, transfor
mation-requiring conditions are the reasons (goals) for transitions firing.
Epistemic conditions relate to how well formulated the problem is, that is,
what is known about the problem state. They may state that certain aspects
of the problem are known, are only partially known, or are not known.
When the aspect is partially known or not known and the condition is
transformation-requiring, the ensuing transition allows a constrained choice
that results in the aspect becoming better known. Requirement conditions
relate to requirements that remain to be met. They are always transforma
tion-requiring and they do not occur in the environment net and occur
sparingly in the. task net, where they relate to the operands. Factual condi
tions are statements of fact; in their strongest form, they state restrictions on
the solution domain. Factual conditions are never transformation-requiring.

www.manaraa.com

100 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

In the task net, the facts generally relate to the time profiles, operands, and
temporal relations of tasks. In the behavior/structure net, they generally
relate to the task, device, or operand. Finally, in the environment net, factual
conditions state what aspects of the operand or environment affect the task
or device or how the task or device requires or affects the outside world. The
conditions on a transition as revealed in an episode generally include a
transformation-requiring condition and one or more conditions that are
simply enabling.

The conditions discussed in the last paragraph are (ignoring for the mo
ment occurrences of the connective "not") logically atomic, that is, they
cannot be analyzed into expressions containing logical connectives. As with
the names of foci, atomic conditions are generated by semantic grammars,
one for each net. The several atomic conditions that are recorded for a
transition firing revealed in a protocol episode form a single conjunctive
condition: for the transition to fire, all must be true. Certain singular refer
ring expressions, especially definite descriptions (such as "the operand" and
"the task"), generally occur in several of the atomic conditions thus con
joined, where they consistently refer to the same items. After firings of the
same transition have been identified in several episodes (possibly in different
protocols), one generally has a set of such conjunctive conditions, at least
one of which holds for each firing. We thus form the comprehensive condi
tion associated with the transition in question by forming the disjunction of
the conjunctive conditions in the set. This gives a condition in a much-used
normal form, disjunctive norma/form; that is, it has the form

{c11 1\ c12 1\ • • • 1\ c1n) v {c21 1\ c22 1\ • • • 1\ c2 n) v · · ·

V (cml 1\ Cm2 1\ • · · 1\ CmnJ

where 1\ is the logical symbol for and, v is the symbol for or, ni ;::::: 1 for allj,
1 ~j ~ m, each cii• 1 ~ i ~ m, 1 ~j ~ ni, is an atomic condition, and each
(cil 1\ ci2 1\ • • • 1\ cin·), 1 ~ i ~ m, is encoded for a single episode. Note that
no not connective o~curs in this expression. There are several ways to sim
plify such an expression, most obviously, if one disjunct (cil A ci2 A · · • A

cin) contains all the conjuncts cii contained in another disjunct, then the
former can be dropped (since, if it is true, so is the latter). Since it is difficult
to specify in advance whether a grammatically negative but otherwise atomic
condition is tested by searching for the presence or absence of certain
features in the SID, we do not explicitly represent not as a logical connective.
We must therefore guarantee that no conjunctive condition contains an
atomic condition and its negation.

5.6. Semantic Grammars for Focus Names and
Atomic Conditions
To ensure that the phrases constituting focus names and atomic conditions
are constructed in well-defined ways from a vocabulary with fixed meanings,
we generate these phrases with certain semantic grammars (Freiling et al.,

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 101

1985). A semantic grammar is a kind of BNF(Backus-Naur form) grammar,
so its rules (or productions) are of the form LHS ::= RHS, where LHS and
RHS are (respectively) the left and right hand sides of the rule and ::= is
read "is replaced by." (BNF grammars, with minor notational variations,
are also known as context-free grammars.) Symbols in the grammar are
either nonterminals (or variables), written enclosed in angled brackets, or
terminals, written without brackets. One nonterminal is designated as the
start symbol, which is the initial target string. The LHS of a rule is always a
single nonterminal. We are interested in grammars in which, for each non
terminal, there is exactly one rule with it as the LHS. The RHS is of the form
S1 l S2 1· · ·I Sn, where n ~ 1, each Si is a string of one or more non terminals and
terminals, and the vertical bar is read "or." (A rule of the form N ::=
StiS2 1· · ·ISn is equivalent to a set of rules N ::= S1 , N ::= S2 , ••• , N ::= Sn,
so our requirement that, for each nonterminal, there be exactly one rule with
it as the LHS is-except for convenience-equivalent to the requirement
that, for each non-terminal, there be at least one rule with it as the LHS.) A
non terminal N in the target string may be replaced by any Si in the RHS of
the rule with N as the LHS. The target string is rewritten in this way until it
contains no non terminals. Since there are generally choices in how to rewrite
a given nonterminal in the target string, there are generally many strings of
terminals derivable from the start symbol; the set of all such strings is the
language generated by the grammar.

A nonterminal is also called a category. Strings of terminals that descend
from a category are said to belong to that category. An alternative Si
in a rule may be the special symbol 6, representing the empty string. If
6 is chosen when the rule is applied, then nothing remains of the category
forming the LHS of the rule in the string of terminals that eventually
results.

Space restrictions allow only fragments (in the sense that neither are all
rules shown nor are all alternatives within a rule necessarily shown) of the
semantic grammars relating to the behavior/structure net to be given. Figure
6.9 gives a fragment of the semantic grammar for the names of foci in the
behavior/structure net. Figure 6.10 presents a stylized representation of a
device and identifies the conceptual parts that are referred to in the focus
names. The term problem/mechanism refers to the entire device and its opera
tion. The term quality refers to a quality property. Attribute also refers to a
property, but one that is essential to the conceptual part of which it is a
property. (For example, frequency in the phrase frequency transduction is an
attribute; we cannot identify transduction without thereby identifying what
is transduced.) Some categories such as (operand designator), could be elimi
nated in that they can be replaced by only one terminal or sequence of
terminals. Such categories were introduced both to convey meaning to the
terminals and to allow for alternatives that might arise in the future. To
illustrate how one possible focus may be a restricted version of another
possible focus, note that, for example, frequency is only one aspect of motion
as an instance of the category (//0 quality). Thus, a focus with name input

www.manaraa.com

102 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

(BS focus) ::=problem/mechanism (p/m quality)
I (1/0) (1/0 quality)
I (1/0) (1/0 attribute) transduction
I (relational modifier) relation of (components)
I mechanical connection of (components)
I spatial relation of (components) to ground
I (BS entity) (BS entity quality)
I (component designator) (components)
I (operand designator) operand
I (action) operand

(p/m quality)::= degrees_oLfreedom I dimensionality
(1/0) ::=input I output
(1/0 quality) ::= dimensionality I forces I frequency I location I motion I orientation
(1/0 attribute) ::= frequency I orientation I translation
(relational modifier) ::= spatial I temporal
(BS entity) ::=mechanism I (components)
(components)::= (component) and (components) I (component)
(component) ::= (component attribute) (component type) I ground
(component attribute)::= e I (1/0)
(component type) ::= submechanism I element
(BS entity quality) ::=forces I geometry I materialljoinLtype I location I orientation
(component designator) ::= number of
(operand designator) ::= number of
(action) ::= accepting I isolating I securing

FIGURE 6.9. Fragment of the sematic grammar for the names of foci in the behavior/
structure net.

Input transduction Output transduction
Mechanism. submechanism. or element

FIGURE 6.10. The conceptual parts of a device as interpreted by the behavior/
structure net.

frequency would handle a more restricted aspect of the problem than a focus
with name input motion.

Figure 6.11 presents a fragment of the semantic grammar for the atomic
conditions in the behavior/structure net. To illustrate how one atomic condi
tion can be more restrictive than another, consider two strings of terminals
that are instances of the category (BS epistemic condition) . Suppose that
both are produced using the third alternative in the rule with LHS (epistemic
object). Suppose also that the two strings result from the e alternative for

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 103

(BS condition) ::= (BS epistemic condition) I (BS requirement condition)
I (BS factual condition)

(BS episternic condition)::= (epistemic object) is (degree) known
(epistemic object)::= (pseudo-entity) I (property) of (pseudo-entity)

I (time bounds)(property) of (quantifier)(entity)(state bounds)
(degree) ::= el not I partially I ...
(quantifier) ::= el some I most I alii ...
(pseudo-entity)::= output motion I feature of (entity)
(time bounds) ::= el initial and final
(state bounds) ::= el from initial (property) to final (property)
(BS factual condition) ::= output component (property) matches operand (property)

I (order attribute) tasks have same operand

FIGURE 6.11. Fragment of the semantic grammar for the atomic conditions in the
behavior/structure net.

(degree) and that they are identical except that the first results from the 8

alternative for (state bounds) while the second results from the alternative
from initial (property) to final (property). The first is more restrictive than
the second since it applies to the entire interval in question. Also, note that,
concerning instances of the category (quantifier) when (degree) is 8, all
leads to more restrictive conditions than most, which in tum leads to more
restrictive conditions than some.

6. The Encoding Process and Its Reliability

Having described the formalisms we use to encode protocols, we can now
clearly describe how protocols are collected and encoded and how we check
that our representation schemes are followed objectively. In 6.1 we discuss
the procedures we use for collecting and encoding protocols and the docu
ments produced by encoding. In 6.2 we discuss the reliability of our represen
tations-how well they facilitate agreement between two people indepen
dently encoding the same protocol.

6.1. Procedures and Documents
To study limited conceptual mechanical design, we present a subject with a
mechanical design problem that only roughly gives the task structure and
environment conditions and that says little or nothing about the artifact. The
subject completes the design to the point where all significant components
and their relations are identified, but most dimensions remain to be deter
mined exactly. This takes one to two hours for the subjects and problems we
have chosen.

The designer is asked to think aloud and his words are tape-recorded. It is
sometimes necessary to remind him to articulate his thoughts or to stick to

www.manaraa.com

104 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

the facts; this causes little disruption. The designer numbers all figures he
draws and labels significant items. Drawings and the transcribed recording
constitute the protocol. The transcription is segmented into sentences or (for
long sentences) clauses; segment boundaries are also introduced at pauses.
Segments are numbered consecutively for later reference.

We have encoded about ten protocols. A protocol is encoded separately
(but concurrently) for each of the three nets, giving collectively a document
we call the trace, which was mentioned in Section 5. For each net, the
protocol is partitioned into episodes intended to reflect transitions in the net.
Generally only one transition per net occurs, although occasionally transi
tions may overlap or even coincide. An episode usually occupies one or two
transcription segments, sometimes less than one, and rarely more than five.
Episode boundaries not infrequently fall within segments. Perhaps as much
as 20% of a protocol is classified as noise-asides in which the designer
comments on his design or on general points-and is not encoded. The
following topics are recorded for each episode:

• a reference, using the segment numbers introduced during transcription;
• the current subproblem, identified by its top-level task(s) and entity(s);
• the output foci of the transition;
• the input foci of the transition;
• the transformation-requiring atomic condition;
• the simply enabling atomic conditions; and
• the modifications made to the SID.

Modifications are also recorded in the tabular version of the SID. Periodi
cally, the graphical version is updated with the gross changes; this is essential
for maintaining a general grasp of the protocol.

We strive for encodings that make engineering sense both in terms of how
the current problem state is represented and in terms of what is achieved by
each episode. Our protocol analysis teams thus always include at least one
mechanical engineer, who explains the designer's activity to other members
of the team. These explanations are "internal" in that they appeal only to
mechanical principles. Since verbal recording is the only process intervening
between the designer's heeding the (largely nonverbal) information and his
verbalization of it, our protocols record the sequence of heeded information
as determined by the task-directed cognitive processes involved (Ericsson
and Simon, 1984). We ensure that such sequences can be recovered from
our encodings, so internal explanations form a backdrop for judging the
adequacy of the encoding. This backdrop becomes explicit to the extent
that constraints among heeded items are essential for internally validating
the steps the designer was observed to take. Against this backdrop, we
may merge encodings of protocols from several designers, which requires
a sizable common vocabulary; part of the internal explanation of a pro
tocol is translating certain lexical items in the protocol into this common
vocabulary.

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 105

6.2. Reliability
A representation is reliable if two people independently encoding a proto
col into that representation generally agree. Reliability is an issue because
there are no operational definitions leading from the words in the protocol
to the constructs of our representation. Concern with reliability has had a
major impact on the representation schemes presented in the chapter. In
testing reliability, we compare encodings of a given protocol by two people.
(If either is not a mechanical engineer, he or she is briefed about the engi
neering content of the protocol by a mechanical engineer on the team.) To
avoid severe penalty from cumulative differences, a section of about two
pages is encoded and scored, and then the differences are resolved before
proceeding to the next section.

Agreement on nets and on the occurrence and extent of episodes was very
good-almost 90% of the episodes agreed. There was good agreement on
modifications. Without distinguished relations and properties, this level of
agreement could not be achieved. Before the semantic grammars were de
fined, the encoders had difficulty even agreeing on the names or descriptions
of foci and atomic conditions; the grammars caused dramatic improvement.
Disagreement still arises largely for two reasons: it is possible to produce
different combinations of foci or conditions that give much the same effect,
and, secondly, it is difficult to determine whether a focus or enabling condi
tion has a minor role or no role. We return to these problems in Section 8.

7. Software to Support Knowledge Acquisition and
Representation

Any representation of a nontrivial design protocol, if it is to capture the
coherence of the engineering context, must appear complex in some respects.
Our formal methods, that constrain and direct protocol encoding, help us
accommodate this complexity. These methods themselves, however, can bur
den the encoders, eventually to the point where consistency is threatened and
the time to encode a protocol becomes excessive. The way out of this di
lemma is to supply automated assistance. In 9.1 we first consider executable
encodings and then review certain software toolkits that support knowledge
acquisition. We sketch how a similar toolkit could be used for our encoding
schemes. In 9.2 we consider why our scheme is superior to the KADS model,
which underlies the most influential toolkit, Shelley. This suggests how a
toolkit for our encoding schemes would differ in its underlying assumptions
from Shelley.

7.1. Software
The most straightforward way to guard against gross inconsistencies is to
execute the encodings. This can be viewed as a way to promote the objectivity

www.manaraa.com

106 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

of our encodings. This is promoted, from one side, by using the measures we
have obtained in operationalizing our notion of reliability. From another
side the objectivity of our encodings is promoted by striving for an ideal of
executable (not requiring human interpretation) encodings. To advance this
ideal, we have implemented (in the parallel logic programming language
Parlog [18]) a prototype interpreter that executes steps in a design protocol
recorded as transitions in the design nets. What is executed is actually Parlog
code, but there is a rigid and clear correspondence between the Parlog code
and the encodings except that actions associated with foci must go beyond
what is revealed in the protocols. The conditions and modifications in the
SID give input/output specifications for these actions, which are imple
mented in as abstract a form as possible (see Section 9). Modest forms of the
SID, rule interpretation (for modifying the SID-see Section 9), and condi
tional transition firing are implemented. The user must assist with moves not
sufficiently specified in the encoding. We reconcile this with our ideal of
executable encodings by introducing (from theoretical computer science) the
notion of an oracle. A call to an oracle is embedded in an algorithm that asks
the oracle a question that is predetermined except for certain parameter
values and the oracle supplies outputs, which may be complex structures.

Automated assistance can be directly at the point of encoding. Shelley
(Anjewierden et al., 1992) is a software workbench (or toolkit) developed by
the KADS project to support knowledge acquisition and engineering. It is
analogous to a CASE tool for software engineering. Similarly, KEATS (the
"Knowledge Engineering Assistant") (Motta el al., 1989) is a toolkit that
provides life-cycle tools for KBSs. Embedded in KEATS-2 is the knowledge
acquisition tool Acquist, a hypertext-based facility that allows the knowl
edge engineer to carry out knowledge acquisition by abstracting and struc
turing knowledge contained in raw transcript text. Acquist, Shelley, and
KRITON (Diederich et al., 1987) are all knowledge acquisition systems
that emphasize analysis of transcripts to extract expert knowledge. The
transcripts are, in the first instance, transcripts of protocols, but they may
also be transcripts of structured interviews and even transcribed portions of
textbooks. All three toolkits support defining and structuring the concepts
and the relations among concepts that are noted in the transcript and sup
port linking concepts with terms in and fragments of the raw text. Shelley
and Acquist support both bottom-up knowledge acquisition, where a model
is constructed piecemeal as the text is analyzed, and top-down knowledge
acquisition, where a library of "theories" or "interpretation models" is
available to assist conceptualization. KRITON supports only a bottom-up
style and aims to make knowledge acquisition fully automated by eliciting,
analyzing, and representing knowledge. While KADS emphasizes documen
tation and semi-executable models, KEATS is an environment for building
the end product and so also provides facilities at the debugging level.

It is not difficult to imagine the design of a toolkit like Shelley for our
encoding schemes. Support for bottom-up knowledge acquisition would help

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 107

partition the protocol text and update the nets when needed transitions are
missing. It would maintain and display the trace as well as both the tabular
and graphical versions of the SID, and needed updates to the static and
dynamic ontologies would be flagged. Bottom-up support would also main
tain links from all encoding documents to terms in and fragments of the
protocol text and would maintain the consistency of all documents both
internally and with reference to each other. Support for top-down knowledge
acquisition would include making available previously recorded net transi
tions and the semantic grammars when the protocol is partitioned and the
trace is produced. It could also make available fragments of previous SIDs
(especially fragments of task DAGs) as possible templates for the diagram
currently being constructed. The interested reader is encouraged to read the
references on KADS and especially Shelley; he/she should be able to expand
the sketch given here in light of the earlier sections of this chapter.

7.2. A Comparison with KADS
Any toolkit brings a certain amount of conceptual baggage, and that of the
KADS methodology (which some claim is becoming a de facto European
standard), which lies behind Shelley, is the most fully developed and in
fluential. We briefly consider why our scheme is superior to the KADS model
for conceptual mechanical design and probably for conceptual design in
general. Part of this superiority is because protocol analysis is particularly
important for investigating conceptual design; our scheme was developed for
protocol analysis whereas the KADS model is a general model of expertise.
Also, our scheme emphasizes what is critical in conceptual mechanical de
sign; it is difficult for a general model to compete in this specialized domain.
We allow the possibility that the KADS model and the Shelley toolkit may
be adequate for nonprotocol sources and for design stages later than concep
tual design. The following comments can be seen as a sketch for specialized
additions to the KADS model and initial specifications for a specialized
knowledge acquisition toolkit. KADS (Wielinga et al., 1992) imposes a four
layer model of expertise; the layers are: domain knowledge, inference knowl
edge, task knowledge, and strategic knowledge. (ML)2 (van Harmelen and
Baider, 1992) is a formal language for representing KADS models of exper
tise. The TheME environment supplies automated support for model con
struction in (ML)2 by blocking modifications that would result in a mathe
matically ill-formed model or a model violating KADS conventions; it also
allows the model to be viewed in various helpful ways. Si(ML)2 is an inter
preter for a subset of (ML)2 that allows a model to be executed.

KADS' domain layer embodies the conceptualization of a domain in the
form of a domain theory whose primitives are based on the primitives of
KL-ONE. KL-ONE roughly does the job of our static ontology in that both
supply a type system and declare items to be of certain types. As KL-ONE
terms can be combined to represent statements (which are either true or

www.manaraa.com

108 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

false), so the items declared in our static ontology can be instantiated to
gether, in a SID, to represent statements (of what properties an entity has,
what task precedes another, and so on). Our scheme, however, explicitly
includes items-such as time profiles, regions, and relations between tasks
that relate to mechanical design. Furthermore, the graphical form of a SID,
since it emphasizes the relations among entities in a conceptual layout, is
conducive to the use of graphical engineering representations, such as bond
graphs. On its own, KADS is little use in this domain since the fundamental
domain concepts have rather specific application yet form a rich and expres
sive system. The domain layer is represented in (ML)2 by order-sorted logic
(in which all variables and constants have types, and the types are arranged
in a subsort hierarchy); modularity is achieved by partitioning the axiom set
into several sub-theories, which can be combined by set-theoretical union.
Thus (ML)2 adds nothing to KADS for our domain and even encourages a
level of development that obscures the fundamental concepts and their rela
tionships. A representation of the evolving problem state in mechanical
design must focus on key concepts or risk losing sight of design goals. And
theories, in the logical sense, can become enormous in engineering design,
because of engineering's use of mathematics and physics, with little or no
contribution to our understanding of specific cases.

The remaining KADS layers can be characterized as control knowledge.
Inference knowledge, corresponding to our dynamic ontology, captures in
ferences, abstracted from the domain theory. An inference is specified as a
primitive (a knowledge source), fully defined by an input/output specification
and a reference to the domain knowledge used. This keeps apart the infer
ence and domain layers. In our scheme, in contrast, the dynamic ontology is
presented in the same form as the static ontology and evolutionary relations
are represented in the SID along with other relations. In conceptual design,
it is natural to integrate the domain and inference layers since the problem
state, and the eventual artifact design, is structured by the way the decompo
sition evolves. We have emphasized this with the notion of a task DAG, a
skeleton of a SID showing only the evolutionary arcs connecting tasks and
entities. The advantages of our scheme in this respect again relates to the fact
that our scheme is specifically for conceptual design. Our scheme allows
relations, properties, and values among or of items to be inherited along
evolutionary arcs. In contrast, the KADS framework, following KL-ONE,
allows inheritance only among items at the domain level, in effect restricting
inheritance to design steps that realize an item by specializing it. (ML)2

represents the inference layer by metalogic, in which terms are names for
formulas in the domain layer. Since a KADS metaclass describes a role of
domain expressions in the inference process, metaclasses are represented
as naming operations, where the names of domain expressions encode the
expressions' roles in the inference process. Applying this formalization to
conceptual mechanical design would result in something much more com
plex than the simple dynamic ontology we present. It turns out that, logi-

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 109

cally, domain equations have a higher-order aspect (terms can denote sets as
well as individuals) and meta-logical notions can be translated into a higher
order setting. In our context, the higher-order formulation has an elegance
that cannot be approached by a metalogical formulation.

Turning to task knowledge, a KADS task (unlike a task in our sense,
something in the problem state) is a fixed strategy for achieving a problem
solving goal, where the primitive problem-solving tasks are inferences spe
cified at the inference layer and a vocabulary of control terms (as in a
programming language) is used for composing larger tasks. The (ML)2

formulation does not in this case impose further detail since this layer is
represented by quantified dynamic logic (QDL), which augments predicate
logic with atomic programs and syntactic constructs expressing sequence,
condition, iteration, and so on for composing programs. The final, under
developed layer, the strategic layer, dynamically plans task execution and
handles failure of a partial solution by suggesting new lines of reasoning or
introducing new information. In (ML)2 this layer is a metalayer for the task
layer and reasons about programs expressed in QDL.

Our scheme makes a sharp distinction between what corresponds to the
first two KADS layers-items instantiated in a SID and declared in the
static or dynamic ontology-and what (roughly) corresponds to the last two
KADS layers-the design nets. Note, in particular, that items declared in the
dynamic ontology do not occur in the nets. The atomic conditions and focus
names interpret the current SID. These phrases are generated by the seman
tic grammars, which impose a certain structure on them that somehow
relates to the types in the static and dynamic ontologies so that this interpre
tation can be carried out.

Exactly how the phrase structure and the types relate is not formulated.
Both the grammars and the ontologies are sufficiently explicit that encoders
generally agree on how the phrases interpret items in the SID, but a corre
spondence between the two as required by an executable specification is left
to be worked out in detail as the need arises. Formalizing and operation
alizing this correspondence, we believe, is not part of the framework for
encoding protocols. Likewise, although the foci are supposed to account for
changes in the SID, we do not consider how they do so as within the realm of
protocol encoding. Indeed, working out how the foci may modify the SID to
allow for even a modest executable specification requires design decisions,
fine distinctions between various conditions, and allowance for sequencing
among code associated with different foci since several foci may be concur
rently active. This underdetermined nature of how changes in the problem
state are carried out is to be expected with conceptual design since there
is no particular representation associated with conceptual design and gener
ally accepted mathematical conventions in mechanical design have been
restricted to later, more detailed design stages. Consequently, how one de
scribes changes in the problem state depends on the representation one uses
and how the representation is interpreted.

www.manaraa.com

110 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

Introducing a control vocabulary to represent the sequence of design
steps, as required by the KADS model, would impose something foreign on
a conceptual mechanical design protocol. (Such sources as structured inter
views and texts relating to later stages of design, however, are likely to
require a QDL-like control vocabulary.) It is much more natural to use the
concepts that relate to our design nets: pre- and postconditions of steps,
concurrent steps, nondeterminism in the order in which steps are taken, and
so on. For one thing, the control vocabulary of a programming language, or
of QDL, would require steps to be structured in a much too inflexible way.
Conceptual design is opportunistic: among the many possible sequences in
which decisions may be taken, a designer typically focuses on some salient
part of the problem, works out a partial solution for that part, and uses the
constraints and global decisions imposed with that partial solution as a
foothold for approaching other parts of the problem. Yet designers fol
low strategies and, indeed, at the conceptual stage, good design depends
heavily on strategy. There is no clash between the strategic and the oppor
tunistic natures of design: the scope covered by a strategy is generally much
greater than the scope of an opportunistic choice and the nondeterminism
that allows opportunism can be constrained by strategies without being
eliminated.

8. Strategy

Research has revealed the importance of strategy to knowledge-based sys
tems. We view strategies as control patterns related to high-level design net
descriptions. In 8.1 we briefly review the notions of strategy used in KBS
research and introduce our basic notions. In 8.2 we consider the various
computer-science formalisms used to capture the temporal order of events as
possible ways to represent strategies in conceptual mechanical design. Petri
nets are seen to be the most appropriate; this further justifies use of modified
Petri nets-design nets-to represent control patterns in this domain since
strategies are central to control and shade into more concrete control pat
terns, which show up in the trace of a protocol. Flexible control patterns are
difficult to represent, and abstract flexible patterns-strategies-must be
identified in protocols, represented, and related to net traces. We address
some of these conceptual difficulties in 8.3.

8.1. Basic Notions
Gruber (1989) relates strategy or strategic knowledge to the order and selec
tion of actions and characterizes it as knowledge used to decide what action
with real-world consequences to perform in a given situation. Strategic
knowledge, then, is manifest in activities from asking questions in an intelli
gent order to recommending a sequence of corrective actions. Gruber con-

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge Ill

trasts strategic knowledge, used to evaluate possible actions given a state,
with substantive knowledge, used to identify states in the world. If we ignore
the model (cf "possible") aspects of Gruber's strategic knowledge, it essen
tially imposes temporal relations on what is covered by substantive knowl
edge. When a planner has a complete model of the world, the goals, and the
effects of actions, then planning can be treated as search. Otherwise, Gruber
claims, planning must use strategic knowledge in one of two ways. Strategic
knowledge could be implicit in skeletal plans that are specified in advance
and refined as the need arises, or it could be exercised in "reactive planning",
making dynamic decisions by relating a current situation to a goal. KADS'
task knowledge (the third of the four layers) is similar to Gruber's strategic
knowledge but does not require that the actions have real-world effects.
KADS' strategic knowledge (the fourth layer), among other things, deter
mines what goals are relevant, dynamically plans task execution, and re
covers from impasses. We talk about strategies not strategic knowledge. In
our case, a strategy is like a skeletal plan but admits steps where, for exam
ple, goals are established and plans are filled out up to a certain horizon. [A
somewhat similar notion of a "plan" in engineering design is given in Brown
and Chandrasekaran, (1989).] Again, since conceptual design is opportunis
tic, we need strategies that may be refined so frequently that we could call
the refinement reactive. Finally, we would include as a strategy an efficient
heuristic (or policy) used with algorithms. In our account, more than one
strategy may be active.

We conceptualize a strategy as a high-level description of the essential foci
and their conditions, essentially a summary of a family of design instances.
To achieve a summary, some foci can be designated as intermediate goals;
carrying out the strategy then involves finding an achievable sequence of
transitions to reach these foci. In Petri nets in general, there are ways to
collapse a set of adjacent places (foci) and transitions into a single non
primitive transition. This would allow a hierarchy of strategies, where some
foci in a strategy higher in the hierarchy correspond to sets of foci and
transitions in a strategy lower in the hierarchy. We have only sketched out
the effort required to resolve the technical issues alluded to in this brief
paragraph. We believe that a major contribution of our research is to have
isolated these issues since the notion of a strategy is perhaps the key notion
in formalizing conceptual design and establishing specifications for software
support for conceptual design.

8.2. Temporal Formalisms for Representing Strategies

Several formalisms have been used in computer science to model temporal
aspects of systems, particularly concurrency. In addition to Petri nets and
QDL, there are temporal logics and process algebras. A temporal logic
(Manna and Pnueli, 1992) includes temporal operators (such as those
corresponding to the English terms "always" and "eventually") that are

www.manaraa.com

112 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

applied to propositions to indicate the extent in time these propositions hold.
Temporal logics extend predicate logic, which generally suffices to describe
the effect of any transformational program. Such a program is a usual,
sequential program, whose role is to produce a final result at the end of a
terminating computation. The power of a temporal logic, however, is needed
to describe the effects of a reactive program (such as an operating system or a
program controlling a real-world process), whose role is to maintain some
ongoing interaction with its environment. The notions of reactivity and
concurrency are closely related: in any program containing parallel processes
(processes running concurrently), from the view point of each process the
rest of the program is the environment. A process algebra [see Hennessey
(1988) and Baeten and Weijland (1990)] is a mathematical language with
basic constants, operators to construct larger processes, and equations as
axioms to describe the nature of processes. Thus, we speak of process terms,
which denote processes, and process algebras are subsumed under that part
of modem algebra called term algebras. The interaction of a process with its
users (which may be other processes) is thought of abstractly as communica
tion. Concurrency arises because there can be more than one user and, inside
the process, more than one active subprocess.

Olderog (1991) considers different levels of abstraction at which concur
rent processes may be described and specified. At the most abstract level are
logic formulas, which, it is held, specify the communication behavior re
quired. At the next level are process terms, which constitute an abstract
concurrent language stressing compositionality. At the least abstract level
are Petri nets, which describe processes as interacting "machines" (in the
automata-theoretic sense). As models of computation, Petri nets are more
powerful than finite automata. Statecharts (Harel, 1987) are another formal
ism introduced to specify the behavior of complex reactive systems. They
extend finite automata with features that allow for hierarchical descriptions,
interlevel transitions, and multilevel concurrency.

Petri nets, the least abstract of the three formalisms considered by Olderog,
are, we maintain, the most appropriate formalism to represent strategy since
Petri net transitions correspond directly to protocol episodes. The formal
insight they provide is to view conceptual mechanical design as a sequence of
interdependent events. As specifications for design software, design nets
identify specific steps. Temporal logics allow us to specify desirable pro
perties holding of program variables. Such properties include, for example,
safety properties, which state that certain relations among certain variables
always hold or always do not hold (that is, never hold). They also include
liveness properties, which state that a certain relation eventually holds
among certain program variables. Thus, temporal logics are appropriate for
expressing certain global invariants (safety properties) and goals (liveness
properties), but these properties are much more abstract than the sequence
of episodes in a protocol. The communication and composition expressed by
process algebras could be useful in our scheme in describing the coordination

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 113

among different activations of the various design nets since these activations
are essentially processes. On their own, process algebras do not support a
notion of strategy since the communication and composition they describe
assumes there is already something of which there are activations and which
directly relates to the sequence of episodes; process algebras are too abstract
(although not as abstract as temporal logics). QDL, on the other hand, is less
abstract than Petri nets even though it is similar to temporal logics but
with modalities constructed using operators reminiscent of those of process
algebras. QDL is less abstract because its operators in fact are control primi
tives for building programs (not processes) from atomic programs. We previ
ously stated that this control vocabulary is foreign to conceptual mechanical
design protocols.

We could draw on the temporal formalisms other than Petri nets to help
define strategies and to improve encoding reliability. This need not add more
steps to an already extensive encoding procedure, for other formalisms might
only add high-level guidelines, theoretical support, or specifications to be
met by the encoding procedure itself. We have already mentioned that even
tuality properties expressed in temporal logics give a notion of a goal and
that process algebras give an explicit and sound way to relate net activations.
Temporal logics could also relate to the atomic conditions and focus names
generated by the semantic grammars. It might be useful to express that some
condition should eventually, always, or never hold. Or, concerning foci, we
might specify that, if we have considered certain problem aspects, then even
tually we should consider certain other aspects. Handling within a logic the
phrases generated by the grammars might give a welcome logical link be
tween the grammars and the ontologies, which declare the items in the SID
to which the phrases refer. It might even be useful to specify in a temporal
logic properties that must hold of any conceptual mechanical design activity,
such as the following (where we give the English phrase that translates the
formula):

If a task Tis decomposed into two subtasks T1 and T2 , then eventually either T1 and
T2 are realized by the same entity or T1 (respectively, T2) is realized by an entity £ 1

(respectively, £ 2) and the behaviors of £ 1 and £ 2 are coordinated in such a way that
the behavior required for Tis achieved.

Again, the hierarchical nature of statecharts could relate to the hierarchies
we have noted among strategies. Finally, going beyond protocol encoding
and aiming for our ideal of executable encodings, the various temporal
formalisms could be very useful in specifying how the actions of various
concurrently active foci should coordinate to effect an update to the SID.

8.3. Additional Considerations
The conceptual difficulties that arise when we attempt to represent strategies
are, we suspect, related to the reasons mentioned in 6.2 that cause un-

www.manaraa.com

114 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

acceptable reliability scores for our encodings. Fundamentally, two encoders
may encode a part of a protocol in what are intuitively similar ways, but the
reliability score for that part of the protocol may be poor since we lack a way
to indicate when differences are small and that the differences may tend to
cancel. In the end, we probably must accept that there is not a unique
mapping of a sequence of protocol episodes into a design net trace. Any
number of traces may be acceptable as long as there are well defined ways to
transform one acceptable trace into another. One could try to define opera
tions that add or remove detail or transform one subnet into another. Such
changes will show up in the encoded trace, which is formally a string of
symbols, and there are definitions of edit distance between strings and of time
warping to compress or expand one string to match another (Sankoff and
Kruskal, 1983). Also, there is a metric function called synchronic distance
(Reisig, 1985) that indicates the coupling between sets of transitions. The
distinction among the three design nets rests on the distinction among the
three pairs of semantic grammars for the nets. We need a more principled
way to distinguish the vocabularies of these grammars so they may shade
into one another and capture conceptual relations among design nets.

The indeterminacy accepted in the last paragraph is to be expected. We
claim not that the nets are part of a designer's mental apparatus but only
that they capture the temporal dependencies among protocol episodes and
how these episodes address and depend on the evolving problem state.
Translation from the protocol text into our formalisms must be somewhat
indeterminate since we go from a largely informal language to a formal
language.

A generally recognized control aspect of design that presents difficulties
for our nets is backtracking. Backtracking is natural in an area, such as
design, whose solutions involve combining parts. If an attempted combina
tion must be rejected, we backtrack to the point where that combination was
selected and select another combination. Very little backtracking of this
simple, sequential nature was found in our protocols, although (as discussed
in Section 3.2) often two or more alternatives are concurrently available and
are evaluated against each other and unpromising alternatives are rejected.
Also, designers review their designs, which may lead to certain parts being
rejected. Even the rejection, however, was seen as coupled with elaboration
(or re-elaboration). Perhaps, then, the appropriate notion is that of intelli
gent backtracking, where, rather than selecting the next combination in some
arbitrary enumeration, one repairs the previous combination only where it
needs repairing.

To allow backtracking in the design nets, we would have to assume that a
sequence of net states (markings) is remembered and that, when a line of
reasoning is abandoned, there is some way to determine where the "wrong
turn" was taken, some way to restore the states of the nets just before the
wrong turn was taken, and some way to erase the elaboration done to the
SID since the wrong turn was taken. A certain amount of intelligence could

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 115

be imparted to this scheme by being specific about the wrong turn (for
example, a certain transition in a certain net), backing up the net states only
as these depend on that transition, and undoing only the changes to the SID
that are responsible for the problems. In fact, introducing backtracking into
the nets would probably be an unnecessary complication. The appropriate
notion here is again strategy since a useful strategy references control pat
terns for handling rejection of partial solutions and control patterns for
reviews. These additional control patterns would not necessarily introduce
many new foci since it is plausible that foci not only can elaborate the
problem state but also can retract previous elaborations and even replace
(retract and re-elaborate) items in light of new considerations.

9. Design Paradigms

A design paradigm is a research community's unifying vision of the nature of
design that directs performance, investigation, and automation of design. A
design paradigm should help one make sense of design activity and should
suggest useful ways to solve design problems. In this chapter, we have not yet
addressed the question of a paradigm appropriate for conceptual mechanical
design, yet viewing design from the perspective of a given paradigm pro
foundly impacts how protocols are encoded. In this section, we concentrate
on two design paradigms, which were investigated in projects at the Uni
versity of Minnesota that carried on from our protocol analysis project
(Esterline et al., 1992). The paradigms are case-based design (in 9.1) and gen
erative constraint based designed (in 9.2). In 9.3 we consider the extent to
which these two paradigms account for all aspects of design; we also con
sider the implications for protocol analysis of viewing design from the per
spective of these and similar paradigms.

9.1. Case-Based Design (CBD)

Case-based reasoning (CBR) is reasoning from precedents, adapting old
solutions to solve new problems, or retrieving old cases to illustrate aspects
of the current situation. Case-based reasoning improves problem-solving
behavior by, for example, using shortcuts, anticipating and avoiding errors,
and appropriately focusing its reasoning (Kolodner and Simpson 1989). We
refer to precedent-directed design as case-based design (CBD). [For some
early work in CBD, see Goel and Chandrasekaran (1989) and Sycara and
Navinchandra (1989)]. In principle, any aspect of design can exploit previous
cases, and, indeed, our protocols themselves are records of extended cases of
design. Also, storing a case can be viewed as knowledge acquisition. Tradi
tionally, CBD systems fully automate this acquisition. The CBD system
implemented in the project at Minnesota (Bose et al., 1992a; 1992b) even
automated construction of the initial cases, but projected enhancements

www.manaraa.com

116 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

extend to realms with more flexible and extended conceptual design stages,
realms in which our representations are applied.

The current CBD system performs preliminary four-bar linkage synthesis
and contains four modules. The Retriever uses similarity metrics to retrieve
cases with functional properties similar to the problem specification. The
Potential Evaluator studies the functional differences between each retrieved
case and the problem and passes the case with the most potential, along with
an abstraction of its violations of specifications, to the Adapter. If success is
not forthcoming with this case, successively less promising cases are passed
until success ensues or no promising cases remain. The Adapter uses the
violation abstractions to alter the case structurally to reduce the violations.
The Simulator simulates the adapted case. If this indicates compliance with
the specifications, we have success and a candidate for inclusion in case
memory. Otherwise, the adapted case is sent back to the Potential Evaluator,
and the evaluate-adapt-simulate loop is repeated unless the number of
iterations exceeds a certain threshold.

Slightly more involved mechanism design problems introduced a more
global design perspective, involving modest strategies for problems not yet
clearly formulated. This level was attacked by adapting Flanagan's critical
incident technique (Flanagan, 1962), giving what was called the critical in
stance technique. [Compare with Waldron and Waldron (1987).] One appli
cation involves presenting task-mechanism pairs (where the mechanism is
intended to realize the task) and asking the observer (an experienced de
signer) to pick where the mechanism is particularly effective or ineffective in
realizing the task; in so doing, the observer identifies the key features of both
that are significant for the evaluation. The result of the study is a mapping
from mechanism features to task features. Given this mapping, one can
present task-mechanism-design strategy triples and ask the observer to pick
where the strategy is particularly effective or ineffective in designing an
instance of the mechanism for realizing the task; one can also ask for the
most effective strategy for a given task-mechanism pair and thus increase
the stock of strategies. When the mechanisms are linkages that are relatively
simple (say, six-bars) but not too simple (four-bars), this method gives an
extensive and controlled set of design cases with guidelines for adaptation
and limits on the strategies. It also gives failure cases, which allow failure to
be anticipated hence avoided. For a six-bar that is designed as a four-bar
with dyad added, the strategies are nearly algorithms. In less clear cases, the
strategies are flexible and more like skeletal plans. If a CBD system based on
the mappings discussed here were implemented for six-bars, it would appar
ently include as a subsystem the CBD system for four-bars since one way
to construct a six-bar is from a base four-bar. We would then have an
evaluate-adapt-simulate loop nested within another. When the artifacts
designed are reasonably complex, a more abstract and global view of the
problem, involving more extensive strategies that start earlier in the design

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 117

process, is needed for the problem solver to avoid being overwhelmed by
evaluate-adapt -simulate loops.

When the mechanisms of interest are, say, six-bars, although some design
net structure is evident and general notions (such as that of a task or of an
entity) from the ontologies are applied, there is little need to rely on our
representation schemes. In more general and flexible design domains, more
advanced representations are needed and cases require correspondingly
more analysis. If we think of one of our protocols as a case, then a case
corresponds to a specific SID and a trace of a set of net activations. The
ontologies and design nets, in this context, can be thought of as integrating
any number of cases since the schemes are updated whenever they are unable
to represent some aspect of a protocol.

Note that the knowledge acquisition effort required for a particular case
increases as the domain becomes more flexible or general. In the four-bar
case, there is no knowledge acquisition except automatically storing cases.
For slightly more involved mechanisms, the critical instance technique is
used to perform knowledge elicitation. A domain model is already at hand
and the expert designer only fills in details within this framework. For gen
eral mechanical design, the structure must be extracted from the protocol.
There is automation appropriate for any point in this spectrum. In the sim
ple case, all is automated, and we discussed software for protocol analysis
in Section 7. Knowledge editors (Musen, 1989), where the user enters and
refines the contents of the knowledge base, have become popular for knowl
edge elicitation.

9.2. Generative Constraint Based Design (GCBD)
The other project that carried on from our protocol analysis project
addressed constraints and grammars for mechanical design. Constraint
networks have been used for some time to represent and to solve design
problems. Initially, local constraint propagation techniques dominated, but
more global techniques [see, e.g., Finger (1987)] are now popular. The for
mal grammars most widely used for engineering design are graph grammars
(Ehrig, 1979). Graph grammars are similar to our semantic grammars except
that the non-terminals (variables) and terminals are now vertex labels and
the target that is rewritten is a graph not a string of symbols. In engineering
design, Finger and Rinderle (1990) and Rinderle and Balasubramanian
(1990), for example, represent a behavior specification by a bond graph and,
to realize the specification with only available components, define a bond
graph grammar and associate a bond graph with each available component.

The project at Minnesota (Shanmugavelu et al., 1991; 1992) represented
constraint networks with hypegraphs. A graph generalizes to a hypergraph,
whose hyperedges may connect zero or more vertices. Hypergraphs are used
because graphs can represent only binary relations whereas hypergraphs

www.manaraa.com

118 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

can represent properties and relations of any arity. To modify or otherwise
generate hypergraphs, hyperedge replacement (HR) grammars (Courcelle,
1990) are used. In an HR grammar, the nonterminals and terminals are
hyperedge labels, the LHS of a production is a nonterminal, and the RHS is
a hypergraph. A production is applied to the target hypergraph by replacing
a hyperedge labeled by the LHS with its RHS. Implementation is in the
constraint logic programming language CLP(R), which solves constraints
over the reals but delays solving a given constraint until values have been
supplied for all variables with nonlinear occurrences in it. [For CLP(R),
see Cohen (1990); for advantages of CLP(R) in structural design, see
Lakmazaheri and Rasdorf, (1989).] CLP(R) allows as subgoals not only
Prolog terms but also equality and inequality constraints between arithmetic
expressions containing real numbers and variables.

In this project, hypergraph vertices are represented with CLP(R) (real)
variables. A (sub)system is considered a hyperedge connecting all the vertices
representing the parameters that together define a specific instance of the
subsystem. A hyperedge label that is not a relational or arithmetic operator
is treated as a CLP(R) functor. A term with a hyperedge label as its principal
functor contains variables representing the vertices connected by a hyper
edge with that label. Finally, the relational operators in CLP(R) constraints,
supplemented with arithmetic operators, are (possibly composite) labels of
hyperedges connecting the variables appearing in those constraints.

Three systems were implemented within this framework. The first two
address rotary power transmission systems [the taxonomy in Kannapan et
al., (1989) was followed] where all rotations are about axes parallel to the
three coordinate axes. Trains of spur gears or shafts coupled by V -belts
are examples. Such systems are easily decomposed and the equalities and
inequalities used in describing them are generally linear in the system param
eters. There are usually several kinds of solutions with very different struc
tures for a given problem, but the best kind of solution can usually be found
by testing the values of a small number of parameters. The first system is
really a CLP(R) programming convention and some reusable code. HR
grammar rules are clauses of the form

System :- Constraints, Subsystems.

The constraints can cause choices among the structurally different kinds
of systems. The second system is an HR grammar interpreter written in
CLP(R) and thus offers more flexible control since control is not bound to
CLP(R)'s implementation of resolution. Given a desired behavior, it applies
the rules to produce a hypergraph of a device producing that behavior. The
hypergraph is defined by the constraints imposed and the terms maintained
in a list. Here hyperedges are discarded when they are replaced so the list of
terms for the final hypergraph all represent primitives. Rules are stated as
CLP(R) clauses of the form

hg_rule((Old term), (New term list)) :- (Constraints).

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 119

If no constraint violation arises, the generator can remove the old term from
the list of terms for the hypergraph (i.e., from the target expression) and
include the new terms in the list. The third system was developed by
modifying the form of the clauses implementing HR rules in the first system
so that constraints are partitioned into required and preferred constraints.
This system was tested by using it for initial selection of dwell linkage models.

Abstracted from the particular implementations, this approach to design
is called generative constraint-based design (GCBD). The representation of
the problem state as a hypergraph was inspired by the SID used in our
protocol encodings, which is a constraint network that allows relations of
arity greater than two. To relate a SID to the hypergraph maintained by the
second system, which maintains only the current form of the problem state,
we define the frontier of a SID as follows. Given a SID, erase any task
or entity that is at the tail of an evolutionary arc and push down to the
remaining tasks and entities any properties or relations that are inherited
from the items erased. The result is the frontier of the SID. The structure of
a frontier of a SID is somewhat different from a hypergraph as used to
represent the current problem state, where vertices are real variables repre
senting metric properties, hyperedges are relations among such properties,
and tasks and entities are represented by subhypergraphs. Having vertices
represent metric properties is something of an artifact of the level of analysis.
If an HR grammar is used, elaboration occurs on the hyperedges, but a
hyperedge may connect only one vertex so, in effect, correspond to that
vertex. With a logic programming language, there is no need to solve num
erical constraints and no need for variables to assume only real numbers
as values. In general, logic programming languages are good for represent
ing structure and for implementing grammars, so the hypergraph gram
mar systems could be generalized to prenumerical representations for early
design stages.

The simulation of the evolution of a SID by a graph or HR grammar is
about as abstract as we can get. An abstract simulation is desirable if we wish
to emphasize the pure concepts unobscured by implementation details. Thus,
in the prototype encoding interpreter implemented in Parlog, the design net
foci were fleshed out with HR grammar rules so that a minimum of imple
mentation detail would be added to what is revealed in the protocol.

Concerning control as expressed by the design nets, the implementation
language, CLP(R), already has a sort of strategy since it delays considering a
constraint until the only variables in it that remain uninstantiated are linear.
The interpreter was developed to free control from CLP(R)'s implementa
tion of resolution. CLP(R), like most logic programming languages, back
tracks on failure. An interpreter could catch failures and initiate a more
appropriate control pattern. In fact, the interpreter used in the second system
simply relies on CLP(R)'s backtracking when failure is encountered, and a
major effort would be required to specify control patterns for all possible
failures. More generally, the design nets can be used as control specifications

www.manaraa.com

120 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

for the interpreter by including the names of foci among the terms repre
senting the hypergraph and including the constraints on transitions in rules.
There are several ways, using similar implementation techniques, that strate
gies, as summaries of paths through the design nets, could be implemented.

9.3. Design Paradigms and Representation Schemes
Research in design theory has been converging on the paradigms of CBD
and (under various names) GCBD [see Brown and Chandrasekaran (1990)
and especially Maher (1990)]. Often the single paradigm of GCBD is treated
as two paradigms: transformation and decomposition (Kott and May, 1989).
Transformation is usually explained in terms of grammars or something
similar but informal. We see grammar rules at work in problem decomposi
tion; also, decomposition imposes constraints on the subproblem that must
be satisfied when the subsolutions are combined. We do not, however, see
these two paradigms as the whole story, for we view them against a back
ground of strategy and in a larger, reactive context. This is significant be
cause how one characterizes conceptual design has a profound influence on
how one analyzes a design protocol.

Viewing design from the perspective of CBD does not impose representa
tion schemes on one's characterization of conceptual design since CBD as a
general paradigm is neutral regarding representation. Rather, one must de
vise representation schemes to sanction retrieval and adaptation procedures
used in particular applications of the paradigm. For interpreting conceptual
design protocols, the perspective afforded by CBD is useful for at least two
reasons First of all, it suggests that we must accept without involved expla
nation certain leaps in a designer's line of reasoning. For here the designer
might be following a precedent, so, apart from similarity between the current
case and the precedent, there can be no deeper explanation than that the
designer happened to address a similar problem previously. Secondly, proto
cols themselves are cases. Attempting to relate the encodings of several
protocols (especially when collected from different designers) encounters
many of the same problems that arise when CBD attempts to characterize
different cases as similar or to derive one case from another by certain
adaptations.

Viewing design from the perspective of GCBD, on the other hand, does
have representational implications: the problem state is conceived as a con
straint network and its evolution is viewed in terms of grammar rule applica
tions. The general paradigm, however, is mute about what domain the con
straints are over. The project described above considered constraints over
the real numbers, where CLP(R) is appropriate, but conceptual design con
straints may be over various domains. (Indeed, CLP(R) is just one possible
instance of CLP(D), where Dis the constraint domain.) Assuming one is
interested in a representation that is allied to computation, there are two
points in particular that make GCBD attractive. Firstly, most interesting
models of computation are equivalent to some family of grammars. Sec-

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 121

ondly, any set of first-order predicate logic formulas can be viewed as a
system of constraints, and extensions to first-order logic can be seen as
allowing more expressive constraints; so anything mathematically express
ible can be expressed as a system of constraints. Whether it is natural or
useful to view the problem state and its evolution in conceptual mechanical
design in these terms is another question, one to which this chapter has given
a positive answer supplemented with a framework for control patterns.

A paradigm of general problem solving that is considerably less expressive
and flexible than GCBD yet shares its transformational nature is given in
Newell and Simon's (1972) Human Problem Solving and has influenced most
protocol analysis projects. It is assumed that the problem specifies an initial
state, that there is a fixed set of operators that can transform the current
state into the next state, and that a new state is evaluated against the goal
state to determine whether progress has been made. Although this paradigm
is reasonable for embodiment design, where there is a fixed set of design
parameters, in conceptual design the operators, and so the search space, are
not even defined until the problem is sufficiently formulated. And, once the
problem is formulated, unless care is taken to maintain constraints in a
usable form, the number of ways to transform the problem state that must
be considered can become overwhelming. Our protocols revealed little overt
evaluation and our representations of evaluations are meager. It appears
that experienced designers are adept at elevating constraints from their role
as "filters," in which they are used to accept or reject alternatives, to the role
of "generators," in which they are used to create a tightly bounded number
of alternatives. This says more than that constraints become "compiled"
hence covertly applied, for it says something about a change in their abstract
role. Finally, our protocols show little sense of progress to a goal but do
show designers striving to keep on track so as to progress along a strategy.

10. Conclusion

We have presented formally-based schemes to represent the knowledge re
vealed in limited conceptual mechanical design protocols. We have also
sketched our method of collecting and encoding such protocols. A protocol
is directly encoded into a trace, consisting of three documents, one for each
net, encoded concurrently. The trace partitions the protocol into (possibly
overlapping or coinciding) episodes, which correspond to net transitions. For
each episode, we record the subproblem in which it occurs, the input and
output foci of the net transition, the SID conditions that enabled the transi
tion, and the changes the newly active foci make to the SID. The SID
(structured instance diagram) for a protocol is constructed as the trace is
encoded. It represents the designer's view of the evolving problem state.
Items recorded in the SID are tasks, entities, properties, and relations; cer
tain properties and relations are distinguished, forming a predefined special
part of the scheme. Both a graphical and a tabular form of the SID are

www.manaraa.com

122 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

maintained. The static aspects of the SID represent a snapshot of the prob
lem state and its dynamic aspects indicate how the problem state evolves.
Dynamic aspects are represented by certain distinguished relations, which
graphically are represented by arcs connecting tasks and entities. The outline
of the evolution of the problem is represented by the task DAG, which
consists of the tasks and entities in the SID connected by the evolutionary
arcs.

For each protocol, there is a trace and a SID, but these instantiate or
reflect general structures. These structures are updated as needed when a
protocol is encoded, so they contain at least the resources to represent the
content of all protocols so far encoded. The ontologies, formalized in the
domain equations and domain function equations of denotational semantics,
form a type system for the items instantiated in a SID; the static ontology
relates to static aspects and the dynamic ontology relates to the dynamic
aspects of SIDs. The design nets are modified Petri nets. Each focus ("place")
has as its name a phrase describing the design aspect it represents and each
transition is associated with a condition referring to the SID. An episode in
a trace is interpreted as one or more concurrent net transitions. When a focus
is first active (receives a token), it accounts for changes in the SID. For a
transition to be enabled, not only must all its input foci be marked but also
its condition must be true. A transition condition is a Boolean combination
of atomic conditions in disjunctive normal form; atomic conditions refer to
features in the SID. Focus names and atomic conditions are generated by
certain semantic grammars to ensure that they are well-defined and meaning
ful. The grammars divide quite neatly into three groups, inducing three
separate nets. There are different activations of all three nets for different
subproblems. Essentially, the nets integrate interlocking control patterns
that are instantiated in protocols. To make sense out of the flow of a proto
col, it is necessary to identify higher level control patterns that, however, can
be related to the detail of the nets. These patterns are strategies and intro
duce problems we are still resolving.

Two steps in particular were taken to foster objective and accurate
encodings. First of all, certain measures of reliability were defined to indicate
how well two people agree when encoding a protocol into our representation
schemes. Low reliability on some feature of the schemes is reason to re
formulate or supplement that feature. Secondly, an encoding team always
includes a mechanical engineer, who can explain design steps in terms of
mechanical principles. Such steps are necessary because our representations
are not operationally defined in terms of the words in a protocol. No matter
what steps are taken, however, a certain indeterminacy must remain in
our encodings since we translate largely informal language into formal
representations.

Conceptual problems, including often unacceptable indeterminacy, mostly
relate to the design nets. There is a threat that the nets might become too
extensive and fail to capture significant generality, although the semantic
grammars help by constraining the number and kinds of foci and atomic

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 123

conditions allowed. Strategies are a more abstract way to capture generality,
but technical problems remain in relating strategies to the detailed nets. We
need well-defined ways to determine that two net fragments are similar (or
more similar than two other fragments) and to determine that one net frag
ment is a summary or abstraction of another fragment. Again, the partition
into three nets is founded on the differences among the semantic grammars.
These grammars might sanction useful finer partitions or partial mergings of
the nets.

Eventually, the work described here should be implemented for design
automation. We would expect an implementation to draw on only part of
our scheme and to use man-machine cooperation. Implementation could be
facilitated by relating our schemes to certain design paradigms (as discussed
in Section 9). Case-based design (CBD) retrieves and adapts previous cases to
help solve new problems. It depends heavily on the representations available
for retrieving cares similar to the problem at hand and for adapting retrieved
cases; our work affords representation schemes that should be exploitable
by CBD. CBD has generally not been used to govern control patterns or
to suggest strategies. Given an adequate representation of control patterns,
however, CBD could (depending on the previous cases recorded) afford
automated guidance through much of conceptual design.

Another design paradigm can be called generative constraint-based design
(GCBD). It views design as elaboration of a constraint network by applying
formal grammar productions (graph grammar or hyperedge replacement
rules, say) to the problem state and solving the constraint network, most
usefully in an opportunistic fashion that allows partial solutions to guide the
elaboration. We see GCBD as subsuming the more common paradigms of
transformation and decomposition. The SID produced in encoding a proto
col can be interpreted as a constraint network. The information in a protocol
shows a SID being elaborated but it does not suggest how it is elaborated
or how values meeting the constraints are selected. GCBD supplies answers
to these "how" questions and, thus, suggests implementation methods. Fur
thermore, GCBD's answers to the "how" questions are about as abstract as
possible, which is desirable at the level of specifications. GCBD, however,
has little to say about control patterns other than emphasizing the advan
tages of an opportunistic policy.

It is important to consider our work in a broader context. Our protocols
address relatively small problems. Larger mechanical design problems are
often solved by teams. In teams, coordination is a problem since activities
proceed concurrently. But we already handle concurrency since we have
concentrated on the conceptual relations that allow a design to proceed.
Once we move to a broader context, conceptual design is linked not only
with later stages of design but also with possibly complex physical, eco
nomic, and social systems that transcend design proper. [This broader
context is addressed by concurrent engineering-see Sprague et al. (1991),
Rosenblatt et al., (1991), and Nevins and Whitney (1989).]1t is interesting to
consider how our schemes could be enlarged to accommodate these design-

www.manaraa.com

124 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

transcending aspects. Obviously, the ontologies would become much larger
and a typical SID would be much more complex. Evolutionary relations
would have to capture notions other than those that relate to decomposition
and realization, but the fundamental categories of tasks, entities, properties,
and relations-and the general framework built around them-would still
apply. Three design nets would no longer suffice when new realms are taken
into account. The indeterminacy we noted in the control patterns for concep
tual design might be less severe in these new realms, which may be governed
by policies or conventions that have evolved or been imposed to coordinate
the activities of cooperating agents.

References

Alexander, J. H., Freiling, M. J., Shulman, S. J., Rehfuss, S., and Messick, S. L.
(1987). Ontological Analysis: An Ongoing Experiment, Int. J. of Man-Machine
Studies 26, 473-485.

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11), 832-843.

Anjewierden, A., Wielemaker, J., and Toussaint, C. (1992). Shelley-computer aided
knowledge engineering. Knowledge Acquisition 4(1).

Baeten, J. C. M., and Weijland, W. P. (1990). Process Algebra. Cambridge: Cam
bridge University Press.

Bose, A., Gini, M., Riley, D. R., and Esterline, A. (1992a). On reusing linkage
designs. Proc. 1992 International Conference on Tools for AI.

Bose, A. (1992b). Case Based Design of Planar Linkages. Ph.D. thesis, Dept. of
Computer Science, University of Minnesota.

Brown, D. C. (1985). Capturing mechanical design knowledge. ASME CIE, Boston,
MA, pp. 121-129.

Brown, D. C., and Chandrasekaran, B. (1989). Design Problem Solving: Knowledge
Structures and Control Strategies,London: Pittman.

Chen, P. P. (1976). The entity-relationship model-Toward a unified view of data.
ACM Trans. on Database Systems, J(l).

Cohen, J. (1990). Constraint logic programming languages. Communications of the
ACM, 33(1), 52-68.

Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In J. van
Leeuwen (Ed.). Handbook of Theoretical Computer Science. Amsterdam: Elsevier
Sci. Pub., Vol. B, pp. 193-242.

Diederich, J., Ruhmann,l., and May, M. (1987). KRITON: A knowledge acquisition
tool for expert systems. International Journal of Man Machine Studies 26, pp. 29-
40.

Ehrig, H. (1979). Introduction to the algebraic theory of graph grammars (a survey).
In V. Claus, H. Ehrig, and G. Rozenberg (Eds.). Graph-Grammars and Their
Applications to Computer Science and Biology. Berlin: Springer-Verlag, pp. 1-69.

Ericsson, K. A., and Simon, H. A. (1984), Procoto/ Analysis: Verbal Reports as Data.
Cambridge, MA: The MIT Press.

Esterline, A., Riley, D. R., and Erdman, A. G. (1989). Design theory and AI Imple
mentations of design methodology. NSF Engineering Design Research Conf, Univ.
of Massachusetts, Amherst, MA, pp. 205-220.

Esterline, A., Bose, A., Shanmugavelu, 1., Riley, D. R., and Erdman, A. G. (1992).

www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 125

Concepts and paradigms for the early stages of mechanical design. Proc. 1992 NSF
Design and Manuf Systems Conference.

Finger, J. J. (1987) Exploiting Constraints in Design Synthesis. Ph.D. thesis, Com
puter Science Dept., Stanford University.

Finger, S., and Rinderle, J. R. (1990). Transforming Behavioral and Physical Repre
sentations of Mechanical Designs. In P. A. Fitzhom (Ed.). Proc. First Int. Work
shop on Formal Methods in Engineering Design, Manufacturing, and Assembly. Fort
Collins, CO: Dept. of Mechanical Eng., Colorado State Univ.

Flanagan, J. C. (1962). Measuring Human Performance. Pittsburgh: The American
Institute of Research.

Freiling, M., Alexander, J., Messick, S., Rehfuss, S., and Shulman, S. (1985). Starting
a knowledge engineering project: A step-by-step approach. The AI Magazine, Fall,
150-164.

Freiling, M. J. (1988). Designing an inference engine: from ontology to control. 1988
Int. Workshop on Artificial Intelligence for Industrial Applications, Hitachi City,
Japan, 1988.

Goel, A., and Chandrasekaran, B. (1989). Functional representation of designs and
redesign problem solving, /JCAI-89, Palo Alto, CA: Morgan Kaufmann, pp.
1388-1394.

Gordon, M. J. C. (1979). The Denotational Description of Programming Languages.
New York: Springer-Verlag.

Gregory, S. (1987). Parallel Logic Programming in PARLOG. Reading, MA:
Addison-Wesley.

Gruber, T. R. (1989). The Acquisition of Strategic Knowledge. Boston: Academic Press.
Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of

Computer Programming 8, 231-274.
Hayes, P. (1985). The second naive physics manifesto. In Brachman, R. and Levesque,

H. (Eds.) Readings in Knowledge Representation, Palo Alto, CA: Morgan Kaufmann.
Hennessy, M. (1988). Algebraic Theory of Processes. Cambridge, MA: The MIT Press.
Kannapan, S.M., Marshek, M. K., and Gerbert, G. (1989). An approach to nomen

clature and classification for mechanical transmissions. Tech. Rep. 214, Mechani
cal Systems and Design, The Univ. of Texas at Austin.

Keller, R. M. (1976). Formal verification of parallel programs. Communications of
the ACM, 19(1).

Kolodner, J. L., and Simpson, R. L. (1989). The mediator: analysis of an early
case-based problem solver." Cognitive Science 13 (4), 507-549.

Kott, A. S., and May, J. H. (1989). Decomposition vs. transformation: Case studies
of two models of the design process. In Proc. ASME Computers in Engineering
Conf. New York: ASME, pp. 1-8.

Lakmazaheri, S., and Rasdorf, W. J. (1989). Constraint logic programming for the
analysis and partial synthesis of truss structures. AI EDAM, 3(3), 157-173.

Maher, M. L. (1990). Process models of design thesis. The AI Magazine, Winter, pp.
49-58.

Manna, Z., and Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent
Systems. New York: Springer-Verlag.

McDermott, D. V. (1982). A temporal logic for reasoning about processes and plans.
CognitiveScience6, 101-155.

Motta, E., Rajan, T., and Eisenstadt, M. (1989). A methodology and tool for knowl
edge acquisition in Keats-2. In Guida, P. and Tasso, G. (Eds.). Topics in the Design
of Expert Systems. Amsterdam: North-Holland, pp. 265-296.

www.manaraa.com

126 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman

Musen, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition
Tools. San Mateo, CA: Morgan Kaufmann.

Nevins, J. L., and Whitney, D. E. (Eds.) (1989). Concurrent Design of Products and
Processes, New York: McGraw-Hill.

Newell, A., and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

Olderog, E.-R. (1991). Nets, Terms and Formulas. Cambridge: Cambridge University
Press.

Pahl, G., and Beitz, W. (1984). K. Wallace (Ed.). Engineering Design, Bath, UK: The
Pitman Press.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Englewood
Cliffs, NJ: Prentice-Hall.

Reisig, W. (1985). Petri Nets: An Introduction. Berlin: Springer-Verlag.
Riesbeck, C. K., and Schank, R. C. (1989). Inside Case-Based Reasoning, Hillsdale,

NJ: Erlbaum.
Rinderle, J. R., and Balasubramanian (1990). Automated modeling to support

design. Design Theory and Methodology-DTM '90 (2nd Int. Conf. on Design
Theory and Methodology, Chicago, Sept. 1990), New York: ASME, pp. 281-290.

Rosenblatt, A. et al. (1991). Concurrent engineering (Special Report). IEEE Spec
trum, July, pp. 22-37.

Sankoff, D., and Kruskal, J. B. (Eds.) (1983). Time Warps, String Edits, and Macro
molecules: The Theory and Practice of Sequence Comparison. Reading, MA:
Addison-Wesley.

Shanmugavelu, I. (1992). A hypergraph grammar with opportunistic control scheme for
conceptual design automation with application to mechanism synthesis. Ph.D. thesis,
Dept. of Mechanical Engineering, University of Minnesota, 1992.

Shanmugavelu, 1., Esterline, A. Riley, D. R., and Erdman, A. G. (1991). An opportu
nistic Approach to conceptual design. 1991 Computers in Engineering. New York:
ASME.

Sprague, R. A., Singh, K. J., and Wood, R. J. (1991). Concurrent engineering in
product development. IEEE Design & Tests of Computers, March 1991, pp. 6-13.

Stoy, J. E. (1977). Denotational Semantics, Cambridge, MA: The MIT Press.
Sussman, G. J., and Steele, G. L. (1980). CONSTRAINTS-A Language for

expressing almost-hierarchical descriptions. Artificial Intelligence 14, 1-39.
Sycara, K. P., and Navinchandra, D. (1989). Integrating case-based reasoning and

qualitative reasoning in engineering design. In J. Gero (Ed.), AI in Engineering
Design. Southampton, UK: Computational Mechanics Publications.

Ullman, D. G., and Dietterich, T. G. (1988). Progress in Understanding the Process
of Mechanical Design, Design Theory '88, The 1988 NSF Grantee Workshop on
Design Theory and Methodology. RPI, Troy, NY: pp. 1-11.

van Benthem, J. (1983). The Logic of Time. Dordrecht: Reidel, 1983.
Waldron, K. J., and Waldron, M. B. (1987). A retrospective study of a complex

mechanical system design. In M. B. Waldron (Ed.), The Results from the NSF
Workshop on the Design Process. The Ohio State Univ., pp. 109-141.

Waldron, M. B., and Waldron, K. J. (1989). Empirical study on generation of con
straints which direct design decision in conceptual mechanical design. NSF Engi
neering Design Research Conference, Univ. of Mass., Amherst, MA: pp. 15-30.

Wielinga, B. J., Schreiber, A. T., and Breuker, J. A. (1992). KADS: A modelling
approach to knowledge engineering. Knowledge Acquisition 4(1).

www.manaraa.com

7
Configuring Systems Using Available
Assets: A Conceptual, Decision
Based Perspective

P. N. KOCH, J.D. PEPLINSKI, F. MISTREE, AND J. K. ALLEN

Design using available assets, in the context of theory and methodology, is
more a state of research than a state of practice. At a low level of abstraction,
design using available assets, or catalog design, is a procedure in which a
system design is realized by assembling standard components selected from
catalogs. A nearly endless supply of available components and component
assemblies, defined in terms of key features, can be stored in catalogs or
computer databases as available assets to realize new designs. If this notion
of catalog design, or design using available assets, is abstracted to higher
levels and implemented in the earliest stages of the design of a product, a
consistent method for quickly exploring new designs based on that which
already exists can be developed.

In this chapter we present a conceptual framework for designing when
using available assets at different levels of abstraction. The foundation for
our approach is rooted in the twin paradigms of Decision-Based Design and
a Living Systems Analogy (Koch et al., 1994; Mistree et al., 1990). Systems
are modeled at a high level of abstraction in terms of design requirements
using this analogy of living systems adapted from Living Systems Theory
(Miller, 1978). Function level system models are used to identify feasible
existing concepts and components to realize a system. The use of Decision
Support Problems (Mistree et al., 1993b) to evaluate and select among feasi
ble concepts and to identify feasible configurations of available components
is discussed.

1. Frame of Reference

The notion of design using available assets has its roots in the familiar topic
of catalog design, a procedure in which a system is assembled by selecting
standard components from catalogs (Vadde et al., 1992a). In this definition
"components" include various sizes of gears, bearings, shafts, motors, tub
ing, etc., that are known to exist in catalogs and databases and are accessible
to designers. If we begin with this definition of catalog design and expand

127

www.manaraa.com

128 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

it to include existing human and physical resources, processes, solution
principles, abstract and concrete subsystems, etc., as well as components,
we arrive at design using available assets. The end result, however, is more
than just a procedure; we feel design using available assets is a philosophy for
approaching design as much as it is a method for design.

Our starting paradigms for this conceptual perspective of design using
available assets are rooted in Decision-Based Design and an analogy drawn
from Living Systems Theory. We present a brief overview of these paradigms
in the remainder of this section.

Decision-Based Design

At the Second National Symposium on Concurrent Engineering we pre
sented a conceptual model for decision-based concurrent engineering design
for the life cycle (Mistree and Muster, 1990). We offer Decision-Based De
sign (DBD) as a starting point for the creation of design methods that are
based on the notion that the principal (not only)1 role of an engineer in the
design of an artifact is to make decisions. We recognize that the implementa
tion of DBD can take many forms, our implementation being the Decision
Support Problem (DSP) Technique (Bras and Mistree, 1991; Mistree et al.,
1990; Mistree et al., 1993c; Muster and Mistree, 1988). The DSP Technique
is being developed and implemented to provide support for human judgment
in designing systems that can be manufactured and maintained. The DSP
Technique is used in this chapter as a framework within which guidelines for
a method of design using available assets are implemented. An extensive
review of the relevant literature and a description of the DSP Technique is
given in the references cited earlier and is not be repeated here.

Living Systems Analogy

Living Systems Theory (LST) (Miller, 1978; 1990) is a conceptual framework
that has been created to develop a unified theory dealing with the hierarchi
cal structure of both living and nonliving systems. Any biological system
can be characterized by its roles and functions within the system using the
essential characteristics of 20 subsystems. Although LST has been developed
to model biological systems, by analogy subsets of the twenty subsystems
have been used to model nonliving systems, (Koch, et al., 1994; Miller,
1978, 1990; Miller and Miller, 1992; Swanson and Miller, 1989; Walker and
Thiemann, 1990). The Living Systems Analogy (LSA) is postulated for use
in dealing with non-living systems, which in effect are viewed as a subset of
living systems. LSA is based on the use of the LST icons and provides

1 This does not exclude other activities that are performed by a designer in the process
of design. One classification of these subordinate activities is described in Bras and
Mistree (1991).

www.manaraa.com

7. Configuring Systems Using Available Assets 129

MATI'ER I ENERGY AND INFORMATION

Boundary~ ~ Reproducer

MATTER I ENERGY INFORMATION

Ingestor l> 1:1 Input
Transducer

Distributor M JI Internal
Transducer

Converter D * Channel And Net

Producer D 0 Decoder

Matter I Energy 6 ~ Associator Storage

Extruder ~ E1 Memory

Motor E9 0 Decider

Supporter 11 D Encoder

v Output
Transducer

G Timer

FIGURE 7.1. Symbolic representation of the subsystems of Living Systems Theory
(Mistree et al., 1993a).

a useful paradigm, or language, for engineers interested in modeling the design
of open engineering systems in general and engineering systems, in particular.

The symbolic representation scheme for the twenty subsystems that com
pose LST is presented in Figure 7.1. These twenty subsystems are classified
into three categories:

• Subsystems (two) that process both matter/energy and information
• Subsystems (eight) that process matter/energy, and
• Subsystems (ten) that process information

Systems to be designed can be modeled by assembling the LST subsystems
to meet the design requirements given in a problem definition (Koch et
al., 1994; Mistree et al., 1993a). These subsystems are "assembled" through
the flow of matter/energy and information and by recognizing the system/
environment boundary.

Matter/Energy and Information Processing Subsystems

In the first group are the reproducer and boundary. The reproducer is capable
of giving rise to other systems similar to itself. The boundary is the subsystem

www.manaraa.com

130 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

at the perimeter of a system that holds together the components that com
prise the system, protects them from its environment and excludes or permits
entry.

Matter/Energy Processing Subsystems

In the second group (arranged in the order of subsystems that deal mainly
with inputs to those that deal mainly with outputs) are the ingestor, distribu
tor, converter, producer, matter/energy storage, extruder, motor and supporter.
The ingestor transports matter/energy across the boundary from the environ
ment. The distributor moves matter/energy around the system; this matter/
energy may be external inputs to the system or outputs from other sub
systems. The converter subsystem transforms some matter/energy inputs to
the system into usable forms. The producer is the subsystem that forms stable
associations among matter/energy inputs to the system or outputs from the
converter. Materials synthesized by the producer are used for the benefit of
the system, for growth, for repair, for component replacement and for pro
viding energy for the system's outputs of products or information markers. 2

Matter/energy storage is the subsystem that retains packets of matter/energy
in the system. The extruder transmits matter/energy out of the system in the
form of products or wastes. The motor moves the system or parts of it in
relation to part or all of its environment or moves components of its environ
ment in relation to each other. The supporter maintains the system compo
nents in a predetermined spatial relationship.

Information Processing Subsystems

The subsystems that process information are in the third group. These
include the input transducer, internal transducer, channel and net, decoder,
associator, memory, decider, timer, encoder, and output transducer. Again, the
subsystems are arranged in the order of those that deal mainly with inputs
to the system to those that deal mainly with outputs. The input transducer is
the sensory subsystem that transports markers bearing information into the
system. The internal transducer receives markers bearing information and
transforms them to forms suitable for transmission within the system. The
channel and net is the subsystem of direct channels by means of which
markers bearing information are moved to all parts of the system. The
decoder subsystem alters the code of information input to it through the
input transducer or internal transducer into a private code used internally in
the system. The associator is the subsystem that deals with learning in its first
stages by forming enduring associations among the items of information

2 Information in living systems is defined as the forms or patterned arrangements of
the matter and energy in such a system. The transmission of this information on
channels in space or its retention over a period of time requires that the information
be embedded in a matter/energy packet which Miller (1978, p. 12) calls a marker.

www.manaraa.com

7. Configuring Systems Using Available Assets 131

within the system. The memory subsystem conducts the second stage of
learning, by storing items of information for different periods of time. The
decider is the executive subsystem that receives information from all other
subsystems, processes what it receives, chooses a course of action and then
transmits the decision. The timer subsystem transmits to the decider infor
mation about time-related states of the environment or of components of the
system. The encoder subsystem alters the code of the information-processing
subsystems, from a private code used internally by the system to a public
code that can be interpreted and used by other systems in the environment.
The output transducer transforms information markers used within the sys
tem into other matter/energy forms that can be transmitted over channels in
the system's environment.

The Living Systems Analogy is particularly useful in the early stages of
a product realization process when only the functional requirements of a
design problem are known. LSA provides a convenient domain-independent,
icon-based language that can be used to represent the means by which
these requirements will be satisfied. We contend that the concept of LSA is
also particularly useful when designing using available assets. The use of
LSA at the function level to represent a system provides a convenient and
consistent approach to identifying and exploring feasible existing concepts
and components.

In the following section a conceptual framework for designing when using
available assets is introduced and defined in terms of the three levels of
abstraction mentioned (function, concept, and component level). Each of
these levels is elaborated, including example, in the following sections. The
use of Decision Support Problems (DSPs) to formulate and solve available
assets design problems is also discussed.

2. Design Using Available Assets

In the context of theory and methodology, design using available assets is a
current state of research that can be described as a process of configuring
systems using that which already exists. At a low level of abstraction, design
using available assets becomes the familiar topic of catalog design: a proce
dure in which a system design is realized by assembling standard components
selected from catalogs. Selection in design is a process of making a choice
between a number of possibilities while recognizing a number of measures
of merit or attributes. Methods including, but not limited to, qualitative
optimization, interval approaches, fuzzy set theory, stochastic optimization,
subjective design evaluation, and heuristic approaches have been formerly
developed to handle various kinds of information in selection (catalog) de
sign problems. Bradley and Agogino have presented a method of qualitative
optimization using monotonicity analysis for catalog selection (Bradley and
Agogino, 1991). Wilde (1978), Papalambros and Wilde (1988), and Agogino

www.manaraa.com

132 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

and Almgren (1987) have extensively discussed monotonicity analysis and
qualitative optimization. An interval arithmetic method for catalog selection
has been proposed by Bradley and Agogino (1991). Habib and Ward have
used labeled interval calculus for inferences on catalogs (Habib and Ward,
1990). Moore (1979) has dealt with methods and applications of interval
analysis. Baas and Kwakemaak (1977), Allen et al. (1989), and Vadde et
al. (1992b) have used fuzzy set theory to solve multiple-attribute selection
problems under uncertainty. Stochastic optimization in selection has been
considered by Kahne (1975). Subjective design evaluation with multiple at
tributes was treated by Thurston (1990). Wood (1990) provide a good discus
sion of the use of fuzzy and probability calculus in engineering design.
Waldron et al. (1986) and Mittal and Arya (1986) have explored the applica
tion of expert systems to component selection. DeBoer (1989) presents a
review of available selection methods.

An overview of these methods as applicable to specific selection problems
and useful in specific situations is presented in Vadde et al. (1992a). Vadde
and coworkers then suggest that a more general approach is the treatment of
coupled selection design problems in the framework of the compromise DSP
(Mistree et al., 1993b). This approach is demonstrated in this chapter. For
simplicity, the selection of existing components to realize a design is re
stricted to the crisp form (uncertainty is not included) following that of
Bascaran et al. (1989).

Design using available assets, then, can be defined at the component or
detailed level as the familiar topic of catalog design, a procedure in which a
system is assembled by selecting standard components from catalogs (Vadde
et al., 1992a). This definition, however, limits the scope of "design using
available assets." A conceptual framework for designing when using available
assets is presented in Figure 7 .2. Within this framework the definition of avail
able assets is expanded to include assets other than components in catalogs:

Design using Available Assets: The use of existing human and physical re
sources, processes, solution principles, abstract and concrete subsystems, living
and nonliving subsystems, to realize a system configuration.

Given this definition, three different levels of abstraction, namely, func
tion, concept and component, for modeling and processing different levels of
information detail define the conceptual framework presented in Figure 7.2.
Each of these levels, as well as their significance for designing when using
available assets, are defined and discussed in this section.

2.1. Levels of Abstraction
The initial information available for a product to be designed is captured in
the recognition of need and statement of the problem, as noted in Figure 7.2.
The representation of a product to be designed begins as a set of functional

www.manaraa.com

FUNcnON LEVEL
Available Assets:
LSTicons

CONCEPI' LEVEL
Available Assets:
Existing Concepts/
Solution Principles

COMPONENT LEVEL
Available Assets:
Existing Products,
Components and
Component Assemblies

7. Configuring Systems Using Available Assets 133

PROBLEM
STATEMENT

Design Requirements

I
Lower
Levels

of
Abstraction

~

FIGURE 7 .2. A conceptual framework for designing when using available assets
incorporating levels of abstraction (Koch et al., 1994).

requirements and specifications, partitioned from a problem statement of
requirements for the design, and is transformed into a detailed representa
tion of a physical entity or group of entities. The type of information and
knowledge generated about a product changes as its design process pro
gresses. As the conceptual design stage is entered and progresses, a system
modeled as requirements must be represented in terms of the concepts ex
plored to meet the requirements. As the selected concepts are defined in the
detailed stages, a detailed modeling of the components for realizing the
concepts becomes necessary. Regardless of the current stage during a design
process, however, the available information about a product being designed
can be represented as a system model at different, definitive levels of abstrac
tion. Three such distinct levels of abstraction for modeling systems, defined
in terms of the class of information represented and processed at each, are
identified (see Figures 7.2, 7.3): the function level, the concept level, and the
component level.

These levels of abstraction are defined in terms of the information
managed, processed, and represented at each:

• The function level of abstraction-the level at which design requirements
and systems are represented generically with no mention of conceptual or
physical realization.

www.manaraa.com

134 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

Function Level
Domain-independent
representation

Concept Level
Existing solution
information

Component Level
Detailed infonnation

FIGURE 7.3. Layers of information representation for design using available assets.

• The concept level of abstraction-the level at which systems are mod
eled in terms of possible solution principles for fulfillment of the design
requirements.

• The component level of abstraction-the level at which systems are mod
eled in terms of specific, physical entities that may realize the chosen
concepts and/or fulfill the design requirements.

Defined as such these levels can be viewed as layers of information repre
sentation as shown in Figure 7.3. As the model of a product being designed
moves from the function to the concept to the component level of abstrac
tion, the detail of information represented by the model steadily increases
while the amount of generality and design freedom decreases. When ab
stracting from the component to the concept to the function level in Figure
7 .3, the level of abstraction or generality increases.

The representation and processing of information when designing at
each of these levels is elaborated and discussed through example following
sections. Before presenting this discussion the conceptual framework for
designing when using available assets presented in Figure 7.2, as well as the
transformation of information that occurs at each layer in Figure 7.3, is
elaborated.

2.2. A Conceptual Framework for Designing When Using
Available Assets
The conceptual framework for design using available assets is defined at each
of these levels of abstraction in terms of the assets available at each level, and
the necessary transformation of information at each layer of Figure 7.3 that
allows the design to be represented using these assets. The assets identified as
available for designing at each level are presented in Table 7.1. The LST

www.manaraa.com

7. Configuring Systems Using Available Assets 135

TABLE 7 .I. Assets available for designing at each defined
level of abstraction.

Abstraction level

Function level
Concept level

Component level

Available assets

LST icons and representation scheme
Existing, defined concepts and solution

principles
Existing, defined products, components,

and component assemblies

icons and representation scheme are used to partition and represent a system
at the function level of abstraction. At the concept level, existing concepts or
solution principles (Pahl and Beitz, 1988) are sought to realize the product
specific functions represented at the function level (for example, a shaft and
coupling for transferring torque). Existing and readily available physical
components found in vendor catalogs are defined as available assets for
designing at the component level of abstraction (existing, standard shafts
and couplings).

Using these available assets the layers of information representation
shown in Figure 7.3 are defined in Figure 7.4 as a transformation of input
information into the necessary outputs. The foundation of each transforma
tion is the use of the available assets defined at each level of abstraction to
realize the representation of each layer. Between each layer in Figure 7.4, a
test of the validity of the information represented is shown that restricts the
move between layers.

Given a problem statement containing requirements for the design of an
engineering system a model of the system is create using the LST icons and
representation scheme at the function level of abstraction. Thus the inputs at
this level in Figure 7.4 are the available design requirements; the LST icons
and scheme are used to transform these requirements into an LSA system
model (for example, a motor LST subsystem for representing a system mo
tion requirement). After a function level system model has been created, the
problem statement and available design requirements are reviewed to ensure
that the system model has captured all the available information at this
level (completeness and correctness in Figure 7.4) before moving to lower
levels.

When confident that the LST system model is complete and correct, a
designer can move to the next level of abstraction or representation layer. At
the concept level of abstraction, then, it is possible to define available assets as
existing groups or categories of solution and working principles (Pahl and
Beitz, 1988) that have previously been developed and produced and for
which developed products are known to exist. The system model of function
and specifications is transformed (Figure 7.4) into a conceptual configura
tion of solution principles. For example, in meeting the system motion

www.manaraa.com

136 P. N. Koch, J. D. Peplinski, F. Mistree, and J. K. Allen

• Functional Feasiblllity
r----1• Speciflcation/Constraint

Feasibility

Component
Search,

Evaluation,
Selection

• Compatlblity

(COUPLED DSP FORMULATIONS)

FIGURE 7.4. Information transformation at each level of abstraction when design
using available assets.

www.manaraa.com

7. Configuring Systems Using Available Assets 137

requirement modeled as a LST motor icon at the function level, existing
concepts include levers and linkages, engines and motors, springs and actua
tors, thrust producing combustion concepts (rockets), etc. Working products
are known to exist for these conceptual components. Before exploring the
different types of each at a lower level of abstraction, however, a designer is
able to investigate and evaluate these concepts using the design specifications
given with the problem statement to reduce the domain of feasible or likely
to-succeed working principles. At this level a test for feasibility allows the
appropriate proceeding steps to be determined: move to component level,
seek additional concepts, or return to the function level for more detailed
partitioning. Three determinants of feasibility are identified: the concepts
must meet the functional requirements for the design, they must not violate
any of the constraints or specifications, and they must be compatible with
one another. If no feasible concepts are known to exist, a designer can
further partition the system representation at the function level to provide
more detail.

Finally, at the component level of abstraction, a designer is able to explore
the available assets that exist within the groups or categories of working
principles: products, components, and component assemblies that have been
previously developed, tested, and marketed, that may meet the functional
requirements, the design specifications, and the chosen concepts, for the
design problem at hand. At this level of Figure 7 .4, the feasible solution
principles discovered at the concept level are transformed into physical real
izations using existing components. For example, for the motion require
ment, if the motor concept is chosen for further exploration, many existing
electric motors can be found in catalogs defined by size (in terms of input and
output variables). At the component level, then, a designer explores the
possibility of using available components for which the product specifica
tions and system performance information is available to realize a concept.
The output information represented at this layer is one or more possible
physical configurations. Again a test for feasibility and compatibility of each
alternative component is developed before selecting among the alternatives.
If no feasible products are found to exist, the designer can iterate, going back
to the function level and partitioning further, in more detail, or explore other
system configurations.

The foundation for this conceptual framework for design using available
assets is the transformation (partitioning and modeling) of information at
the function level of abstraction using the LSA. Through the consistent
and domain-independent representation of function level information that is
achieved when using the LST icons, the evaluation and determination of
feasibility of existing concepts and components is possible. The strength
of the LSA in providing this foundation includes the capability to model
existing concepts and components using the same modeling scheme, and thus
abstract this detailed information to the function level for evaluation and
comparison.

www.manaraa.com

138 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

Within this conceptual framework, once types or families of existing com
ponents for physically realizing the feasible concepts are identified, a selec
tion of compatible components or component assemblies must be made.
The solution method for this selection of existing components is through the
formulation and solution of the appropriate DSPs. Decision support will be
discussed in Section 5. In the next section designing at the function level is
elaborated.

3. Partitioning at the Function Level of Abstraction

Designing at the function level of abstraction is defined as a process of
partitioning and representing. This necessary partitioning is divided into two
principal partitioning activities, as illustrated in Figure 7.5: (I) the break
down and allocation of requirement information and (2) the decomposition
of systems. Support for representing partitioned information is provided
through the use of the LST icons and scheme. In this section, these two
principal partitioning tasks are elaborated.

I. Breakdown/Allocation of Requirement Information

Design Requirements

~
Functional Requirements Specifications

ll. Decomposition/Modeling of Systems
(Select, Assemble, Arrange LST icons)

FIGURE 7.5. Two principal partitioning tasks for designing at the function Level of
abstraction.

www.manaraa.com

7. Configuring Systems Using Available Assets 139

3.1. Partitioning Design Requirements

The term design requirements is employed to encompass the complete body
of information that governs the realization of a system to be designed.
Information extracted from a design problem statement for the design of
a new system can then be classified as either design requirements or other
information (evaluation of need for a new product, market studies, history,
etc.). Only the requirements for a product are addressed here.

Design requirement information can then be classified further as fitting
into two categories, as illustrated in Figure 7.6, based on what a system must

do (functions), and how the functions of a system are limited (properties and
preferences that a system must meet or should possess). The what require

ments have already been defined as the functions a system must perform, or
functional requirements. Functional requirement information includes not

only process information (functions) but also information about that which
is to be processed (flow information). The necessary system properties and
preferences govern how a function is limited, and provide additional flow
information. These requirements allow the feasibility of a solution principle

to be determined, and/or provide the means for comparison of different
solution principles for a particular function or subsystem. We employ the
term specifications to represent these governing requirements.

Design requirements included in a problem statement provide the neces
sary information for the initial development of a system model: the func
tional requirements provide the function and related flow information (pro-

Problem Statement

~ Other Information

Design Requirements
I

Functional Requirements Specifications

What infonnation: How infonnation:

what functions a system bow a system/function is limited

must perform (properties and preferences)

T I

~
System Model

FIGURE 7 .6. Classification of information for the breakdown of design requirements

(Partitioning task 1).

www.manaraa.com

140 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

cess and structure) and the specifications provide characteristic information
linked to a system model that governs the realization of the system. A
problem statement is first partitioned into a set of functions (functional
requirements) that the system must meet. The verb/noun function represen
tation employed in much of the literature (O'Shaughnessy and Sturges, 1992)
may be used as an aid to extract this information, as the necessary functions
may be given in this format (cut grass, store grass, for example). The initial
flows (matter, energy, or information) must then be determined. Once the
functions and flows have been identified, the specifications are then parti
tioned, allocating each to the function(s) or flow(s) that they limit. This
format of partitioned information will foster the creation of a graphical
system model using the LST icons.

3.2. Modeling Systems Using the Living Systems Analogy
Given the partitioned requirements for a design problem (functions, flows
and specifications), an initial system model can be created. In defining
systems and creating a system model, the capability to establish and consis
tently represent hierarchy is essential. Agreement is apparent in the litera
ture, that a system is (l) composed of more than one part and (2) is itself one
part of larger systems. Without both (1) and (2) a system cannot be defined
completely. For engineering applications, the breakdown of a system is de
fined in terms of subsystems and/or components (at a lower level of detail).
For complex systems, this breakdown will likely be in multiple hierarchical
levels of subsystems.

In partitioning design requirements the hierarchical structure of the func
tional requirements will, to a certain extent, develop naturally. A list of
functional requirements will necessarily include an overall function and the
subfunctions needed to meet the overall function (for example, move system
and store grass sub-functions of the overall function cut grass for a lawnmo
wer system). The identification of lower level functions defining ambiguous
or complex sub-functions will guide the establishment of a function hierar
chy for a system. In creating the function hierarchy, a system (model) hierar
chy will be initiated. The system model hierarchy is defined in terms of
increasing levels of detail (decreasing abstraction) that includes a system
level and one or more subsystem levels. The position of a particular sub
system in the system model hierarchy will be denoted using a superscript as
shown in Figure 7.7 (subsystem2 for second level in system hierarchy, for
example).

In establishing a hierarchy of the partitioned functional requirements, it is
essential to maintain the assigned specifications. Given the breakdown of
design requirements and establishment of hierarchy, the Living Systems
Analogy can be implemented. The LST icons are employed to create the
initial system model hierarchy.

To select the appropriate LST icon, the flow to be processed must be

www.manaraa.com

System Level

Subsystem Level

Subsubsystem Level

7. Configuring Systems Using Available Assets 141

System

Subsystem2

Subsystem3

FIGURE 7.7. Levels of detail in a system model hierarchy.

defined as matter, energy, or information for a particular functional require
ment. The set of possible subsystems then becomes a subset of the twenty
LST subsystems (eight for matter/energy processing, etc.). The necessary
process (function) and flow must then be defined clearly. Again, the verb/
noun descriptions prevalent in the literature (O'Shaughnessy and Sturges,
1992) are useful, as both the function and the flow are described. The defini
tions of the LST subsystems within the reduced set are then reviewed, noting
that subsystems are organized in order from those that process mainly inputs
to those that process outputs. Given the concise description of a requirement
and the definitions of the possible subsystems, a match is made, and the
appropriate subsystem selected. The specifications listed for the functional
requirement must then be assigned to the selected LST subsystem.

Once the necessary LST subsystems have been selected, an initial system
model is created by assembling the subsystem icons. The LST icons are
assembled through representation of the necessary flows of matter, energy,
and information. In addition, the established requirement hierarchy fosters
the creation of the system model, and must be observed. With experience and
a solid understanding of the LST subsystems and representation scheme, the
assembling of icons to create the graphical model becomes a natural map
ping of the partitioned requirements, the established hierarchy, and the flow
information.

To demonstrate the use of this Living Systems Analogy and partitioning
support for designing at the function level of abstraction, the example of the
design of an aircraft evacuation system is introduced.

3.3. An Example: Function Level Design of an Aircraft
Evacuation System
For the design of an aircraft evacuation system, the following problem state
ment is given:

An emergency evacuation system for a wide body, passenger carrying aircraft must
be designed. There are typically two types of aircraft emergency incidents: on land
and on sea. During an emergency, the evacuation system must be capable of safely

www.manaraa.com

142 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

TABLE 7.2. Aircraft specifications.

Door dimensions
Aircraft sill heights

42" wide by 74" high
Maximum = 280"
Normal = 200"
Minimum = 80"

TABLE 7.3. Evacuation system specifications.

I. The total system weight must be less than 170 lb.
2. When stored, the entire system must fit in a volume no greater than 8.5 ft3 •

3. The system shall be automatically actuated, completely self contained, and with no form of
remote control.

4. The system must be ready for use in no more than 6 s from actuation.
5. The cost of the system should be kept to a minimum without sacrificing system

performance.
6. The system must be capable of supporting passengers evacuating the aircraft at a rate of

60 passengers per lane per minute without failure at normal sill height.
7. The system must be capable of properly functioning after being exposed to any temperature

in the range -40°F to l60°F for a 24 h period.
8. The system must be capable of operating in 25 knot winds from any direction.

conveying passengers to the ground or water and providing flotation, if necessary.
The ultimate goal is to evacuate the aircraft while minimizing the probability of
passenger injury.

When not in use the evacuation system must not interfere with the normal use of
the aircraft. It must not extend past the aircraft fuselage or wing exterior geometry,
for aerodynamic reasons, or far into the interior of the aircraft for reasons of opera
tion and passenger comfort. Given these basic requirements, the passenger transport
and/or flotation system must be moved from a stored location to a usable position.
The system must be completely self contained, and ready for use without remote
control in no more than 6 seconds.

The primary design specifications available for the design of the aircraft
evacuation system are given in Tables 7.2 and 7.3. These specifications in
clude aircraft dimensional information for compatibility (Table 7.2), and
the specifications limiting the design and operation of the evacuation system
itself (Table 7.3).

Given the information included in the problem statement and the design
specifications for the evacuation system, the requirements for the system can
be partitioned. The primary functional requirement for this system is to
evacuate passengers. Two evacuation scenarios are defined for which the
system must meet the necessary requirements: land evacuation and sea evac
uation. As suggested in the specifications in Table 7.3, this problem requires
that the system be stored when not in use, and deployed when needed.
Thus the complete system design includes not only the system for conveying

www.manaraa.com

7. Configuring Systems Using Available Assets 143

I •Evacuate PasaenP.
from AltCnft

St'E 1,2,S·no~

I
I

Deploy System Transport Passengers/
Provide flotation

SPECIFICATIONS SPECIFICATIONS
3,4 6,7,8

and Aira-aft Specs

FLOWS: 1~ Passengers
2 Energy (deplo ot)
3 Information (~yment)

PRIMARY
FlJNcriON

SUB·
FUNcriONS

FIGURE 7 .8. Partitioning of initial requirements for the design of an aircraft passen
ger evacuation system.

passengers to the ground or providing flotation, but also a system for de
ploying the transport/flotation system(s). These two systems thus become
the primary subsystems of the overall evacuation system.

For the evacuation of passengers and the two identified sub-functions,
three primary flows are identified: the flow of passengers when the system is
in use, the flow of energy when the system is being deployed, and the flow
of information regarding the necessary use (triggering) of the system. The
breakdown of available requirements for the initial creation of a system
model at the function level is shown in Figure 7.8. The specification numbers
assigned or allocated to the primary and sub-functions refer to the specifica
tions listed in Table 7.3. The specifications for the primary function apply to
the overall function and thus the entire system.

It is conceivable that the transport passengers and provide flotation require
ments be considered as separate functions for which individual subsystems
are designed. Given the space (overall volume) and weight requirements,
however, it is desirable that a single subsystem meeting both of these require
ments be realized. Thus these functions are grouped in Figure 7 .8, providing
a starting point for modeling the system at the function level.

Using the structure of the partitioned requirements, a hierarchical repre
sentation of the evacuation system is established with two discrete levels:
a system level and a subsystem level. The first pass system level model of the
evacuation system is represented in Figure 7.9. The borders around the
motor and storage subsystems signify that these are the two main subsystems
(as described above) of the overall evacuation system. These subsystems
must be defined in more detail at a lower level of the system hierarchy.

At the system level (Figure 7.9), information regarding the state of the

www.manaraa.com

144 P. N. Koch, J. D. Peplinski, F. Mistree, and J. K. Allen

,
" Information

Input Transducer A#
, u;:;;~:::i:JBo·undary

r--1 " Suppo(ci))
Motor ' ' M/E Storage

Passengers __. PaS:::)>---~~~ aJ----..
Ingestor " Extruder

j;."

F/owoflnfonnation -- • ~-- • Output Transducer
Flow of MatkriEnergy- Information

FIGURE 7.9. System level representation of the aircraft evacuation system.

system (storage, activation, deployment) enters the system through an input
transducer, and is passed to the motor subsystem. This information is pro
cessed to determine the current state of the system. During activation, this
information signals the motor subsystem to release the necessary energy to
move the storage subsystem from its stored state within the aircraft. This
information passes from the system through an output transducer when acti
vation is not necessary.

The storage subsystem in this model is loosely defined, and thus requires
further explanation. According to the problem statement the evacuation
system must provide means of safely conveying passengers to the ground and
provide flotation in the event of a ditching scenario. As mentioned, these
requirements have been grouped. This grouping is accomplished through
specifying that the storage time depends on the specific emergency scenario.
On land, the time the passengers remain in the system is slight, so the storage
system virtually becomes a distributor. At sea, the passengers remain in the
system for an extended period of time and are thus stored within the system.
Information is passed to the storage subsystem regarding the emergency
scenario, allowing the storage time required to be determined.

The remaining icons of the system level representation include an ingest or,
an extruder, a supporter, and the boundary. The supporter and boundary are
always present to maintain spatial relations and separate the system and
environment, respectively. The ingestor and extruder allow passengers to
enter and exit the system (cross the system boundary). These may actually be

www.manaraa.com

7. Configuring Systems Using Available Assets 145

,
Input Transducer A J{ Information

U Boundary

" ,.
D. .b 1 ., * Channel and Net 1

Energy 1stn utor J!l>
.l>.~_.o_.M_.

Energy --..=
~ , Converter . .

Ingestor f ~ D1stnbutor 2 Extruder

A *Channel and Net 2 u ' 1"1
M/E Storage Supporter

Fluw of InfonnRtiOn - - +
Fluw of MattufEnergy -

'~Output Transducer
Information

FIGURE 7.10. Motor subsystem2 representation for the design of an evacuation
system.

a part of the storage subsystem but are shown for clarity in the system level
representation.

The lower level representation of the motor subsystem2 (recall that the
superscript represents the level in the system hierarchy; second level in this
case) is presented in Figure 7.10. At this level the functional components
necessary for moving the storage system out of its stored location within the
aircraft are modeled. Energy is needed for this deployment. Thus energy
enters the system through an ingestor and is stored within a storage sub
system until it is needed. This ingesting and storing of energy to be used by
the system would be done during system maintenance or installation, prior
to operation of the aircraft.

Information flows from the environment, through an input transducer to
the distributor regarding this necessity of deployment. When deployment is
necessary the energy stored within the motor subsystem2 is released by the
storage device and flows by way of a distributor to the converter. The con
verter changes the energy released from the storage device to the form neces
sary for use in deployment, as in the case of a chemical reaction. This
energy is transported by way of a second distributor and exists the motor
subsystem2 through an extruder.

The energy exiting the motor subsystem2 serves the purpose of moving the
storage (system level) subsystem from the aircraft. Thus this flow of energy
ties the two primary subsystems of this hierarchical representation together.
The subsystem2 level representation of the system level storage system is

www.manaraa.com

146 P. N. Koch, J. D. Peplinski, F. Mistree, and J. K. Allen

"'
Input Transducer _A~"' Information

IJD~!iJBoundary

rl Supporte~ "'
Passengers ~ . . ~assengers

~ --"' ___.. ,w. DIStributor~ . ~ _.
~ ~ DIStributor~

Ingestor 1 ~ ~ M Extruder 1

Energy I M~~~M-~ ___. ___.. ~ ___.
Distributor 4

Ingestor 2 Distributor 1 Extruder 2 ,
Flow of Infonnation - - •
Flow of MattzrlEnugy -

FIGURE 7 .11. Passenger transport/storage subsystem2 representation for the design
of an evacuation system.

presented in Figure 7.11. This representation includes two matter/energy
flows: The flow of energy from the motor subsystem, and the flow of passen
gers through the subsystem2. The energy from the motor subsystem2 enters
the storage subsystem2 through an ingestor, is distributed or stored (distribu
tor or storage), and leaves the system through an extruder when it is no
longer needed. At this point it is unknown whether the energy will be stored
(inflatable device, for example) or will be used and dissipated (unfolding
stairs), and both options are represented. If this energy does not need
to be stored (simply used for deployment), it passes directly through this
subsystem2.

In Figure 7.11, the passengers enter the storage subsystem 2 through an
ingestor and are transported by a distributor. Information enters the sub
system2 through an input transducer regarding the evacuation scenario that
exists. During land evacuation, the passengers are transported by the distrib
utor to the extruder where they leave the system safely. In the event of a
ditching scenario, the passengers are transported by the distributor to the
storage device where they remain until they are transported by a second
distributor and leave the system through an extruder.

This initial representation for the aircraft evacuation system, presented in
Figures 7.7, 7.8, and 7.9, captures the information contained in the parti
tioned requirements, and the additional representation information needed
to partition the subsystems. The possible realization of this system and its
subsystems using existing concepts and components can now be investigated.

www.manaraa.com

7. Configuring Systems Using Available Assets 147

In the next section, feasible concepts and components are identified for the
subsystems of the evacuation system.

4. Physical System Realization: Increasing
Detail/Decreasing Abstraction

We now return to the design using available assets framework presented in
Figure 7 .2. The capability to configure systems at the function level of ab
straction using the LST icons as available assets has be discussed and illus
trated. In this section we progress through the lower levels of abstraction
within this framework (concept and component level). In moving to lower
levels of abstraction, the level of information detail of a design increases and
this method of design using available assets approaches that of catalog
design. We elaborate the evacuation system problem for example.

4.1. Identifying Feasible Existing Concepts
Once a feasible function level representation has been created for the product
to be designed, the next step is to explore the different concepts that are
available to the designers to meet the functional requirements. In taking
this step, we progress the design from the function level to the concept level
of abstraction. There are many different ways to perform this exploration;
in Pahl and Beitz (1988) the following alternatives are offered: literature
searches, analysis of existing technical systems, brainstorming, and discur
sive methods where checklists (that classify the types of concepts available)
are used. In a computer environment, a database of existing concepts could
be developed and classified in a manner consistent with the representation
scheme of LST, and the search for feasible concept alternatives enhanced.

To evacuate passengers from an aircraft, various concepts may include
ladders for transport to the ground, air bags to cushion the passengers' jump
to the ground, inflatable slide/rafts for the passengers to slide to the ground,
or a telescoping segmented slide at each exit door. Assume the inflatable
slide/raft concept (in current use) is chosen for further investigation. Given
this concept selection, the extruder of the motor subsystem2 must supply
a flow of air to inflate the slide/raft. There are many ways that this pressur
ized air could be provided; some examples include using compressed air
cylinders, inducing a chemical reaction, or continuously pumping in external
air. If the components for more than one of these methods are available, then
each method could be examined to explore separate feasible alternatives. For
the purpose of illustration, just one of the alternatives is pursued: supplying
air in compressed air cylinders.

If the compressed air is stored in cylinders, then a valve will be needed to
release this air, along with tubing or pipe to transfer the flow of air to the
inflatable slide/raft. Reviewing the motor subsystem2 model in Figure 7.10,

www.manaraa.com

148 P. N. Koch, J. D. Peplinski, F. Mistree, and J. K. Allen

6
~·-~_ Distributor Extruder

Compressed Air Storage *'Channel and Net 2 r--1
'4 Supporter

FIO'W of Information - - ..
FIO'W of MatterfEnergy __..

'a... Output Transducer
Emergency
Signal

FIGURE 7.12. Motor subsystem2 using cylinders of compressed air.

we see that the representation no longer describes the current alternative.
Modeling a system at the function level using the Living Systems Analogy
allows the representation to be changed easily to explore different system
configurations. The new representation, specific to using cylinders of com
pressed air, is shown in Figure 7.12.

This new representation is realized by creating a compressed air storage
subsystem that is placed on the motor subsystem2 boundary. This new
subsystem3 (modeled at the third level), would include the necessary ingestor
and extruder for adding and removing the air (this simple representation is
not shown). The valve then becomes the extruder for this subsystem3 • To
complete the flow of air from its stored state to the slide/raft, a form of
tubing or pipe (distributor) is needed to transfer the flow of air from the
valve to the inflatable slide/raft. The compressed air released from the cylin
der(s) serves to simultaneously deploy and inflate the slide/raft.

The motor subsystem2 representation shown in Figure 7.12 represents
one concept level configuration (abstracted to the function level). Is this
corifiguration feasible? At the concept level of abstraction, three deter
minants of feasibility can be identified: the concepts must meet the functional
requirements for the design, they must not violate any of the constraints or
specifications, and they must be compatible with one another. Recall that the
storage subsystem2 must provide passengers an exit to the ground in an
emergency situation, and also must provide flotation if the aircraft lands on
water. Reviewing the system model in Figure 7.9, the passenger storage
subsystem must transport a flow of passengers, and receive a flow of mat
ter/energy for deployment. At this level of abstraction, an inflatable slide/raft
is feasible. The motor subsystem must receive an emergency signal and send
a flow of matter/energy to the storage subsystem. The collection of cylinders,

www.manaraa.com

7. Configuring Systems Using Available Assets 149

tubing, and solenoid valve allows these requirements to be met. Thus the
concepts meet the functional requirements for the design.

To the extent that they have been defined, these concepts do not violate
constraints at this level. Constraints must be reviewed in more detail upon
moving to the component level, since some of the constraints, such as
material type, system volume and system weight, air volume and pressure,
depend on the specific components chosen. Since the hierarchical selection
of concepts was constrained so that each new concept was chosen based
on compatibility with the previous choices, the necessary compatibility is
ensured. Ideally, the lists of concepts for each subsystem, or group of sub
systems as the case may be, would be narrowed simultaneously, taking com
patibility into account, so that the design is not restricted by each concept
selection. At the concept level of abstraction, the evacuation system design is
feasible, and the move to the component level is possible.

4.2. Identifying Feasible Existing Components
At the component level the available assets become specific components or
component assemblies that can perform the required subfunctions and for
which existing physical realizations are readily available. Defining the design
at the concept level of abstraction focuses and simplifies the search for
components to those represented by the feasible concepts. For the aircraft
evacuation system, catalogs or databases of existing components could be
employed to locate available slide/rafts, pressure tanks, valves, and fittings.

At the component level, all the information needed to determine feasibility
is available, and the physical relationships between the components are well
defined. For example, if the evacuation system must be less than a specific
weight or volume, the total system weight and volume can be computed.
Also, physical constraints, such as the capacity of the air cylinders and the
air necessary to inflate the slide to provide sufficient sliding support and
flotation, can be computed.

The constraints for the design of a system using available assets, and the
appropriate design goals, can be formulated mathematically and represented
by a coupled Decision Support Problem (Mistree and Muster, 1990). The
solutions of the resulting DSP, if they exist, provide feasible system con
figurations. This formulation and solution of available assets problems as
coupled DSPs is the focus of the next section.

5. Decision Support for Formulating and Solving
Available Assets Problems

5.1. Coupled Selection of Compatible
Concepts/ Components

If a system is realized entirely through the use of existing components and/or
component assemblies, compatible components for dependent subsystems

www.manaraa.com

150 P. N. Koch, J. D. Peplinski, F. Mistree, and J. K. Allen

r
"""'

r
"""'

r "' Selection DSP 1 Selection DSP 2 Selection DSP 3

Rank: Rank: Rank:
Alternative At Alternative B 1 Alternative Ct
Alternative A2 Alternative B2 Alternative c2

...

...
Alternative An Alternative B0 Alternative en

With Respect to: With Respect to: With Respect to:

Attributes: Attributes: Attributes:

(Coupling Attribute 1) Attribute c 1 ...
Attribute a2

... (Coupling Attribute 2)
... ... II ...

Attribute a0 Attribute b0 Attribute C 0

\.. ~ \.. ~ \.: ~

FIGURE 7.13. Illustration of coupled selection DSPs (Bascaran, et al., 1989).

must be selected. The selection of components for individual subsystems will
be coupled through compatibility, flows of matter, energy, and information,
assembly requirements, and other constraints specific to the problem at
hand. The coupled selection DSP formulation is an effective method to
realize a physical system configuration through the entire use of available
assets.

In Bascaran et al. (1989) a method of formulating and solving coupled
selection DSPs in which multiple selection problems are coupled through
their dependent attributes (characteristics or criteria that apply to more than
one selection problem) and solved simultaneously, is presented. The coupled
selection DSP is illustrated in Figure 7 .13. The mathematical formulation of
the coupled selection DSP, as well as detailed steps for formulating and
solving this type of DSP, are include in Bascaran et al. (1989).

5.2. Coupled Selection-Compromise for Detailed
Configuration Design

If a system is to be realized through partial use of existing components
while the remaining subsystems are designed for manufacture, dependence
or coupling between the individual subsystems, both those selected and those
designed, will also exist. Again, the selection of components will be coupled
through compatibility (assembly constraints, for example) and other con-

www.manaraa.com

7. Configuring Systems Using Available Assets 151

Selection DSP 1 Selection DSP l Compromise DSP
(Air Cylinder Type) (Slide/Raft Fabric Type) (Slide/Raft Design)

Find Find Find
X, e-, e+ Y, d',d+ W,h-,h+

Salis/] Salis/] Solisb
lX=1 l:Y= 1 g(X,Y,W)C!:O
MF1(Y,W)·X+e-·e+=1 MF2(X,W)·Y +e-·e =1 A(X,Y,W) +h--h+=G

wmmswswmax OSXS1 OSYS1

e- · e+ =0 d'· d+=o h- · h+=o

Minimize (Lexicograplait:aUy)

Z = {f1 (e-, e+,d-, d+,h-, h+), , fk(e-, e+,d-, d+,h-, h~}

X,Y,W- system variables e-, e+ ,d', d+,h-, h+- deviation variables (C!:O)
g - constraint functions A - goal functions G - goal target values

MFi - merit function of alternative i
Z - deviation function (Preemptive form, K priority levels)

FIGURE 7.14. Illustration of coupled selection-compromise DSP.

straints, and the original design of the remaining components or subsystems
will be dependent on these selections. The selection of existing components
may also be dependent on the final design parameters, dimensions for
example, of the designed components. For this case the coupled selection
compromise DSP, illustrated in Figure 7.14 for the evacuation system prob
lem, is introduced.

The coupled selection-compromise DSP can support any number of selec
tion problems, coupled through coupling attributes, and components whose
parameters are to be determined through compromise. The selection and
compromise problems are coupled through the system variables. The param
eters for a component to be designed influence the selection for an adjoining
component. Likewise, the selection of an existing component influences the
outcome of the parameters of a component to be designed.

The aircraft evacuation example has been formulated and solve as a cou
pled selection-compromise DSP in Koch (1994). Based on the selection of
the inflatable slide/raft concept, and pressurized air for inflation, component
alternatives were identified for each concept. For this case, then, the neces
sary selections include the air cylinders for compressed air storage (selection
among identified existing types, based on size and pressure characteristics)
and the type of fabric for the slide construction (available fabric types

www.manaraa.com

152 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

TABLE 7 .4. Selection and compromise problems
for evacuation system formulation.

Selection

Air cylinder type
Fabric type

Compromise

Number of air cylinders
Dimensions of slide/raft and

Inflated pressure of slide/raft

identified; strength, weight, cost influencing selection). The compromise deci
sions include the number of air cylinders necessary, the dimensions of the
side/raft, and the inflated pressure of the slide/raft. These decisions, listed in
Table 7 .4, are all interdependent. The type of compressed air cylinder se
lected depends on the inflated pressure of the slide/raft, which is related to
the slide/raft dimensions, which is affected by the type of fabric chosen.
Therefore, the aircraft evacuation slide problem becomes a coupled selec
tion-compromise DSP.

The framework of the coupled selection-compromise DSP (the word for
mulation) is formulated as a single compromise DSP, whose framework is as
follows (Mistree et al., 1993b):

Given:

Find:
Satisfy:

Minimize:

Assumptions of the model
Independent system variables
The value of the system variables and deviation from goals
System Constraints
System goals
Bounds on the system variables
A deviation function, expressed as the difference between the tar
get values for the goals and the actual achievement of the goals.

What are the assumptions inherent in this model? The inflatable slide/raft is
modeled as a single rectangular slab, six feet wide and 39.4 feet long (size
necessary to meet capacity requirements for sea ditching scenario). Currently
evacuation slides are constructed from inflated tubes in a complex configura
tion (Fisher, 1984); the rectangular slab is used in this model for simplicity.
It is also assumed that the stresses in the slide will not stretch the fabric
significantly; the affects of fabric elongation are not addressed in slide deflec
tion computations. It is assumed (also for simplicity for this case study) that
minimizing the sum of individual component volumes will accomplish the
goal of minimizing the system volume. (This will not always be true,
depending on the geometry of the components.)

What are the system variables in this DSP? Four alternatives were identi
fied in catalogs for the compressed air cylinder type, and four alternatives
were chosen for the fabric type. The alternatives and their attributes are
listed in Tables 7.5 and 7.6. Thus eight system variables for the selections
exist. The inflated pressure of the slide is also a system variable, as well as the

www.manaraa.com

7. Configuring Systems Using Available Assets

TABLE 7.5. Cylinder alternatives and attributes.

Max. Internal External Weight
Cylinder pressure (psi) volume (in3) volume (in3) (lb)

CYLl 2200 225 290.9 12
CYL2 2015 943 ll94.6 40
CYL3 1850 1800 1978.3 18.6
CYL4 3000 40.8 42.9 1.43

TABLE 7.6. Fabric type alternatives and attributes for slide/raft.

Variable Tensile Elongation Density
Fabric name strength (psi) at break(%) (lb/in.3)

Kevlar49 KVLR49 400,000 2.5 0.05202
Kevlar 29 KVLR29 400,000 3.6 0.05202
Nylon NYLON 143,000 18.3 0.04ll9
Polyester POLYST 162,000 14.5 0.04986

TABLE 7. 7. Twelve system variables for coupled selection
compromise DSP.

System variable

CYLl
CYL2
CYL3
CYL4
KVLR49
KVLR29
NYLON
POLYST
NUMCYL
PRESSR
AIRTHK
FABTHK

Description

Set equal to I if Cylinder 1 selected; 0 otherwise.
Set equal to I if Cylinder 2 selected; 0 otherwise.
Set equal to 1 if Cylinder 3 selected; 0 otherwise.
Set equal to 1 if Cylinder 4 selected; 0 otherwise.
Set equal to 1 if Kevlar 49 selected; 0 otherwise.
Set equal to 1 if Kevlar 29 selected; 0 otherwise.
Set equal to 1 if nylon selected; 0 otherwise.
Set equal to 1 if polyester selected; 0 otherwise.
The number of air cylinders required (integer).
The inflated pressure of the slide/raft (lb/in. 2).

The thickness of the inflated slide/raft (in.).
The fabric thickness (in.).

153

number of compressed air cylinders. Since the slide/raft was modeled as a
single inflated slab with a fixed length and a fixed width, the remaining
dimensions to be varied become the thickness of the air between the fabric
layers, and the thickness ofthe fabric. The list of 12 system variables is given
in Table 7.7.

Given these system variables, what are the constraints and goals of this
coupled DSP? Constraints are used to represent what the design must accom
plish, and goals are used to represent what a designer would like the design
to accomplish. Passenger safety is the primary concern. Three constraints

www.manaraa.com

154 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

were identified as necessary for the system to function properly and safely
evacuate passengers: the fabric must withstand the inflated pressure of the
slide without bursting, there must be enough compressed air in the cylinders
to inflate the slide to its required pressure, and the slide must not deflect
(bend under passenger loading) more than a specified value (various limits
were explored). Four goals were also identified:

• minimize the overall system weight
• minimize the overall system volume
• keep the slide deflection to a very low value
• and select the fabric with the least amount of elongation at break

As shown in Figure 7.14, the deviation function to be minimized for this
coupled selection-compromise DSP is formulated using the preemptive form
with K priority levels (five levels for the evacuation system formulation). For
the preemptive form, each goal is given a level of priority or importance
(level I being most important). The normalized deviation from the goal
target value for the first priority level is minimized before moving to the
second level. The second priority level deviation can then only be reduced
without increasing the deviation values for the first level, and so on.

For the evacuation system formulation, the system weight goal is placed in
the first priority level, followed by system volume at priority level 2, slide
deflection at priority level 3, fabric elongation at priority level4, and the goal
for the value of NUMCYL (the number of cylinders) to be an integer at
priority level 5. The constraints and goals for this formulation are identified
to represent the requirements of the evacuation system problem statement.
The details of this formulation (equations, derivations, and complete model)

TABLE 7.8. Initial Starting Points Run on DSIDES for evacuation sys-
tern case study.

Variable Start Pt. I Start Pt.2 Start Pt.3 Start Pt.4

KVLR29 0 0 0
KVLR49 0 0 0
NYLON 0 0 0
POLYST 0 0 I
CYLI 0 0 0
CYL2 0 0 0
CYL3 0 0 I
CYL4 0 0 0
NUMCYL I I I 2
PRESSR 20 20 20 20
AIRTHK 4 4 4 4
FABTHK 0.005 0.005 0.005 0.005

Notes: NUMCYL: NUMCYL: Feasible
integer goal integer constraint Starting Point

www.manaraa.com

7. Configuring Systems Using Available Assets 155

TABLE 7.9. Solutions for different starting points run on DSIDES for evacua-
tion system case study.

SOLUTION SOLUTION SOLUTION SOLUTION
Variable Start Pt.l Start Pt.2 Start Pt.3 Start Pt.4

Converged? No No Yes Yes
Feasibility? No No Yes Yes
Fabric Nylon Nylon Nylon Polyester
Cylinder Cyl4 .2Cyl3, Cyll Cyl3

.8Cyl4
NUMCYL 5 1 1.55 1.06
PRESSR 10.39 10.11 10.02 80.0
AIRTHK 3.129 3.27 3.32 1.63
FABTHK 0.001 0.1455 0.001 0.00125

Deviation Function Values: (1: weight, 2: volume, 3: deflection, 4: elongation,
5: NUMCYL integer)

Priority Level 1 l.l8 0.808 3.30 3.80
Priority Level 2 0 0 0 0.265
Priority Level 3 51.78 47.37 47.04 11.23
Priority Level 4 18.22 18.3 18.3 14.5
Priority Level 5 0.861 3.01 1.31

are included in Koch (1994). The results of this example, summarized in the
next section, include a feasible component level system configuration that
employs available (off-the-shelf) assets to realize the design.

5.3. Representative Results: Feasible Evacuation System
Configuration

DSIDES has been used to solve this coupled selection-compromise DSP
(Mistree et al., 1993c). Since real variables are employed, the selection vari
ables are constrained to take on values of zero or one. The number of
cylinders was also represented with a real variable, and constrained to take
on integer values from one to five.

This model was initially run using four different starting points. These
starting points are summarized in Table 7.8 and the results from these four
runs are shown in Table 7.9 (including the deviation function value at each
priority level). The deviation funtion and priority levels are very important
concepts. They are explained in detail in Mistree, et al. (l993b). A brief
explanation is included to facilitate understanding. A value of zero for the
deviation function is indicative that in addition to the system constraints
being satisfied all of the system goals have been achieved. A nonzero number
represnts the degree by which the goal (or a number of goals) at a particular

www.manaraa.com

156 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

priority level are achieved. In this case, there is only one goal at each priority
level, for example, weight is at priority level 1, volume is at priority level 2
and so forth. For solution Start Pt.l, the target value for weight is not
achieved by 1.18 units, the volume is below the target value, etc. Starting
points 1 and 2 are identical except the number of cylinders (NUMCYL)
is forced to an integer value in the formulation using a goal for starting point
I and using a constraint for starting point 2 (see Notes, Table 7.8). The
integer goal, which was more successful, is used for the remaining points.
With all the selection variables initially set to zero (Start Pt. 1), cylinder 4
was selected and NUMCYL (the number of cylinders) was increased to the
maximum of five. Additional cylinders would be required to reach feasibility.
With all the selection variables set to one (Start Pt. 3, an obviously infeasible
starting point since only one cylinder and one fabric can have a value of one),
cylinder 3 was selected and feasibility was attained. When starting from
a feasible point, (Start Pt. 4, see Notes Table 7.8) the solution improved
slightly.

In observing the deviation function values for the first priority level (sys
tem weight, see Table 7 .9), the best solution results from starting point 3, but
this solution has 1.55 cylinders, which is not realizable. If the number of
cylinders is rounded to 2, the value for the first priority level changes and the
best solution then results from starting point 4. How good is this solution?
Rounding the number of cylinders to 1.0 maintains feasibility, and the sys
tem weighs 22.83 pounds. The system volume is 1.17 cubic feet, and the slide
deflection is 12.23 inches, all well within bounds. To verify these results for
this simple case, the sixteen possible combinations of the two selections were
run separately.

For these additionall6 runs, the selection variables are removed, reducing
the number of system variables from 12 to 4. The necessary cylinder and
fabric information is fixed in the model for each case. The variable values for
the best solution obtained, yielding the lowest value for the first priority
level, are listed in Table 7.10. For this run, nylon and cylinder 3 were fixed
as the fabric and cylinder choice. How good is this solution? The system
weighs 21.37 pounds, has a volume of 1.186 cubic feet, and deflects 16.02

TABLE 7.10. Best solution for sixteen combina
tion runs.

Variable

Fabric type
Cylinder
Number of cylinders (NUMCYL)
Air pressure (PRESSR)
Air thickness (AIRTHK)
Fabric thickness (F ABTHK)

Value

Nylon
Cylinder 3
I
99.25
1.006
.001

www.manaraa.com

7. Configuring Systems Using Available Assets 157

inches. For practical purposes, this solution and the previous solution
(starting point 4) are equivalent solutions; both are feasible, both achieved
convergence, and the goals values for each are nearly identical. The solution
obtained by running all the sixteen combinations of selections separately
(listed in Table 7.1 0) appears slightly better than the solution obtained when
a fabric and cylinder type was also to be chosen (including the two selection
DSPs).

Why does this solution appear slightly better than the initial solution
obtained when including the selection DSPs? Inherent in this model, multiple
local optima exist. After selecting an initial fabric and cylinder, feasibility
and convergence are achieved; a satisficing (Simon, 1982) solution is obtained.
By exploring all selection combinations, a slightly better solution is dis
covered (a global optimum for this formulation).

6. Closing Remarks

Our approach to design as described in this chapter can be characterized by
the phrase "more with less"; that is, we are seeking a systematic design meth
odology that allows new systems to be configured by using that which al
ready exists, available assets. The basis for the conceptual framework for
design using available assets presented in Section 2 is the capability to parti
tion the requirements for a design and represent the system in terms of these
requirements. The Living Systems Analogy introduced in Section 1 and
discussed and illustrated in Section 3 provides the foundation for this de
composition and modeling of information that is necessary to support the
efficient realization of system configurations using existing solution princi
ples and existing components.

The capability to identify and evaluate the feasibility and compatibility of
existing solution principles and components, however, does not depend only
on the consistency and effectiveness of function level modeling. Support for
both concept and component level configuration exploration, and the capa
bility to consistently map between function, concept, and component levels
is necessary. Some open research issues regarding this conceptual framework
for design using available assets include:

• What methods for identifying and exploring existing concepts and compo
nents, and assessing feasibility, can be incorporated?

• Is it possible to classify and store existing concepts and components in a
manner consistent with the LST representation scheme?

• If so, how could stored information about existing concepts and compo
nents be accessed and evaluated against a model of system requirements?

Detailed methods and support for identifying existing concepts and com
ponents is essential to the usefulness of this conceptual framework. Catalogs
and databases are available to designers to store and retrieve existing compo-

www.manaraa.com

158 P. N. Koch, J. D. Peplinski, F. Mistree, and J. K. Allen

nents. It may also be possible to store concepts or particular solution
principles. The primary open issue then becomes the classification of existing
concepts and components that will allow access and evaluation based on the
requirements, and will be consistent with the LST scheme. This classification
and storing of function, conceptual, and physical component information
would allow system configurations to be quickly arranged and explored.

To remain competitive in a rapidly changing global marketplace it is
necessary to concurrently reduce time to market, to reduce cost, and to
increase quality. The capability to explore system configurations quickly
supports this demand. Using available assets to configure systems further
supports this demand, as well as supporting the growing concerns regarding
recycling and re-manufacture.

Acknowledgments

We gratefully acknowledge support from NSF Grant DDM 93-96052. The
information and support provided by Dr. J. A. Shupe and Dr. Sudhir
Hublikar of the BF Goodrich Company to develop the evacuation system
example is duly recognized and appreciated. P. N. Koch is supported as a
Gwaltney Manufacturing Graduate Research Fellow. J. D. Peplinski is an
NSF Graduate Research Fellow.

References
Agogino, A. M., and Almgren, A. S. (1987). Techniques for integrating qualitative

reasoning and symbolic computation in engineering optimization. Engineering
Optimization, 12, 117-135.

Allen, J. K., Simovich, G., and Mistree, F. (1989). Selection under uncertain condi
tions: A marine application. Fourth International Symposium on Practical Design of
Ships and Mobile Units, Varna, Bulgaria, Bulgarian Ship Hydrodynamics Centre,
pp. 80.1-80.8.

Baas, S. M., and Kwakernaak, H. (1977). Rating and ranking of multiple-aspect
alternatives using fuzzy sets. Automatica, 13, 47-58.

Bascaran, E., Bannerot, R. B., and Mistree, F. (1989). Hierarchical selection decision
support problems in conceptual design. Engineering Optimization, 14, 207-238.

Bradley, S. R., and Agogino, A.M. (1991). An intelligent real time design methodol
ogy for catalog selection. In Stauffer, L. A. (Ed.). Design Theory and Methodology,
New York: ASME, pp. 201-208.

Bras, B. A., and Mistree, F. (1991). Designing design processes in decision-based
concurrent engineering. SAE Transactions, Journal of Materials & Manufacturing,
Warrendale, PA: SAE International, pp. 451-458.

De Boer, S. J. (1989). Decision Methods and Techniques in Methodical Engineering
Design, De Lier, The Netherlands: Academisch Boeken Centrum.

Fisher, J. M. (1984). Evacuation slide design. U.S. Patent #4,434,870.
Habib, W., and Ward, A. C. (1990). Proving the labeled interval calculus for infer

ences on catalogs. Design Theory and Methodology, New York: ASME, pp. 63-68.

www.manaraa.com

7. Configuring Systems Using Available Assets 159

Kahne, S. (1975). A procedure for optimizing development decisions. Automatica, 11,
261-269.

Koch, P. N. (1994). Design using available assets: A living systems approach.
M.S. Thesis, School of Mechanical Engineeing, Georgia Institute of Technology,
Alanta, Georgia.

Koch, P. N., Peplinski, J.D., Allen, J. K., and Mistree, F. (1994). A method of design
using available assets: Identifying a feasible system configuration. Behavioral Sci
ence, 39(3), 229-250.

Miller, J. G. (1978). Living Systems, New York: McGraw-Hill.
Miller, J. G., and Miller, J. L. (1992). Applications of Living Systems Theory, New

York: Plenum Press.
Miller, J. L. (1990). The timer. Behavioral Science, 35, 164-196.
Mistree, F., Allen, J. K., and Attia, F. (1993a). Designing at a high level of abstrac

tion. Behavioral Science, 38, 124-137.
Mistree, F., Hughes, 0. F., and Bras, B. A. (1993b). The compromise decision

support problem and the adaptive linear programming algorithm. In Kamat, M.P.
(Ed.). Structural Optimization: Status and Promise, Washington, DC: AIAA, pp.
247-289.

Mistree, F., Smith, W. F., and Bras, B. A. (l993c). A decision-based approach to
concurrent engineering. In Paresai, H. R. and Sullivan, W. (Eds.). Handbook of
Concurrent Engineering, New York: Chapman & Hall, pp. 127-158.

Mistree, F., Kamal, S. Z., and Bras, B. A. (1989). DSIDES: Decision support in the
design of engineering systems. Systems Design Laboratory Report, University of
Houston, Houston, Texas.

Mistree, F., and Muster, D. (1990). Conceptual models for decision-based concur
rent engineering design for the life cycle. In Woods, R. T. (Ed.). Proceedings of
the Second National Symposium on Concurrent Engineering, Morgantown, West
Virginia, pp. 443-467.

Mistree, F., Smith, W. F., Bras, B., Allen, J. K., and Muster, D. (1990). Decision
based design: A contemporary paradigm for ship design. Transactions, Society of
Naval Architects and Marine Engineers, Jersey City, New Jersey, pp. 565-597.

Mittal, S., and Arya, A. (1986). A knowledge-based framework for design. AAAI,
Los Altos, CA: Morgan Kaufmann, pp. 856-865.

Moore, R. E. (1979). Methods and Application of Interval Analysis, Philadelphia, PA:
SIAM.

Muster, D., and Mistree, F. (1988). The decision support problem technique in
engineering design. International Journal of Applied Engineering Education, 4(1),
23-33.

O'Shaughnessy, K., and Sturges, R. H. (1992). A systematic approach to conceptual
engineering design. In Stauffer, L. A. and Taylor, D. L. (Eds.). Design Theory
and Methodology-DTM '92, New York, ASME, pp. 283-291.

Pahl, G., and Beitz, W. (1988). Engineering Design, London/Berlin: The Design
Council/Springer-Verlag.

Papalambros, P. Y., and Wilde, D. J. (1988). Principles of Optimal Design: Modelling
and Computation, New York: Cambridge University Press.

Simon, H. A. (1982). The Sciences of the Artificial, Cambridge, MA: The MIT
Press.

Swanson, G. A., and Miller, J. G. (1989). Measurement and Interpretation in Account
ing, New York: Quorum Books.

www.manaraa.com

160 P. N. Koch, J.D. Peplinski, F. Mistree, and J. K. Allen

Thurston, D. L. (1990). Subjective evaluation with multiple attributes. In Rinderle,
J. R. (Ed.). Design Theory and Methodology, New York: ASME, pp. 355-361.

Vadde, S., Allen, J. K., and Mistree, F. (1992a). Catalog design: Design using avail
able assets. In Hoeltzel, D. A. (Ed.). Advances in Design Automation, New York:
ASME, pp. 345-354.

Vadde, S., Swadi, S., Allen, J. K., and Mistree, F. (1992b). Design of an aircraft tire:
A study in modeling uncertainty. In Hoe1tzel, D. A. (Ed.). ASME Design Automa
tion Conference, Scottsdale, Arizona, pp. 315-325.

Waldron, K., Waldron, M., and Wang, M. (1986). An expert system for initial
bearing selection. ASME Design Engineering Technical Conference, 86-DET-125,
Columbus, Ohio.

Walker, J. F., and Thiemann, F. C. (1990). The relationship of the internal security
system to group level organization in Miller's living systems theory. Behavioral
Science, 35, 147-153.

Wilde, D. J. (1978). Globally Optimal Design, New York: Wiley.
Wood, K. L. (1990). A Method for the representation and manipulation of uncer

tainties in preliminary engineering design. Ph.D Dissertation, California Institute
ofTechnology, 1990.

www.manaraa.com

8
Group Decision Making in Design

DEBORAH L. THURSTON

Abstract. Part 1 deals with the problem of balancing conflicting objectives
in group decision making. Several methods and their limitations are de
scribed, including matrix, voting, ranking, and rating schemes. Two analy
tic decision tools are presented; multiattribute utility analysis and the ana
lytic hierarchy process. An example illustrates the problem of eliciting and
aggregating individual preferences for managing a long range, multiple
product design plan and schedule. The group includes engineering, manu
facturing, marketing and environmental personnel. Part 2 deals with com
munication. Based on cognitive models of communication processes and
failures, a method is presented for designing not the artifact, but the interdis
ciplinary design team itself. The objective is to minimize the expected effect
of communication failures through failure modes and effects analysis.

1.1. Introduction

A group effort during the design process is both necessary and desirable.
First, even the simplest design tasks often require input from more than one
technical specialist. Second, recent efforts towards improving the engineering
design process stress the importance of considering multiple perspectives,
including impact of design decisions on the customer, the manufacturing
process, and the environment.

The recent emphasis on "concurrent engineering" illustrates the need to
integrate multiple considerations into engineering decision making. In the
past, these considerations were ignored until after the design process was
completed, at which point the design was thrown "over the wall" to be
evaluated. The manufacturing engineer would report that the design was too
difficult to form within desired tolerances, the customer would report that
the product was too expensive, and environmental regulatory personnel
would report an unacceptable waste disposal problem. The engineers were
then sent "back to the drawing board" to deal with "the manufacturing

161

www.manaraa.com

162 Deborah L. Thurston

problem," "the cost problem," or "the environmental problem." This was
obviously a very inefficient and ineffective process.

Design teams now include individuals who bring a diverse range of per
spectives to the drawing board. This chapter does not address how to resolve
differences of technical opinion such as determining the correct mathemati
cal model of physical phenomenon. Rather, we address group decision mak
ing in the context of interdisciplinary design teams and their conflicting
preferences. The general group decision-making problem is not a trivial one.
The problem consists of two parts: (1) aggregation of individual, conflicting
preferences to determine the best decision for the group and (2) communica
tion between group members during the design process.

Part 1. Balancing Conflicting Objectives

1.2. Eliciting Individual Preferences

Concurrent engineering brings together individuals who might not tradition
ally interact with each other, and who might not view the decision problem
in the same way or "speak the same language." These individuals might have
a different set of interests in the outcome of the decision. For example, the
engineering design group is traditionally most concerned with the quality of
the finished product, while the marketing group is more interested in main
taining or increasing market share, while the accounting group is most inter
ested in quarterly profits. These parties have focussed on their own interests
and previous experience, and might be unaware of the implications of their
decisions on other parties involved in or affected by the design process.
Hogarth labels these and other decision making biases "selective perception"
(Hogarth, 1980).

Popular tools for managing interdisciplinary design include Quality Func
tion Deployment (QFD) (Sullivan, 1986; Hauser and Clausing, 1988) and
Pugh's method (1981, 1990). Both methods employ a matrix to relate design
criteria rows to decision element columns. QFD originated in Japan and is
used to construct a "House of Quality" matrix. The matrix deploys the
"voice of the customer" throughout the design process by providing a struc
ture within which the relationships between engineering design decisions
and resulting design performance including customer attributes can be rec
orded. For example, imagine a "House of Quality" for the problem of
designing an automotive bumper beam. The row categories or customer
attributes might be (1) reasonable vehicle purchase price, (2) good gas mile
age, (3) no repair required after minor impacts, and (4) protection of the car
body from minor impacts. Their relative importance is indicated on a scale
such as 1-10. The column headings refer to the engineering characteristics
such as (1) manufacturing cost, (2) weight, and (3) deflection. Symbols with-

www.manaraa.com

8. Group Decision Making in Design 163

in the matrix and the "roof" indicate the existence of positive or negative
relationships (conflicting or non-conflicting) between customer attributes
and engineering characteristics, and also between engineering characteristics
themselves. For example, an "X" symbol might indicate a "strong negative
relationship" (i.e., improvement in one worsens the other) between weight
and deflection, and a "/" symbol a "strong positive relationship" between
purchase price and manufacturing cost. Design alternatives, including the
competitor's, can be compared on the basis of a weighted average of their
performance with respect to the target set for each engineering characteristic.
Pugh's method uses "+" and "-" signs to indicate performance relative to
an alternative selected as the standard.

At this point, the critical decision as to whether a particular tradeoff is
beneficial is left to the decision making group. For example, the decision that
"benefits outweigh costs" for a particular design change is based on discus
sion and debate. As Hauser and Clausing (1988) themselves state, "The
house relieves no one ofthe responsibility of making tough decisions. It does
provide the means for all participants to debate priorities."

Within the business and management science communities, research on
Group Decision Support Systems (GDSS) has been carried out Nunamaker
et al. (1988) describe principles for group planning and policy making. Three
levels are described by DeSanctis and Gallupe (1987): (1) technology-based
systems which remove communication barriers, such as large screens for
displaying information, (2) problem structuring techniques, such as project
scheduling and multi-criteria decision models, and (3) machine-induced
group communication, whereby information exchange is actively controlled
and structure.

Several other researchers have addressed group design. Gebala and
Eppinger (1991) describe methods for analyzing and managing the design
process through a matrix which represents information flow. McMahon
(1991) describes the results of a computer based group design system (GDS)
used to record the transactions which occur during the group design pro
cess. Krishnan et al. (1991) present a method for cooperative group de
sign through the use of a quality loss matrix. While these methods fa
cilitate communication flow, they provide no formal, explicit procedure for
using this information to balance individual preferences that are in direct
competition.

1.3. Aggregation of Individual Preferences

In engineering design, attributes are often conflicting; an improvement in
one leads to a worsening of another. For example, increasing the thickness
of an automotive body panel improves stiffness but worsens weight. Not
only are the attribute themselves in conflict, but so are the preferences of

www.manaraa.com

164 Deborah L. Thurston

individuals. Even when two individuals agree that an attribute is important,
they often disagree as to its relative importance in relation to other attrib
utes, and differ in their willingness to trade one attribute off against another.
These conflicts make it difficult to reach a consensus on the best course of
action.

Thus, a group of individuals, each with his or her own set of values and
preferences, must identify the alternative that is "best" for the entire group.
The problem of combining conflicting individual preferences into a measure
of overall group preference has proven to be extremely difficult. The central
issue is the difficulty of defining the criteria for combining the expressed
preferences of individuals to determine the optimal group choice. Several
popular and easy to use methods are described in this section, including
majority rule voting schemes, individual priority rankings of alternatives,
and rating schemes. Their limitations for engineering design are described.

1.3.1. Majority Voting
The simplest method, majority voting, identifies the alternative which re
ceives the most votes as the best alternative for the group as a whole. While
this might appear to be a logical and fair approach, its limitation for design
is that it identifies only the most preferred alternative for each individual,
and provides no information on their preferences among the other alterna
tives. If the decision criterion is to identify the course of action which results
in the greatest level of satisfaction for the group as a whole, one can easily
imagine a scenario whereby a simple voting scheme leads to a suboptimal
group choice. For example, imagine a group of 10 individuals who must
collectively choose between design alternatives A, B, C and D. Their prefer
ences as expressed in a rank ordering are shown in Table 8.1.

The winner in a simple voting scheme is Design A, with the greatest
number of votes, four. However, this is the least desirable option for six of
the other group members. One could reasonably argue that Design B is a
better choice, as it is preferred to A by a majority of six individuals, and is
the second choice (out of four design alternatives) of the remaining four
individuals. Simple voting schemes do not consider the effect on group mem
bers whose first choice is not that of the majority.

TABLE 8.1. Individual preferences of a group
of ten individuals.

Number of individuals

four individuals
three individuals
three individuals

Preferences in rank order

A>B>C>D
B>C>D>A
C>B>D>A

www.manaraa.com

8. Group Decision Making in Design 165

TABLE 8.2. Rank order preferences of
design alternatives A, B and C by three
individuals.

Individual

Individual # I
Individual # 2
Individual # 3

1.3 .2. Ranking Schemes

Preference in rank order

A>B>C
B>C>A
C>A>B

In design, group members often wish to consider the effect of the group
decision on members who are not in the majority. One reason is the desire to
maintain good-will and a willingness to compromise between group mem
bers who will (most likely) continue to interact in the future. After decisions
are made for one product, the same individuals, or at least representatives
of the same division within the organization, collaborate again on other
projects. Therefore, the group has a vested interest in ensuring that all
individuals are satisfied with the outcome of the decision making process,
even though their first choice is not selected.

Suppose then that we attempt to resolve this difficulty through rank or
dering and pairwise voting. It requires each member to indicate their pre
ferences by rank-ordering each alternative. The following example derived
from Condorcet (1785) and Arrow (1951) illustrates that this approach can
result in a group rank ordering of alternatives that violates the desired pro
perty of transitivity. For example, say three individuals have expressed pre
ferences among design alternatives A, B, and C as listed in Table 8.2.

Starting with a pairwise comparison between A and B, A is preferred by a
majority of two individuals. Comparing the remaining alternatives A and C,
we find that C is preferred by a majority of two individuals. However,
comparing B and C reveals that B is preferred to C by a majority of two,
yielding an intransitive group rank ordering of C > A > B > C. Of course,
this result is highly sensitive to how the voting procedure is carried out. The
identification of the best choice depends entirely on the order in which the
pairwise comparisons are performed.

1.3 .3. Rating Schemes
One attempt to resolve this difficulty is by allowing individuals to express
degrees of preference. For the example in Table 8.2, say individual # 1 had
a very strong preference for design alternative A over alternative C, and
individuals # 2 and # 3 each have only a very weak preference for alterna
tive C over A. To maximize total group satisfaction, the group might select
A as the best alternative for the group as a whole.

www.manaraa.com

166 Deborah L. Thurston

TABLE 8.3. Individual and total scores for alterna
tives A, B and C.

Design A Design 8 DesignC

Individual 1 9 5 1
Individual2 1 5 2
Individual 3 6 5 7

Sum of Scores 16 15 10

Strength of preference can be quantified by rating schemes. For the same
group, each individual assigns a score to each alternative on a scale of
1-10 which reflects its worth to that individual, as shown in Table 8.3.
One can then define the group decision criterion as the alternative with the
greatest total score, summed over all group members, shown in the last row.
Design alternative A has the highest total score of 16, followed by alternative
B with a score of 15. Alternative Cis least desirable with a score of 10. Thus
Alternative A might be chosen on the basis that its cumulative score is
highest.

However, while this criterion reflects strength of preference for all alterna
tives, it ignores the issue of fairness or equity. Note that individual #I very
strongly prefers A to C, and less strongly prefers B to C. Thus, the difference
between individual # 1 's scores for the three alternatives is great, ranging
from a high of 9 to a low of I. In contrast, it appears that individual # 3 has
expressed relatively weak preference for Alternative Cover A, and A over B.

Also note that the difference between the three individuals' scores for
Alternative A is great, ranging from a high of 9 to a low of I. If the individual
scores are taken to mean the degree of satisfaction of each group member,
the selection of Alternative A is not equitable in that Individual # 2 is
significantly worse-off than Individual # 1. In contrast, there is no difference
between the three individual scores of "5" for Alternative B. Design alterna
tive B might reasonably be deemed more desirable than A because the distri
bution of scores between individuals is more equitable, and each individual is
equally well-off.

The method of summing individual rating scores thus makes no provision
for consideration of equitable distribution between individuals, although it
implicitly assigns equal importance to each group member's preferences.

1.3.4. Efficiency vs. Equity
This brings us to a critical problem in group decision making; interperso
nal comparison of preferences or degrees of satisfaction. Extensive research
has been performed in economic analysis of group (or social) welfare. Re
searchers have shown that it is not possible to develop a mathematical

www.manaraa.com

8. Group Decision Making in Design 167

formulation for a group welfare function which maximizes both the sum of
individual welfare and equity. A general interpretation of Arrow's Impossi
bility Theorem (1951) is that given a set of reasonable conditions, there is
no procedure for combining the rankings of alternatives by several members
of a group into an overall group ranking that does not directly or indirectly
include comparison of preferences between individual members. Kirkwood
(1979) showed that strictly "efficient" methods, ones which have Pareto
optimality or maximization of total welfare as the sole objective, are incom
patible with methods which include consideration of equity or "fairness.'' In
group decision making, pareto optimality is achieved when it is not possible
to increase the degree of satisfaction of any individual without decreasing the
satisfaction of another individual at the same time.

So, the "bad news" is that there is no mathematically sound method for
aggregating the preferences of individual group members into a group pref
erence function to determine the optimal or "best" decision for the entire
group. The good news is that several well-established methods do exist
that are a significant improvement over simple voting, ranking and rating
schemes. These methods, described in the next section, help groups attack
decision problems in a structured, analytic manner. The problem of efficiency
vs. equity is dealt with indirectly by requiring that the group reach consensus
on disaggregated components of the decision problem.

1.3 .5. Group Decision-Making in the Iterative Design
Process
Another weakness of voting, ranking or rating methods is their limited
usefulness in the iterative design-evaluate-redesign process. None of the
methods provides any information that the designer can use during the
redesign stage after the "best" design alternative is identified. The reason
is that the individuals are not required to describe their reasons for their
voting, ranking, or ratings. The designer does not know what features of a
particular alternative make it more desirable than another, and so cannot
predict whether or not design modifications would be desirable.

1.4. Analytic Methods for Evaluation of Conflicting
Preferences

In spite of the impossibility of formulating a normative group welfare func
tion, two well-established methods do exist that are a significant improve
ment over the methods described above. These two methods help groups
attack decision problems in a rigorous manner; multiattribute utility analy
sis (MAUA) developed by von Neumann and Morgenstern (1947), Savage
(1954), Luce and Raiffa (1957), Keeney and Raiffa (1976), and others, and
the analytic hierarchy process (AHP) developed by Saaty (1980).

www.manaraa.com

168 Deborah L. Thurston

It is important to note that neither MAUA nor AHP was specifically
developed for group decision making. They do not resolve the impossibility
of interpersonal comparison of utility, nor do they solve the problem of
efficiency vs. equity discussed earlier. For example, using MAUA or AHP to
determine individual scores such as those shown in in Table 8.3 would not
resolve the difficulty of selecting between design alternative A and B. How
ever, both methods contribute significantly to group decision-making in
design by providing a forum for communication, a structured procedure
for eliciting their preferences, a rigorous methodology for converting their
expressions of preference into a quantitative measure of the relative merits of
design alternatives, and a framework for analyzing possible courses of action
and negotiating tradeoffs during the iterative design process.

1.4.1. Analysis of Design Decision Problem

Both MAUA and AHP solve a complex decision problem by disaggregating
it into a set of subproblems, solving or reaching group consensus on each
one, then reassembling them to obtain a solution to the larger decision
problem. A correct and thorough application of either method to design
problems has the following features:

0. Overall goal-An overall goal of the design process is established, such
as "Design the best vehicle in the domestic mid-size sedan market
segment."

I. Decision makers-A clear identification of the individuals or perspectives
to be included in the group is made.

2. Design alternatives-A set of design alternatives is developed, most often
from previous, similar applications.

3. Multiple attributes-Multiple attributes, subgoals or decision outcomes
that are deemed to be important to one or more individuals are enumer
ated.

4. Constraints-A clear distinction is made between attributes with a de
fined range of acceptability, and those which are binary constraints. For
example a deflection constraint would be "The beam MUST deflect EX
ACTLY 2 inches in response to load Fin order to be considered feasible."
The deflection attribute would be "We are willing to consider alternatives
which deflect between I and 3 inches in response to load F."

5. Relative value of achieving levels within each subgoal-A procedure exists
which can be used to model non-linearity of preference over the accept
able attribute range, if necessary. For example, the benefit gained from
improving deflection from 3 to 2 inches might not be the same as that
from improving deflection from 2 to I inch. In utility analysis, this is
reflected in the degree of non-linearity over the single attribute utility

www.manaraa.com

8. Group Decision Making in Design 169

function for deflection. In AHP it is reflected in the relative priority
of achieving various levels within each subgoal.

6. Tradeoffs-A measure of the relative value or importance of attributes,
or a measure of the decision-makers' willingness to make tradeoffs be
tween attributes is made. In utility analysis, tradeoffs are reflected in the
scaling constants, and in AHP they are reflected in the relative priority or
importance of each subgoal.

7. Overall worth-A mathematical procedure is carried out for combining
the information obtained through features 1-5 above into a single numer
ical quantity which represents the overall utility or worth of a particular
decision alternative.

1.4.2. Multiattribute Utility Analysis

Multiattribute utility analysis determines the worth of a design as a com
bination of attributes. Thurston (1991) describes how to formulate a multi
attribute design evaluation problem and use the results to quantify beneficial
attribute tradeoffs. Conflicting design attributes should be defined in such a
way as to accurately reflect preferences while exploiting conditions of prefer
ential and utility independence. These conditions do not refer to indepen
dence between the attribute levels but rather to the relative worth a designer
places on individual attribute levels. For example, total manufacturing cost
is clearly related to and dependent on weight, but the utility independence
condition is satisfied if the relative worth to the designer over the range of
acceptable levels of weight alone is independent of cost. This means that the
general shape or degree of nonlinearity of the utility function is not altered
by changes in levels of another attribute Y. The less restrictive preferential
independence condition means that if a lower weight design is preferred to a
higher weight design when the cost for both is Yl, then the lower weight
design will still be preferred to the higher weight design when the cost for
both is some other value Y2. These conditions are easily satisfied for design
problems with proper definition of the attributes and their range of accept
ability.

If the independence conditions are tested and satisfied, the number of
preference statements required in the assessment procedure is minimized. In
addition, the multiplicative multiattribute utility function in equation (I) is
valid [Keeney and Raiffa (1976, pp. 290-291)], which permits calculation of
a measure of the overall worth of a design, U(X), ass a function of a set or
combination of performance attributes:

(8.1)

www.manaraa.com

170 Deborah L. Thurston

where

U(X) = overall utility of set of attributes X

X; = performance level of attribute i

X= set of attributes at levels (x 1 , x2, ... , xn)

k; = assessed single attribute scaling constant

U;(x;) = assessed single attribute utility function

i = 1, 2, ... , n attributes

K = scaling constant.

The constant K is obtained by normalizing U(X) between 0 and 1 in the
standard way:

n

• + K = n <• + Kk;). (8.2)
i=l

where the more restrictive additive independence condition described by
Fishburn (1965) is also satisfied, the scaling constants k; sum to 1 and the
utility function reduces to the additive form:

n

U(X) = L k; U;(x;). (8.3)
i=l

Each assessed single attribute utility function U;(x;) is scaled so that where
the attribute is at its worst (but acceptable) level, U;(x;w) = 0, and at it best
level, U;(x;b) = 1. They can reflect nonlinearity of preference over the accept
able attribute range. The scaling constants k; reflect the acceptable tradeoffs
between attributes and, combined with K, scale U(X) between 0 and 1.

Figure 8.1 shows two standard "lottery" questions to determine k; and
U;(x;) for weight. The decision makers are asked to imagine two alternative
designs, each alike in every respect except the attribute levels of the alterna-

To Determine k i

Would you prefer
(1 Olb, $90)
for certain?

or

101b.

y$10

~401b.
$90

To Determine Ui (Xi)

Would you prefer
251bforcertain?

FIGURE 8.1. Lotteries to assess scaling constant k; and utility function lf;(x;) for
weight.

www.manaraa.com

8. Group Decision Making in Design 171

design in which there is uncertainty as to the attribute level(s). To determine
ki, subjects are queried as to whether they prefer 10 lb at a cost of $90 for
certain, or a 60% probability p that weight will be 10 lb and cost will be $10,
with a complementary probability (1 - p) of 40% that weight will be 40 lb
and cost will be $90. The value of p at which the subjects are indifferent
between the "certain alternative" on the left and the uncertainty on the right
is obtained by iteration between extreme values of p. The multiattribute
utility when all attributes are at their best levels, U(Xb), is set equal to 1,
and where they are at their worst levels, U(Xw), set equal to 0. By definition,
the value of ki is equal to the multiattribute utility where xi is at its best
level, xib• and all of the other attributes are at their worst levels. Since
U(x1w, ... ,xib• ... ,x,.w) = ki, the value of ki is determined by

U(xlw• ... ,xib• ... ,x,.w) = pU(Xb) + (1- p)U(Xw),

U(x1w, ... ,xib, ... ,x,.w) = pU(10 lb, $10) + (1- p)U(40 lb, $90),

U(lO lb, $90) = p(l) + (1 - p)(O),

ki=p.

(8.4)

To determine the single attribute utility function ~(xi) for weight, subjects
are queried as to whether they prefer 25 lb for certain, or a 60% probability
p that weight will be 10 lb and probability (1 - p) of 40% that weight
will be 40 lb. When the probability p at which the subject is indifferent
between these two choices is determined, the utility of 25 lb, which represents
one point on the single attribute utility function, can be calculated:

~(xi) = p~(xib) + (1 - p) ~(x1w),

~(x,) = p~(10 lb) + (1 - p) ~(40 lb),

~(25lb) = p(l) + (1 - p)(O),

~(25lb) = p.

(8.5)

The conventional mechanical engineering design approach to multiple
attribute design evaluation is to determine a "Figure of Merit" (FOM),
which is essentially a weighted sum of each attribute level a design alternative
exhibits. Each attribute's weighting factor is intended to reflect its relative
importance. Utility analysis is superior to simple linear weighted average
methods, as demonstrated by Thurston (1991). Utility analysis can more
accurately measure designers' preferences over an acceptable attribute range,
and allows for the possibility that preferences might not be linear with
respect to attribute level. As a result, it can more accurately reflect the
trade-offs between attributes the decision maker is willing to make. The
FOM approach assumes linear preferences with respect to attribute levels
and constant trade-offs, and can lead to erroneous results when used to
rank alternatives and quantify desirable attribute tradeoffs.

www.manaraa.com

172 Deborah L. Thurston

Another advantage of utility analysis is its ability to explicitly model
the decision-maker's attitude towards risk and uncertainty, and include the
effect of uncertainty on the desirability of design alternatives. Decision aids
for design that include manufacturing cost estimation uncertainty in calcula
tions of expected design utility are found in Thurston and Liu (1991). Utility
analysis is compared to fuzzy set analysis for design evaluation in Thurston
and Carnahan (1990). They conclude that fuzzy set analysis is more appro
priate at the very earliest stages of preliminary design, while utility analysis
should be used as the design progresses to the stage where tradeoffs are to be
evaluated.

1.4.3. Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) was developed by Saaty (1980).
Compared with utility analysis, AHP's distinguishing features are that it
structures the decision problem as a hierarchy of goals which each contrib
ute to some overall goal (although hierarchies can also be used in utility the
ory), elicits preferences through qualitative pairwise comparisons, and uses
the eigenvector of the pairwise comparison matrix to determine overall
priorities.

A five-point (1, 3, 5, 7, 9) scale is used the describe intensity of relative
importance. The decision-makers' priorities are elicited through indications
of the relative importance of achieving each subgoal through a set of direct
pairwise comparisons. For example, comparing profit to quality, 1 indicates
equal importance, 3 indicates moderate importance of one over another,
through 9 indicating extreme importance of one over another. Even numbers
(2, 4, 6, 8) indicate intermediate values between the two adjacent judgments.
Reciprocals of these numbers indicate reversal of relative importance. Pair
wise comparisons are elicited for each possible pair at each level in the
hierarchy. This set of pairwise comparisons forms a matrix shown later in
Figure 8.5. Then, each design alternative is specified in terms of its impact on
each of the sub-goals. The principal eigenvector is computed and used to
provide a priority ordering of alternatives according to dominance, while the
eigenvalue provides a measure of consistency of responses to the pairwise
comparisons.

1.4.4. AHP vs. MAUA
There is a long-running and sometimes heated debate over the relative merits
of classical utility analysis and AHP. Both camps have their dedicated fol
lowers. The literature is extensive, but summarizing positions have have
been put forth by Dyer (1990a, 1990b), Saaty (1990), Harker and Vargas
(1990), French (1986, pp. 357-361), Watson and Buede (1987). Summarizing
this debate, much less trying to resolve it, is beyond the scope of this chapter.
However, it is fair to say that the central issue for engineering design is

www.manaraa.com

8. Group Decision Making in Design 173

disagreement over the proper degree of normative vs. descriptive roles of
analytic decision-making tools. Some researchers have noted that utility
analysis can sometimes fail as a descriptive decision aid under certain circu
mstances. That is, it does not always mimic the steps of the current decision
making process nor accurately predict the decision maker's unaided choice.
One example is "real-time" or emergency situations (Klein and Calderwood,
1991).

The criticism of AHP most relevant to engineering design is in regards to
the assumption that qualitative indications of the "relative importance" of
two attributes can be interpreted on a numeric scale of 1 to 9 to determine
the ratio of the weights of the two attributes. For example, the statement that
"weight is moderately more important than cost" is interpreted to imply that
wweightfwcost = 3. This in turn implies that one unit of weight (say lib) is three
times as significant as one unit of cost ($). This is an especially important
consideration for engineering design, when designer might wish to use the
results of the analysis to calculate beneficial tradeoffs to guide the iterative
design process. While AHP can contribute significantly by disaggregating a
decision problem to enable consensus reaching for group negotiations, de
signers should be extremely careful if they wish to use the results to quantify
beneficial tradeoffs.

However, judging a decision-aiding tool by whether or not it accurately
describes the actual behavior and choices of human beings is not the appro
priate question. Rather, one should ask "Does the tool help designers make
better decisions?" If humans were always successful in instinctively making
optimal decisions on their own, there would be no need for formal decision
theory. The emergence of "design theory and methodology" as an important
area of research is evidence that designers are indeed not satisfied with their
current design decision-making methods.

1.4.5. Implementation Issues-Benevolent Dictator and
Negotiation and Consensus

As mentioned earlier, neither MAUA nor AHP explicitly solves the problem
of efficiency vs. equity. In practice, one of two approaches is commonly
taken; assigning the "benevolent dictator" role to a group leader, or group
negotiation and consensus. The first approach assigns the task of aggregating
individual preferences to a third party such as a decision analyst or group
leader who assumes a "benevolent dictator" role. The leader is benevolent in
that he or she seeks to identify the course of action that is in some way the
overall best choice for the group as a whole, and is not biased for or against
any individual. The leader is a dictator, in that while individual preferences
are elicited and used in the decision-making process, no group member(s)
has veto power.

In group negotiation and consensus, group members first agree on the
decision making procedure to be used. By disaggregating the decision prob-

www.manaraa.com

174 Deborah L. Thurston

lem and focussing attention on manageable sub-problems, either method
provides an excellent forum for communication between individuals within a
group and for enabling consensus-reaching. After consensus is reached on
each sub-task, each method provides an explicit procedure for combining
those results to compare each design alternative on the basis of its total
relative merit to the group as a whole. By engaging individuals in the steps
required for formulating the decision problem, practitioners have found it
much easier to achieve consensus. For example, Sycara and Lewis (1991) use
utility analysis as the basis of a method for negotiation in product design.

1.5. AHP Example: Group Decision-Making for
Design Project Scheduling

1.5.1. Long-Range Planfor Project Scheduling
This section summarizes an application of AHP to group decision making
in design project scheduling, where designers are only one part of a group
comprised of design engineering, manufacturing, marketing, accounting and
other sectors of the organization, as described by Thurston and Tian (1990).
Deciding which family of products to design and when to introduce them to
the marketplace is extremely important. This task is a multidisciplinary
team effort, requiring the input of diverse parts of the corporation which
have distinct and sometimes conflicting priorities.

The automotive, consumer electronics and other industries introduce new
product features each year. These features are often modifications or addi
tions to existing base products. In the automotive industry, even minor
product modifications require large capital expenditures and several years of
coordinated effort on the part of large engineering design teams. Each team
consists of subgroups, such as powertrain or electrical system specialists.
Orchestrating the engineering design process for each engineering specialty,
for each planned modification, and for each product is a complex scheduling
task. A long-range plan (LRP) specifies a schedule for product design,
allocating manpower and capital resources to each project to ensure comple
tion by the planned launch date.

The long-range plan must often be changed in response to the marketplace
or actions by the competition. However, moving the launch date up on one
design project can require delays in other projects due to manpower and
capital resource constraints. This has different impacts on different parts of
the organization. Launching a product earlier might prevent the engineering
design group from achieving a quality goal. However, the marketing group
might prefer to introduce the product as-is in order not to lose market
share; they know from historical data that once market share is lost, it is
extremely difficult to regain. In addition, a delay in a low-mileage, high
volume vehicle might prevent compliance with regulatory corporate average
fuel economy (CAFE) standards.

www.manaraa.com

8. Group Decision Making in Design 175

Design project managers need a method by which they can facilitate com
munication across disciplinary boundaries within the organization. How
ever, it is not enough just to break down communication barriers so that the
interests and preferences of each sector of the organization can be known.
There is also a need for a method to integrate this information into design
project management in a meaningful and fruitful way.

1.5.2. Hierarchy
The overall goal here is to minimize the total detrimental impact of necessary
changes to the long range product design plan. The hierarchy is shown in
Figure 8.2. Each of the six major factors represents the primary interests of
one part of the group, who have not traditionally worked closely together at
the decision making level. The reason that each major factor occupies the
same (first) hierarchical level is that the corporation is trying to break down
traditional organizational barriers between these groups.

The structure is intended to stimulate input and encourage interaction
between groups by making it clear that no group is "more important" than
another. Members of these groups would be sensitive to implications of a
"chain of command" if their major factor, such as "regulatory compliance,"

FIGURE 8.2. AHP hierarchy for design project delay impacts.

www.manaraa.com

176 Deborah L. Thurston

Quality Profit Mkt Shr. Manufg. Environ. Regulat.

Quality 1 2 5 6 7 9

Profit 1/2 1 2 5 7 8

Mkt Shr. 1/5 1/2 1 2 3 5

Manufg. 1/6 1/5 1/2 1 2 3

Environ. 1/7 1/7 1/3 1/2 1 2

Regulat. 1/9 1/8 1/5 1/3 1/2 1

FIGURE 8.3. Pairwise AHP comparison matrix.

appeared in a lower level of the hierarchy. In order to gather input from each
group literally on its own terms, impacts were not converted to some com
mon metric such as indirect cost. Figure 8.3 shows the pairwise comparison
matrix. For example, market share loss was deemed to be "moderately more
important" than environmental impact, so a value of 3 was entered in row 3,
column 5 of the matrix. The following factors reflect the major interests in
the group decision-making process:

1. Quality-Design engineers are most concerned with the overall quality
of the product they produce. The time and resources allocated to the design
task determine the degree to which they are able to achieve their goals. These
goals might be in the area of using the Taguchi method to develop robust
designs which are affected as little as possible by uncontrollable deviations
in the manufacturing and assembly process, or in improving component
tolerancing and "fit and finish" after the assembly process.

2. Profit Loss-Accounting is most concerned with the expected loss in
short term profit due to delaying the launch date of a particular project
by one time period, or l/2 year. Units of measurement for expected profit
loss are dollars, ranging from a worst case scenario of 1 billion dollars to a
best case scenario of no profit loss due to the ability to continue sales of the
"old" product.

3. Market Share Loss-Marketing is more concerned with longer term
impacts; uninterrupted product availability can be an important factor in
maintaining corporate image in a market segment and customer brand loy
alty. Being "out of market" for even a short time can have a long term
detrimental effect on the overall market share for that model. The detri
mental effect of a project delay on market share is defined as the expected
loss in market share for that particular model due to a 1/2 year launch date
delay. Units of measurement are percentage of total market share, ranging
from a worst case loss of 1% of the total market share to a best case of no
market share loss.

4. Manufacturing Impact-Manufacturing is concerned with production

www.manaraa.com

8. Group Decision Making in Design 177

plant capacity utilization. The worst case scenario is a total plant shutdown,
and the best case is no negative effect on plant utilization. A "minor effect"
is characterized as one or more of the following: some layoffs, some down
time, and/or a 2 week shutdown for inventory adjustment. A "moderate
effect" is characterized by a layoff of 1 shift, a 2 week downtime period, the
addition of robots, and/or a small facility readjustment. A "major effect" is
characterized by a 25% decrease in capacity utilization, up to a 12 week
downtime period, or the addition of a second body shop.

5. Environmental Impact-This attribute includes the environmental im
pact throughout the product's manufacture, consumer-use and disposal life
cycle. The manufacturing process generates byproducts that are harmful to
the environment, such as air emissions, wastewater, and solid, toxic and
hazardous waste. During the useful life of the product, more waste might be
generated during operation, such as vehicle emissions. At the end of the
useful life of the product, it must be disposed of.

6. Regulatory Compliance-The regulatory group is concerned with sat
isfying a diverse set of federal regulations for both individual vehicles and
the entire fleet. These include Corporate Average Fuel Economy (CAFE)
standards, Federal Motor Vehicle Safety Standards (FMVSS) and vehicle
emissions standards. Noncompliance can result in fines and/or harm to cor
porate image. While the corporation does not deliberately plan to violate
regulatory requirements, non-compliance might occur due to unforeseen
circumstances. With this category in the hierarchy, the impact of potential
noncompliance is included in the group decision-making process.

1.5.3. Integrating AHP Results into Design Project
Scheduling
The AHP analysis results in a score for each project that reflects the prefer
ences and priorities of each member of the decision-making group. The
higher the score, the greater the overall detrimental impact to the group that
would result from a delay of the desired launch date of that product. The
project scheduling problem is formulated as an integer program with linear
constraints. The objective function is the minimization of the detrimental
impact of all project delays as shown in equation (8.6). The AHP scores serve
as the objective function coefficients C11 , the total overall group impact of
delaying the launch date of project j for body style i for one time period.
Binary decision variables (D111 , D112) permit the option of delaying any pro
ject j for any body style i for either one or two time periods. (D111 , Dil2) =
(0, 0) corresponds Ko no delay, (1, 0) corresponds to a 1 time period delay,
and (1, 1) corresponds to a 2 time period delay. See Thurston and Tian
(1990) for details on formulation of the constraints on manpower and capital
resources in each engineering group:

z n

minimize L L CiJ(D111 + DiJ2),
j;l j=l

(8.6)

www.manaraa.com

178 Deborah L. Thurston

where

and

Cii = delay index; the overall impact of delaying the launch data of
projectj for body style i for one time period

Dill = 0 if project j for body i is not delayed first time period

= 1 if project j for body i is delayed first time period

Di12 = 0 if project j for body i is not delayed second time period

= 1 if project j for body i is delayed second time period

i = 1, 2, ... , z body styles

j = 1, 2, ... , n proposed project for a particular body style

1.6. Discussion

This section has described a tool for group decision-making across tradi
tional disciplinary boundaries. AHP provides a forum for design engineers
to interact directly with personnel from marketing, accounting and other
parts of the organization. The analysis is structured to reflect issues of con
cern to each constituency, and permit the direct use of terminology normally
used to discuss possible ramifications of delaying particular projects. Partici
pants gain a better appreciation for each other's priorities and concerns, and
are better able to reach consensus. Design quality is considered alongside
profit margin, market share and environmental impact.

This is not intended to be a descriptive decision-aiding tool. Our goal is
not to replicate past choices; a primary motivation for the project is that the
decision-makers are not satisfied with the results of their ad hoc or non
existent group decision-making procedures, and do not wish to replicate
them. AHP allows us to determine the diverse effects of project delays, and
for the first time quantify them with a single parameter. Without AHP, the
modeler might be forced to assume that the impact of delaying a project
is the same for all vehicle types and project categories.

Part 2. A Communications-Based Method for Design
Team Management

2.1. Communication in Interdisciplinary Engineering
Design Groups

It has been estimated that 50% to nearly 100% of design failures are attrib
utable to commonly understood mechanisms (Marriott and Miller, 1981).

www.manaraa.com

8. Group Decision Making in Design 179

This suggests that many failures are due not to a lack of expertise in the
design team, but rather to nonrepresentation of existent expertise at key
decision points. Interdisciplinary teams are desirable because of resource
additivity, where group performance increases with the sum of combined
member abilities (Hill, 1982; Shaw, 1976). However, barriers to coordination
(Allen, 1986) of a pool of specialists exist. Nonadditivity has been explored
by Steiner (1972) and Hackman and Morris (1983) under the label process
loss. Steiner proposed that process loss always occurs in real groups, and
stems from informational, behavioral, and organizational factors.

The design team manager defines, assigns, and coordinates tasks
{Thamhain, 1983). Task definition partitions the project into a number of
simpler subtasks. Task assignment is the appointment of individuals or sub
groups to each subtask. Task coordination is the management of the ex
change of information to ensure that the necessary design information is
represented at the proper decision points. Coordination can become exceed
ingly difficult in an interdisciplinary project. The manager may have only
limited ability to understand, communicate with, or control personnel of
diverse expertise and rank (Thamhain, 1977, 1983). Faced with the difficulty
of communication and control during the design process, the manager should
"design in" a resistance to coordination difficulties during the Task Defini
tion and Assignment (TDA) stage before the design process begins.

On what criteria should the manager make TDA decisions? Engineering
design has been shown to be more susceptible to communication variables
than research or technical service efforts (Allen, et al. 1980). Task achieve
ment is related to communication, particularly in complex tasks (Bales and
Slater, 1955; Hare, 1976). The TDA imposed on a group determine effective
ness of communication, and hence the effectiveness of the design team. The
nature of the task affects the communication skills required to solve the
problem (Barge and Hiokawa, 1989; Fiedler, 1967). The modes of communi
cation required for problem solving will affect the group's ability to commu
nicate (Carzo, 1963; Chapanis, et al., 1972). Changes in the information to
be communicated has been shown to influence choice of communication
channels (Wolek, 1970), which display varying probabilities of communica
tion error (Chakrabarti et al., 1983; Mehrabian and Reed, 1968).

Traditionally, team building techniques have addressed either the charac
teristics of the artifact, or the psychological needs of design personnel, but
not both. A common artifact basis is the division of tasks for minimum
interdependence (Steward, 1981). However, full independence of tasks is
seldom possible (Finger and Dixon, 1989), and this in reality is an indirect
attempt at evading communication rather than treating it directly. Tools that
attend to personnel needs (Kiggundu, 1983; Roby and Lanzetta, 1956) are
aimed toward optimization of job satisfaction, motivation, or other person
nel-related variables. Some investigators have noted that design techniques
that are successful in continuous solution spaces fail at disciplinary discon
tinuities (Ullman, 1989), presumably because of coordination difficulties at

www.manaraa.com

180 Deborah L. Thurston

interdisciplinary boundaries. For this reason some tools are domain specific,
limiting their usefulness across interdisciplinary projects.

The remainder of this chapter presents a tool for managing interdisciplin
ary engineering design teams which is communications-based. A cognitive
model for design communication is presented which is used to develop
strategies for defining and assigning design tasks. These strategies are then
incorporated into an extension to Failure Mode Effects Analysis (FMEA) to
minimize the effect of communication errors in the design process. An exam
ple of the design of a program for computer-assisted instruction is presented.

2.2. Cognitive Model of Engineering Design
Communication

2.2.1. Lexicon
Cognitive models of design describe the mental processes of the designer
(Finger and Dixon, 1989; Perlman, 1989). Here we define a lexicon of design
information processing which provides the basis for our cognitive model.
Figure 8.4 illustrates the following concepts. Design is an activity of informa
tion processing for the purpose of decision making:

Engineering design is a process performed by humans aided by technical means
through which information in the form of requirements is converted into information
in the form of descriptions of technical systems (Eder, 1989).

The design process is essentially an information processing activity, usually under
taken by a team of people, with its progression depending on the decisions made
(Wallace and Hales, 1989).

Information is knowledge of any design-related objects or events and their
relationships that is pertinent to the making of any design decision (Eder,
1989; Stomph-Blessing, 1989). Thamhain (1983) used the term technical
expertise:

-...-. K: v= o-: --Callalp••••:ll• Caolal--llkrl

1\~b-<-~= k--. (IIIIIJOollodl

DETERioiiNANIS - -OFFAIIIJRE

=-~
Caotal--

l<~allfOII.<IIaw --ollodl
IIIIIJOollodl Nol--

DEIERMINNIISOF EFfECT DETERIINNIIS OF SEVERIIY

FIGURE 8.4. Detailed model of design information processing.

No ...

No ...
No coot

No ..
No COli

No ..

www.manaraa.com

8. Group Decision Making in Design 181

Technical expertise ... includes an understanding of the technology and underlying
concepts, theories, and principles, the design methods and techniques, and the
functioning and interrelationship of the various components which make up the total
system.

. . . It is necessary not only for proper analytical and development work, but
equally important for evaluating technical solutions and tradeoffs, to communicate
effectively within the engineering team, assess risks, participate in search of integrated
solutions, and make tradeoffs among various alternatives.

The information sphere is where information resides. Spheres can include

fields of physical knowledge, experience, and cognitive fields (skills), or any

other knowledge source. For example, mechanical engineers use primarily

visual and spatial reasoning in conceptualizing their designs (Earle, 1985).

Information processing is the generation, access, transfer, and application

of information to the making of decisions. It consists largely of transferring

information between information spheres and decision points.
Communication is the exchange of information between people, defined by

the presence of an encoder (sender), a decoder (receiver), a channel (means

of transmission), a referent (topic), and a message (Mehrabian and Reed, 1968).

Information availability does not refer to the existence of information

in the team, but to the ability of decision makers to retrieve it. Engineers

waste large amounts of time tracking down design information, a search

which may inflate design costs. Some personnel may simply proceed without

adequate information rather than expend the effort to find it (Liker and

Hancock, 1986).
Information error is erroneous or incomplete information at a decision

point.
Availability and communication errors are errors that arise from informa

tion unavailability. Some examples are the use of tenuous information due to

anticipation of difficulty in obtaining more complete information, or the lack

of important information because the decision maker did not know it to exist

or know its significance. A communication error is the event in which the

decoded meaning does not match the encoded meaning.
Information error effects. We distinguish between the occurrence of an

information error and the resulting effect:

• Micro Information Error Effect-the temporary, unexpected symptom

that serves to flag the error during the design process, and thereby prompts

corrective effort. An example is the nonfit of a prototype part that was

dimensioned incorrectly.
• Macro Information Error Effect-the effect on either the design process or

the artifact, expressed through two types of corrective action cost (Ireson

and Coombs, 1988):
• Corrective Effort-If a micro error effect occurs, its correction entails the

expense of corrective effort. For example, if a transposed digit in the value

www.manaraa.com

182 Deborah L. Thurston

of pi is not discovered until after it has been used to build a model of a
circular gear, the macro error effect is the cost of rebuilding the model
correctly. The cost of corrective effort during early design of concept,
development, and pre-production are relatively small.

• Product Flaw-If an information error did not cause a visible micro effect
during design, or it went uncorrected, a product flaw might emerge. For
example, inadequate information about ergonomic requirements might
result in a passenger compartment with insufficient leg-room. Costs asso
ciated with product flaws include redesign, erosion of product reputation,
etc. The cost of correcting product flaws increases exponentially during
the later design stages of production and field service.

2.3. Task Definition and Assignment (TDA) Strategies

This section presents strategies for defining and assigning design tasks to
improve communication. They reduce the risk associated with information
errors by controlling communication accuracy, information availability, er
ror detection and corrective effort.

2.3.1. Control of Communication Accuracy
Mehrabian and Reed (1968) proposed hypotheses that relate communica
tion accuracy to attributes of the communicator, addressee, channel, mes
sage, and referent. We describe them here, along with corresponding TDA
strategies.

Decentering Hypothesis: Communication accuracy is directly correlated
with the communicator's or addressee's ability to explain their body of
knowledge in "layman's term." Strategy: Assign critical tasks to members
who have displayed decentering ability, or define critical tasks so as not to
require communication between dissimilar fields

Cognitive Similarity: Accuracy is correlated with the degree of similarity
between the communicator's and addressee's coding rules and modes of
cognition (Rinkel, 1959). Strategy: Assign critical tasks to team members
who are cognitively similar.

Rate Hypothesis: Accuracy is inversely correlated with the rate of informa
tion processing. Strategy: Assign critical task to team members with similar
information processing capacities, or define individual tasks so as not to
require excessively high information processing rates.

Rate Control Hypothesis: Accuracy is correlated with the degree to which
the rate of transmission can be modified by the decoder. Strategy: Assign a
critical task so that communication rates are likely to be controllable by the
decoder (e.g., interpersonal communication).

Channel Availability Hypothesis: Accuracy in decoding increases with the
degree to which all of the communication channels used by the encoder ate

www.manaraa.com

8. Group Decision Making in Design 183

made available to the decoder. Strategy: Assign a critical task to individuals
who have equal access to available communication channels.

Habitual Channel Hypothesis: Accuracy is correlated with the degree
to which the communication channels typically employed by the encoder
for that kind of communication are available. Strategy: Assign tasks to
individuals who habitually use similar channels.

Feedback Hypothesis: Accuracy is correlated with the degree of feedback
available to the encoder. Strategy: Assign critical tasks for maximal feed
back in information exchange.

Message Complexity Hypothesis: Message accuracy is inversely correlated
with the degree of complexity of the message. Strategy: Define critical tasks
in such a way that messages between individuals will be minimally complex.

Organization Hypothesis: The accuracy of a message is directly correlated
with its degree of organization. Strategy: Assign critical tasks such that
organization of information is improved, or define a critical task so that
information that is likely to be communicated is highly organized.

Objectivity Hypothesis: Accuracy is directly correlated with the degree of
objectivity of the message. Strategy: Define and assign critical tasks so that
communicated information is objective, leaving exchange of subjective infor
mation to occur between cognitively similar members.

Ambiguity Hypothesis: Accuracy is directly correlated with the degree to
which the coding rules for the referent are well defined. Strategy: Define and
assign tasks in such a way that referents that are likely to require communi
cation are concrete and unambiguous.

Referent Complexity Hypothesis: Accuracy is inversely correlated with the
complexity of the referent. Strategy: Define and assign tasks in such a way
that only simple referents are likely to be involved in communication events.

2.3.2. Control of Information Availability

Information availability depends on the relationship between the location of
the information and location of the requestor.

Member Centrality. Centrality (Carzo, 1963, p. 400) is indicated by the
total number of communication links needed to interact with all other mem
bers (Bavelas, 1948, 1950), and is a convenient indicator of the member's
information availability (Leavitt, 1951). The lower the number of links, the
more available the information possessed by other group members. Groups
which have the fewest communication links between the point at which
information is received and the actual decision point exhibit the best perfor
mance (Roby and Lanzetta, 1956). One might assign a critical task to a
person in a highly central position in the team structure, or adjust the team
structure so that this person has high centrality.

Information Centrality and Initiation. Alternatively, increasing the amount
of information initially possessed by a member, independent of the actual
position in the communication net, has an effect on performance similar to

www.manaraa.com

184 Deborah L. Thurston

that of increasing centrality (Shaw, 1954), by reducing the role of error·
prone external communication links. If the decoder has some personal
knowledge of the subject matter, availability of the information is facilitated.
Availability errors arise from ignorance of the need for certain pertinent
information, and/or non· use of the information due to difficulty in obtaining
it. One might assign a critical task to a person who has expertise broad
enough to complete the task independently, or to recognize the need for
information and know where to obtain it.

2.3.3. Control of Error Detection
Very little research has been devoted to communication error detection in
design. What does exist (Gilchrist et at., 1954; Leavitt, 1951; Shaw, 1954)
describes it only as a dependent variable of the communication net, although
other factors might affect it. Intuitively, error detection depends on the
receiver's knowledge of the subject matter and a clear understanding of the
relationship between the information error and its effect on the artifact.

Suppose that the value of pi is communicated to a decoder who will use it
to fabricate a prototype. In the encoding process, one of the digits is trans·
posed. The use of this erroneous value may not display a micro effect until
far down the design process, perhaps when prototype parts are first assem·
bled. But if the receiver had personally known the value of pi and the fact
that the message was supposed to represent the value of pi, the error would
have been more likely to be detected and corrected on receipt. If it had not
been corrected on receipt, the error effect still would be quite salient on
application, providing another means of detection. One might assign a critical
task to an individual or small group of similar expertise so that they are likely
to mutually understand the purpose, meaning, and significance of messages
they exchange. Or one may define a critical task to encourage salient applica·
tion of externally communicated information, or define it in such a way that
erroneous critical information will result in a salient micro error effect.

2.3.4. Control of Corrective Effort
Research on corrective effort in design is sparse. The severity of corrective
effort depends on the amount of work that must be done to replace errone·
ous information with correct information. Replacement may call for rede·
sign of the component, as well as other components designed after it. Hence,
the extent of corrective effort is determined by the nature and sequence of the
tasks that make up the design project. One strategy recognizes that detection
is facilitated by the appearance of a micro error effect. The sooner the error
effect appears, the less severe the effort of correction. One might define a
critical task so that application of externally communicated information,
and hence a micro error effect, is likely to occur soon after reception.

www.manaraa.com

8. Group Decision Making in Design 185

2.4. Extension of FMEA to Design Team Analysis

This section presents a method for designing the design team itself to mini
mize the effect of communication errors. The cognitive model and TDA
strategies are integrated into a tool which is traditionally used to evaluate the
physical design artifact, Failure Modes and Effects Analysis (FMEA) (Ireson
and Coombs, 1988). FMEA focuses on weaknesses in the artifact and makes
them the object of design modifications. A full understanding of potential
physical failure mechanisms of the artifact is required. Here, communication
failure mechanisms are the object of FMEA. First, we must develop a func
tional concept of component that simultaneously represents both the team
members and the artifact.

2.4.1. Definition of Component

Information components are defined as pieces of information that must
be represented at design decision points. A piece of information always
concerns some referent, sender and receiver, so a physical artifact and one or
more team members are included. An information component fails when it
is not represented at the decision point, or represents erroneous information.

Identification of significant components. Many information exchanges are
only momentary and leave no physical evidence. Some important informa
tion might be transmitted subliminally, or might represent common domain
knowledge between design participants and thus need not be explicitly ex
changed. The importance of such information might not be obvious if the
information does not travel along observable communication channels. One
might notice them by the effect of their failure on the system (Blakar, 1973).
Functional FMEA has been used to identify critical components as evi
denced by their failure. This relieves us from exhaustively identifying all
possible information components.

Reduction in number of components. Rather than attempting to exhaus
tively enumerate all information exchanges, we treat similar messages as
units which have the same likelihood of information error and detection, and
severity of effect. Referent, message, encoder, decoder, channel, and avail
ability are constant. For example, the information needed by a structural
engineer in determining the type of steel to fabricate a beam includes the
strength-stiffness ratio of several different grades of steel. This information
would likely come from the same source, arrive via the same communication
channel, occur between the same encoder and decoder, and comprise infor
mation of equal complexity. By applying a TDA strategy to one specific
information component in a class, all other components in its class should
also experience reduced risk of information error.

www.manaraa.com

186 Deborah L. Thurston

2.4.2. Definition of Evaluation Function
The Risk Priority Number (RPN) reflects the detrimental effect of informa
tion errors. It is a function of the likelihood of the error and its detection,
and the severity of corrective efforts or product flaws, as shown in equations
(8.7) and (8.8). For information errors that are detected and require correc
tive effort during the sign process:

RPNce = LIE x LD x SCE. (8.7)

where

RPNce = risk priority number associated with corrective effort

LIE = relative likelihood of information error, represented on a 1-9 scale

LD = relative likelihood of detection of information error, 1-9 scale

SCE = severity of corrective effort, 1-9 scale.

For information errors that are undetected and result in a product flaw:

RPNpr = LIE x LND x SPF (8.8)

where:

RPNpr = risk priority number associated with product flaw

LND =likelihood ofnondetection of information error, 10- LD

SPF =severity of product flaw, 1-9 scale

In standard FMEA it suffices to estimate the severity of component failure
on the performance of the artifact. In design team analysis, we are also
concerned with the severity of mid-course corrective efforts. Table 8.4 shows
subjective estimates for Likelihood of Information Error (LIE), Likelihood
of Detection (LD), Severity of Corrective Effort (SCE) and Severity of Prod
uct Flaw (SPF) on a 1-9 adapted from Bajaria (1983) and Kapur (1988):

TABLE 8.4. Scales for likelihood of information error and detection
and severity of corrective effort and product flaw.

Scale LIE&LD SCE SPF

1 Extremely rate No effect No degradation
3 Not likely Some backtracking User annoyance
5 50/50 chance Significant delay User dissatisfaction
7 Likely Redesign lnoperation
9 Certain Scrap project Safety hazard

www.manaraa.com

8. Group Decision Making in Design 187

2.5. Example: Design Team for Computer-Assisted
Instruction (CAl)

We illustrate the technique by analyzing an interdisciplinary team which
designs software for computer-assisted instruction (CAl) programs on conic
sections in analytic geometry, and dimensional analysis in chemistry
(Safoutin, 1991). Three distinct sources of expertise are required; a classroom
instructor, a CAl specialist and a computer programmer. The instructor
contributes knowledge of the subject matter, and provides input at the begin
ning of the project, periodic review during the design process, and occasional
consultation on details of the subject matter. The CAl specialist provides
expertise in techniques for student interaction and presentation of material
in a computer-based learning environment, which are very different from
those of classroom instruction. A computer programmer determines the
practicality of implementing the techniques developed by the CAl specialist
and writes the computer code. The programmer has had informal exposure
to CAl design principles, and feels comfortable with the task of instructional
design and topic selection. Design is joint by review, where a preliminary
design is conceived and implemented by the programmer, then evaluated by
the CAl specialist and less frequently the instructor. It is assumed that the
programmer will initiate a search for CAl methods and subject matter infor
mation when needed. The worksheet depicted in Figure 8.5 helps to elicit and
organize information used to analyze a design team configuration.

A potential product flaw is first selected for analysis: the student cannot
exit the computer interaction routine without providing the correct answer,
a very frustrating experience if the student does not know the correct answer.

PRODUCT FlAW: SllJCI conno< .,, ·~~~ou~ e11.1t rtteracuon routine WI answem; correc

PROOOCT COMPONENT CONPONENT F\ICl1(Jj INFORIIATOI CONPONEN" M'ORIIATOI FUNCTlON POSSIIIl£ WCRIIATOI
ERROR

PresentaDon technloue Feet lhat lhe sa~dent Doslaner olln!OniC<iYe
wil bea)me frusnted doH no<
without an exit ootion

·--.cllho -· ~ ol an exit ootion

COMMUNICATION ACCURACY

Rol- loloosiQO e.- Docodot ChiMII
AVAILABILITY

Studonr Eli!oodon Is CAidesianor I l'rooratrYne< ExtenW Low. l.hde modvation on Datt

interaction - .. of Prootarnmet 10 Mek INs,_
-=-~~us- infonnalion. linle Ukelihood of
lion volunteer until ntvlfl'lf.

FIGURE 8.5. FMEA table for design team analysis.

www.manaraa.com

188 Deborah L. Thurston

The component function whose loss or degradation causes the flaw is then
identified: the segments of computer code, procedures, algorithms, and pre
sentation technique. In column 3 the most important information compo
nents are listed. Entered in column 4 is the function of the information
which, if not fulfilled, results in physical component failure. The possible
failure modes (information errors) are listed in column 5.

In the "Communicaton Accuracy" section the existing communicaton
environment is described. The referent is the topic of the information com
ponent, in this case the relationship between the student and the interaction
routine. The message is specific information about the referent, here that the
student should have a means of exiting the interaction routine short of
answering correctly, or he or she might become frustrated. The encoder is the
team member who initially possesses the information, the CAl specialist.
The decoder, the programmer, requires the information. The channel is
the internal or external channel along which the message is likely to be
exchanged.

Blocks to availability of the information component are recorded in
"Availability" column. Currently the programmer is the initial designer of
the presentation technique. Information must be obtained from the CAl
specialist, and there are several obstacles. The CAl specialist is not always
available for immediate consultation, and is not likely to offer CAl expertise
unless the programmer-designer recognizes a need and requests information.
The programmer's limited understanding of CAl design principles can im
pair the ability to recognize when CAl knowledge is called for before he or
she has created a preliminary design. The programmer might not know or
believe that an exit option is always important no matter how simple the
question, and will likely proceed with a design based on incomplete or
incorrect information which will not be corrected until review.

These observations are used to indicate in the next column that availability
of expertise, initiation of information search, referent ambiguity and low
message objectivity are likely error mechanisms. The referent is ambiguous
because it involves the relationship between a hypothetical average student
and an interaction routine, subjects that are somewhat ambiguous them
selves. The message that the student will become frustrated without an exit
option is subjective. It involves the personal perceptions of the student as
envisioned by both the CAl specialist and the programmer, perceptions
which are likely to be somewhat different. The CAl specialist is trained in the
reasons why a student would become frustrated, but the programmer might
not expect or believe that frustration would be significant. A programmer
might object that an exit option makes the question too easy, or is not really
necessary because the question seems simple enough to answer.

In the next block of columns, estimates for the likelihood of information
error, detection, and the severity of corrective effort and product flaw are
entered. Then, Corrective Effort Risk, RPNce is calculated using equation

www.manaraa.com

8. Group Decision Making in Design 189

(8.7) and Product Flaw Risk, RPNpr is calculated using equation (8.8). Only
the first figure of an RPN is significant and should be used only for compara
tive purposes in evaluating one information error against another. The ana
lyst has made estimations that compute to RPNce = 60 and RPNpr = 210.

In the strategies column, TDA strategies as defined earlier that can reduce
corrective effort risk and product flaw risk are identified. Corrective effort
risk can be reduced by decreasing the likelihood of an information error
(LIE) or the severity of of corrective effort (SCE). Product flaw risk can be
reduced by decreasing the likelihood of an information error (LIE), its non
detection (LND) or the severity of the product flaw (SPF).

The communication failure is that provisions might not be specified for the
student to be able to exit an interaction routine without answering correctly.
To prevent this flaw, the designer must know that the student will experience
frustration if the correct answer is required for exit but is unknown. If this
fact is not known to the designer, it is assumed that he or she will not provide
an exit option.

Review and detection is the most likely means by which CAl expertise will
make its way into the design. Error detection is estimated to be not likely (at
3). The analysis has revealed that reliance on detection is not wise given the
current TDA. Rather than rely on periodic review, one should strive to
decrease the relatively high (at 5) likelihood of information error LIE and
increase likelihood of detection LD by modifying the TDA.

When an information error is detected, the corrective effort required
depends on the amount of time and work that proceeds past the point of use
of the erroneous information. Currently, severity of corrective effort is esti
mated at 4. To decrease this measure our only means is to define the task or
make an assignment so that application of externally communicated infor
mation is likely to occur soon after reception.

It had been believed wise to assign the design of the presentation technique
to the programmer. Our analysis shows that representation ofCAI expertise
in the presentation technique is very tenuous, relying too heavily on error
detection. If the design of the presentation technique was instead assigned
explicitly to the CAl specialist, CAl expertise would be more available. A
CAl specialist directly designing the presentation technique is more likely to
give full credit to the importance of an exit option. This assignment would
also reduce losses due to referent ambiguity and message objectivity.

If the CAl specialist explicitly specifies that the presentation technique
include an exit option, the programmer provides one. However, if there is
only a recommendation that an exit option be included, the programmer
might decide that the extra programming effort is not justified by the benefits
(which he perceives to be minimal). Upon review, the programmer might be
instructed to add the option, but this entails corrective effort. Accurate
receipt and implementation of the message would no longer depend on its
interpretation by the programmer.

www.manaraa.com

190 Deborah L. Thurston

Risk Reduction. Formerly,

LIE x LND x SPF = RPNpf
5 X 7 X 6 = 210 •

With the new assignment, the analyst estimates that LIE = 2 and LND = 3,
significantly lowering RPNpr to 36. Similarly, RPNce would change. For
merly,

LIE x LD x SCE = RPNce
5x3x4= 60"

With the new assignment, LIE = 2 and LD = 10 - LND = 7, lowering
RPNce to 56.

2.6. Discussion

When all TDA modifications have been specified, the analysis can be re
peated until RPNs have been reduced to an acceptable level. Even if TDA
adjustment proves impractical, high risk areas can be identified for increased
monitoring during the design process. The analysis pointed out inadequate
availability of CAl expertise and an over reliance on error detection. One
might naturally suspect that a programmer without formal CAl training
might not be adequate to ensure a quality presentation technique. However,
it might also seem apparent that periodic review by a CAl specialist would
uncover and correct any such deficiency. We saw that this was not the case.
Our analysis broke the problem down into distinct components relating to
the likelihood of an information error, its detection, the severity of the effort
spent to correct the error during the design process and the seventy of a
product flaw if the error goes undetected. The example leads to the conclu
sion that assignment directly to a CAl specialist is more effective because it
reduces reliance on detection, increases availability, and increases communi
cation accuracy.

3. Summary

Group decision making is difficult because of problems of communication
between individuals, and because individuals often have conflicting interests.
All of the methods presented in Part 1, including voting and ranking
schemes, provide a forum for helping individuals communicate their interests
and preferences to one another. Multiattribute utility analysis and the ana
lytic hierarchy process also provide a structured procedure for eliciting pref
erences, and a rigorous methodology for converting expressions of prefer
ence into a quantitative measure of the relative merit of design alternatives.
While these methods do not resolve the impossibility of interpersonal com-

www.manaraa.com

8. Group Decision Making in Design 191

parison of utility, they do provide a framework around which individuals
can provide input, express preferences, analyze possible courses of action
and negotiate tradeoffs.

Part 2 presented a technique for interdisciplinary design team manage
ment which focuses on communication errors. Mechanisms of information
processing errors and their role in requiring corrective effort during the
design process and causing product flaws were identified. We have employed
this understanding toward a new methodology for analyzing the effective
ness of design teams which focuses directly on task definition and assignment
strategies. It pinpoints the location, nature, and prevention of information
related sources of design error and over-reliance on error detection. It also
provides documentation of potential sources of error and a means of remedy
where only gut feelings existed before.

Each of the methods presented here disaggregate a previously intractable
problem into subproblems on which team members can communicate and/or
reach consensus. These approaches are normative in that they are intended
to indicate how design teams should make decisions, rather than automate
their current decision making processes. The analyst must think hard about
which aspects of current procedures should be retained, and which should be
replaced with methods which are intended to improve the outcome of the
decision making process.

Acknowledgment

The author gratefully acknowledges the support of the National Science
Foundation under PYI award DDM-8957420.

References
Allen, Thomas J., "Organizational Structure, Information Technology, and R&D

Productivity," IEEE Trans. on Engineering Management, EM-33:4, 212-217, 1986.
Allen, T. J., D. M. S. Lee and M. L. Tushman, "R&D Performance as a Function of

Internal Communication Project Management, and Nature of the Work," IEEE
Trans. on Engineering Management, EM-27:1, 2-12, 1980.

Arrow, K., Social Choice and Individual Values, New York: Wiley, 1951.
Barge, J. K. and R. Y. Hirokawa, "Toward a Communication Competency Model of

Group Leadership," Small Group Behavior, 20:2, 167-189, 1989.
Bales, R. F. and P. F. Slater, Role Differentiation in Small Decision Decision Making

Groups, Family, Socialization and Interaction Process, 259-306, New York: Free
Press, 1955.

Bajaria, H. J., "Integration of Reliability, Maintainability, and Quality Parameters in
Design," 29th L. Ray Buckendale Lecture, SAE, 1983.

Bavelas, A., "A Mathematical Model for Group Structures," Applied Anthropology,
7 (1948), 16-30, 1948.

Bavelas, A., "Communication Patterns in Task-Oriented Groups," Journal of the
Acoustical Society of America, 22, 725-730, 1950.

www.manaraa.com

192 Deborah L. Thurston

Blakar, R. M., "An Experimental Method for Inquiring into Communication," Eur.
J. Soc. Psycho/, 3(4), 415-425, 1973.

Carzo, Jr., R., "Some Effects of Organization Structure on Group Effectiveness,"
Admin. Sci. Quarterly, 393-424, 1963.

Chakrabarti, A. K., S. Feineman, and W. Ruentevilla, "Characteristics of Sources,
Channels, and Contents for Scientific and Technical Information Systems in Indus
trial Rand D," IEEE Trans. on Engineering Management, EM-30:2, 83-88, 1983.

Chapanis, A. et al., "Studies in Interactive Communication: I. The Effects of Four
Communication Modes on the Behavior of Teams During Cooperative Problem
Solving," Human Factors, 14:6, 487-509, 1972.

Condorcet, Marquis de, "Essai sur I'application de I'analyse a Ia probabilite des
decisions rendues a Ia pluralite des vois", Paris, 1785.

DeSanctis, G. and R. B. Gallupe, "A Foundation for the Study of Group Decision
Support Systems," Management Science, Vol. 33, No.5, May 1987.

Dyer, J. S., "A Clarification of 'Remarks on the Analytic Hierarchy Process',"
Management Science, Vol. 36, No. 3, March 1990.

Dyer, J. S., "Remarks on the Analytic Hierarchy Process," Management Science,
Vol. 36, No.3, March 1990.

Earle, J., Engineering Design Graphics, New York: John Wiley, 1985.
Eder, W. E., "Information Systems for Designers," Proceedings of the Institution

of Mechanical Engineers, International Conference on Engineering Design, Vol. 2,
1307-1319, 1989.

Fiedler, F. E., A Theory of Leadership Effectiveness, New York: McGraw Hill,
1967.

Finger, S. and J. R. Dixon, "A Review of Research in Mechanical Engineering
Design. Part 1: Descriptive, Prescriptive, and Computer-Based Models of Design
Processes," Research in Engineering Design, 1, 51-67, 1989.

Fishburn, P. C. "Independence in Utility Theory with Whole Product Sets," Opera
tions Research, Vol. 13, 1965, pp. 28-45.

French, S., Decision Theory: An Introduction to the Mathematics of Rationality, New
York: John Wiley and Sons, 1986.

Gebala, D. A., Eppinger, S.D., "Methods for Analyzing Design Procedures," Pro
ceedings of ASME Conference on Design Theory and Methodology, 1991.

Gilchrist, J. C., et al., "Some Effects of Unequal Distribution of Information in a
Wheel Group Structure," J. Abn. Soc. Psych., 49, 554-556, 1954.

Hackman, R. J. and C. G. Morris, "Group Tasks, Group Interaction Process, and
Group Performance Effectiveness," Small Groups and Social Interaction, New
York: John Wiley, 1983.

Hare, P. A., Handbook of Small Group Research, Second Edition, New York: The
Free Press, 330-355, 1976.

Harker, P. T., Vargas, L. G., "Reply to 'Remarks on The Analytic Hierarchy Pro
cess' by J. S. Dyer," Management Science, Vol. 36, No. 3, March 1990.

Hauser, J. R. and D. Clausing, "The House of Quality," Harvard Business Review,
66:3, 1988,63-73.

Hill, G. W., "Are n + I heads better than 1?," Psychological Bulletin, 91, 517-539,
1982.

Hogarth, R., Judgement and Choice, New York: Wiley, 1980.
Ireson, W. B. and C. F. Coombs (eds.), Handbook of Reliability Engineering and

Management, New York: McGraw-Hill, 13.5-13.33 and 18.11-18.25, 1988.

www.manaraa.com

8. Group Decision Making in Design 193

Kapur, Kailash C., "Techniques of Estimating Reliability at Design Stage," Chapter
18 in Ireson, W. G. Handbook of Reliability Engineering and Management, New
York: McGraw-Hill, 1988.

Keefer, D. L., "Allocation Planning for R & D with Uncertainty and Multiple
Objectives," IEEE Transaction on Engineering Management, Vol. EM-25, No. 1,
February 1978.

Keeney, R. L., Raiffa, H., Decisions with Multiple Objectives: Preferences and Value
Tradeoffs, New York: Wiley and Sons, 1976.

Kiggundu, M. N., "Task Interdependence and Job Design: Test of a Theory," Orga
nizational Behavior and Human Performance, 31, 145-172, 1983.

Kirkwood, C. W., "Pareto Optimality and Equity in Social Decision Analysis,"
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-9, No.2, Febru
ary, 1979.

Klein, G. A., R. Calderwood, "Decision Models: Some Lessons from the Field,"
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No.5, 1991.

Krishnan, V., Eppinger, S. D., Whitney, D. E., "Towards a Cooperative Design
Methodology Analysis of Sequential Decision Strategies," Proceedings of ASME
Conference on Design Theory and Methodology, 1991.

Leavitt, H. J., "Some Effects of Certain Communication Patterns on Group Perfor
mance," J. Abn. Soc. Psych., 46, 38-50, 1951.

Liker, J. K. and W. M. Hancock, "Organizational Systems Barriers to Engineer
ing Effectiveness," IEEE Trans. on Engineering Management, EM-33:2, 82-91,
1986.

Luce, R. D., and H. Raiffa, Games and Decisions, New York: Wiley, 1957.
Marriott, D. L. and N. R., "Materials Failure Logic Models: A Procedure for

Systematic Identification of Material Failure Modes in Mechanical Components,"
Proceedings, Conference on Failure Prevention and Reliability, ASME, Hartford,
CT, Sept. 1981.

McMahon, E. H., "Evaluation of Group Design in Engineering," Proceedings of
ASME Conference on Design Theory and Methodology, 1991.

Mehrabian, A. and H. Reed, "Some Determinants of Communication Accuracy,"
Psychological Bulletin, 70:5, 365-381, 1968.

Nunamaker, J. F., L. M. Applegate and B. R. Konsynski, "Computer-Aided Delib
eration: Model management and Group Decision Support," Operations Research,
Vol. 36, No.6, Nov-Dec. 1988.

Perlman, G., "Descriptive Models of Cognitive Aspects of the Engineering Design
Process," Design Theory '88: Proceedings of the 1988 NSF Grantee Workshop in
Design Theory and Methodology, New York: Springer-Verlag, 1989.

Pugh, S., "Concept Selection-A Method that Works," Proceedings ICED, Rome,
1981, pp. 497-506.

Pugh, S., Total Design, Reading, MA: Addison-Wesley, 1990.
Roby, T. B. and Lanzetta, J. T., "Work Group Structure, Communication, and

Group Performance," Sociometry, 19:1956, p. 105-113.
Runkel, P. J., "Cognitive Similarity in Facilitating Communication," Sociometry, 19,

189-191, 1956.
Saaty, T. (1980), The Analytic Hierarchy Process, New York: McGraw-Hill (revised

and extended, 1988).
Saaty, T., "An Exposition of the AHP in Reply to the Paper 'Remarks on The

Analytic Hierarchy Process'," Management Science, Vol. 36, No.3, March 1990.

www.manaraa.com

194 Deborah L. Thurston

Safoutin, M. J. and Thurston, D. L., "A Communications-Based Technique for
Interdisciplinary Design Team Management," IEEE Transactions on Engineering
Management, Vol. 40, No.4, 1993.

Savage, L. J., The Foundations of Statistics, New York: Wiley, 1954.
Shaw, M. E., Group Dynamics: The Psychology of Small Groups. New York: McGraw

Hill, 1976.
Shaw, M. E., "Some Effects of Unequal Distribution of Information Upon Group

Performance in Various Communication Nets," J. Abn. Exp. Psych., 49:1954,
p. 547-553.

Steiner, I. D., Group Process and Productivity, New York: Academic Press, 1972.
Steward, D. V., "The Design Structure System: A Method for Managing the Design

of Complex Systems," IEEE Trans. on Engineering Management, EM-28:3, 71-74,
1981.

Stomph-Blessing, L. T. M., "Analysing an Engineering Design Process in Industry,"
Proceedings of the Institution of Mechanical Engineers, Int'l Conference on Engr.
Design, v. 1 p. 57-64. August 1989.

Sullivan, L. P., "Quality Function Deployment," Quality Progress, 1986, 39-50.
Sycara, K. P. and C. M. Lewis, "Modeling Group Decision Making and Negotiation

in Concurrent Product Design," Systems Automation: Research and Applications,
Vol. 1, No. 3, 1991.

Thamhain, H. J., "Managing Engineers Effectively," IEEE Trans. on Engineering
Management, EM-30:4, 231-237, 1983.

Thamhain, H. J. and D. L. Wilemon, "Leadership Effectiveness in Program Manage
ment," IEEE Trans. on Engineering Management, EM-24:3, 102-108, 1977.

Thurston, D. L., and Tian, Y. Q., "Integration of the Analytic Hierarchy Process
with Integer Linear Programming for Long Range Product Planning," Mathemati
cal and Computer Modelling, Vol. 17, No. 4/5, 1993.

Thurston, D. L., "A Formal Method for Subjective Design Evaluation with Multiple
Attributes," Research in Engineering Design, Volume 3, Number 2, 1991.

Thurston, D. L. and Carnahan, J. V., "Fuzzy Ratings and Utility Analysis in Prelimi
nary Design Evaluation of Multiple Attributes," ASME J. of Mechnical Design,
Vol. 114, No.4, December 1992.

Thurston, D. L. and Liu, T., "Design Evaluation of Multiple Attribute Under Uncer
tainty." Systems Automation: Research and Applications, Vol. I, No.2, 1991.

Ullman, D. G., "A Taxonomy of Mechanical Design," 1989 ASME Technical Con
ference: 1st International Conference on Engineering Design Theory and Method
ology, Montreal, September 1989, pp. 23-36.

Wallace, K. M. and Hales, C., "Engineering Design Research Areas," Proceedings of
the Institution of Mechanical Engineers, International Conference on Engineering
Design, Vol. I, Aug. 1989, p. 555-562.

Wolek, F. W., "The Complexity of Messages in Science and Engineering: An In
fluence on Patterns of Communication," Communication Among Scientists and
Engineers, 233-337, 1970.

von Neumann, J. and 0. Morgenstern, Theory of Games and Economic Behavior, 2nd
ed. Princeton, NJ: Princeton University Press, 1947.

Watson, S. R. and D. M. Buede, Decision Synthesis: The Principles and Practice of
Decision Analysis, Cambridge: Cambridge University Press, 1987.

www.manaraa.com

9
Routineness Revisited

DAVID C. BROWN

Abstract. In the current research literature on the use of artificial intelli
gence (AI) in design, we find many terms for types of design. In particular,
the term routine design is often used, with a variety of definitions. The goal
of this chapter is to discuss routine design, and to contrast it with some of the
other types of design. We will attempt to clarify the definition of routineness,
and point out what is missing from existing definitions. We will also consider
definitions of, and comments about routine design from other authors, as a
contrast to our definition. In conclusion, we relate the notion of class 1, 2,
and 3 types of design, introduced by Brown and Chandrasekaran (1985), to
ideas presented in this chapter.

9.1. Introduction

In books and papers about design problem-solving we find many terms for
types of design [for example, see AAAI (1990) and Finger and Dixon (1989)].
These include preliminary, conceptual, functional, innovative, creative, routine,
embodiment, parametric, detailed, redesign, nonroutine, and configuration.

The goal of this chapter is to discuss routine design and to contrast it with
some of the activities suggested by the other terms given above.

As Gero (1990, p. 34) says, "There seems to be a general acceptance of the
classification of design into routine, innovative, and creative (Brown and
Chandrasekaran, 1985) "Unfortunately, many people have used the term
routine in slightly different ways, often without understanding the key points
of the original description. In this chapter we will try to point to the sources
of confusion, and will try to clarify the definition of the term.

9.1.1. Three Classes of Design
Let us start by considering the following passages from Brown and
Chandrasekaran (1985):

195

www.manaraa.com

196 David C. Brown

Class 1 Design

The average designer in industry will rarely if ever do class 1 design, as we consider
this to lead to major inventions or completely new products. It will often lead to the
formation of a new company, division, or major marketing effort. This is extremely
innovative behavior, and we suspect that very little design activity is in this class.
For this class, neither the knowledge sources nor the problem-solving strategies are
known in advance.

Class 2 Design

This is closer to routine, but will involve substantial innovation. This will require
different types of problem-solvers in cooperation and will certainly include some
planning. Class 2 design may arise during routine design when a new requirement is
introduced that takes the design away from routine, requiring the use of new compo
nents and techniques. What makes this class 2 and not class I is that the knowledge
sources can be identified in advance, but the problem-solving strategies, however,
cannot.

Class 3 Design

Here a design proceeds by selecting among previously known sets of well-understood
design alternatives. At each point in the design the choices may be simple, but overall
the task is still too complex for it to be done merely by looking it up in a database of
designs, as there are just too many possible combinations of initial requirements. The
choices at each point may be simple, but that does not imply that the design process
itself is simple, or that the components so designed must be simple. We feel that a
significant portion of design activity falls into this class.

Class 3 Complexity

While class 3 design can be complex overall, at each stage the design alternatives are
not as open-ended as they might be for class 2 or 1, thus requiring no planning during
the design. In addition, all of the design goals and requirements are fully specified,
subcomponents and functions already known, and knowledge sources already iden
tified. For other classes of design this need not be the case.

9.1.2. The Key Points
Let us now discuss the key points of that definition, and add some of the
refinements which appeared in that paper and in subsequent papers.

The main point (due mainly to Chandrasekaran), which is often over
looked, is summarized in the following table:

Class 1
Class2
Class 3

Knowledge sources

Not known
Known
Known

Problem-solving strategies

Not known
Not known
Known

www.manaraa.com

9. Routineness Revisited 197

For class 3 design, this means that everything about the design process,
including the knowledge needed (i.e., knowledge sources), must be known in
advance. Note that this does not mean that the specific design (i.e., the
solution) is known in advance. Nor does it mean that the pattern of use of
the knowledge (i.e., the design trace) is completely known in advance.

9.1.3. "Known" Knowledge
There is some ambiguity in the use ofthe word Known in the above table. We
will discuss this in terms of knowledge sources, with obvious extension to
problem-solving strategies.

By referring to a knowledge source as "known", we mean:

• that it is known in advance that the knowledge source will be needed to
make that decision or set of decisions, and

• that the knowledge source is "immediately available" for use-that is,
it does not have to be reasoned out or transformed from some other
knowledge.

9.1.4. The Implications for Class 3 Design
The implications for class 3 design are:

• Use of a fixed set of well-understood design plans.
• No planning is required, only plan selection.
• Plan selection is fairly simple, with known criteria.
• Plans are probably not very long, or they would not be easily remembered.
• Possible problem decompositions are known in advance, while the actual

decomposition to be used is not.
• Dependencies between subproblems are known and, for the most part,

can be compensated for in advance.
• Subproblems can usually be solved in a fixed order with little or no

backtracking, due to the anticipated dependencies.
• All possible subcomponents of the object being designed are known in

advance.
• The particular configuration of subcomponents chosen for a design in

response to a given set of requirements is not known before the design
activity starts. However, that configuration of subcomponents is a previ
ously known configuration (i.e., the designer could identify it as a candi
date solution for that type of design problem).

• All attributes or parameters (e.g., length) of the design of a subcomponent
are known (i.e., their names, not their values).

• The knowledge needed to calculate or select a value for each attribute is
known in advance.

• Appropriate ranges of values are known for most attributes.

www.manaraa.com

198 David C. Brown

• There exist "expectations" about a typical value for an attribute in a
particular design situation.

• The types of requirements given for a design problem are all known in
advance.

• Many common failures during the design process will be recognizable.
• There exist suggestions about how to make changes to parameter values

in order to fix failures.

9.1.5. AIR-CYL
The AIR-CYL system (Brown and Chandrasekaran, 1989) that designed air
cylinders is an example of a class 3 design system. The possible configura
tions are known in advance and are selected at run-time as a side-effect of
plan selection; the possible plans for each subproblems are all available; and
the parameters to be given values are all known in advance, as is the knowl
edge used to produce those values.

The system, written in DSPL, a language for constructing design expert
systems, also satisfies all of the other criteria in the list above. AIR-CYL is a
system that does routine design. DSPL has been used to build systems for a
variety of domains, such as operational amplifiers, gear pairs, distillation
columns, and commercial buildings.

In the following sections we will attempt to clarify the definition of rou
tineness, and point out what is missing from the presentation above. Then we
will consider definitions of and comments about routine design from other
authors, as a contrast to the definition presented here.

9 .2. A Second Axis

The author's recent work (Brown, 1991) addresses a form oflearning known
as compilation, in which knowledge is transformed and reorganized in order
to produce more efficient problem-solving.

The thesis that underlies the work in knowledge compilation during design
is that design tasks become routine due to learning. This learning is brought
about by repetition of similar problem-solving. That is, routineness is a
direct reflection of experience. Routine designs are done more efficiently.

In order to avoid unwanted connotations, we will use the term nonroutine
as the opposite of routine. The level of experience with a certain type of
design will be reflected by a position on a routine nonroutine axis-with
"very experienced" at one end and "inexperienced" at the other.

As this axis has nothing to do with what is being decided, this suggests the
need for another axis that describes what sort of decisions are being made at
various points during a design. We will use a conceptual.._. parametric axis
for that. The intuition is that the axis shows the abstractness of the decisions

www.manaraa.com

9. Routineness Revisited 199

being made, and reflects the notion that more constraints are added to the
solution as the design activity progresses.

By conceptual design we mean that the kind of things being decided at that
point in the design are abstract (conceptual). For example, that the design
requirements can be satisfied by a design that provides a particular function,
or by one that has a particular pattern of subfunctions.

This is quite compatible with Dixon's very useful taxonomy of design
problems (Dixon et al., 1988). His levels are named functional, phenomeno
logical, embodiment, attribute, and parametric. Clearly, these levels corre
spond to portions of the conceptual -+ parametric axis, even though this axis
is less specific about the content of the decisions being made.

Dixon goes further, and states that "conceptual design is often used to
describe the Embodiment of a design from Function" (p. 43). He considers
preliminary design to be an extension of conceptual design to another of his
levels of specificity, i.e., to artifact type.

By parametric design we mean that the things being decided are values for
a prespecified set of attributes, and that providing values for these attributes
fully specifies the design. In Dixon's terms, the design goes from artifact type
level to the artifact instance level.

For many design problems, the conceptual-+ parametric axis represents
the flow of time during the design activity, with earlier decisions falling
toward the left and later decisions falling toward the right.

However, not all design problems have to begin with vague functional
requirements and conclude with a fully specified design. For example, Dixon
et al. (1988) point out that a design activity can start at any level of abstrac
tion and finish at any one of the more specific levels.

9.2.1. Four Categories of Design Activity
We consider the routine -+ nonroutine and conceptual-+ parametric axes to
be orthogonal (see Figure 9.1).

The space produced is naturally divided into four categories of design
activity. They are represented by the four extreme points at the limits of the
axes:

RC routine, conceptual design
RP routine, parametric design
NRC nonroutine, conceptual design
NRP nonroutine, parametric

These will each be discussed below, in Sections 9.3 and 9.4.

9.2.2. Concerns About the Analysis
At this point it is appropriate to discuss several concerns about this two-axis
analysis.

www.manaraa.com

200 David C. Brown

Non-Routine

.NRC .NRP

Conceptual Parametric

Routine

FIGURE 9.1. Orthogonal axes.

Relative measure: As already stated, the routineness of a particular design
problem depends on the experience of the problem-solver. Therefore, rou
tineness is a relative measure. What is routine for one designer is not routine
for another. What is routine for a designer today, may not have been two
years ago. Routineness is in the brain of the beholder. It is an individuafs
standard.

In addition, there is also a community standard. The professional engineer
ing design community may consider a design problem routine-meaning
that there is an expectation that the problem will be routine for each member
of the community. This may be because the specific knowledge and problem
solving for that problem is taught in college.

This community standard is probably easier to see at the Nonroutine end
of the axis. Suppose we associate Nonroutine design activity with "innova
tion." It is easy to see that the community standard for a particular design
problem is represented by the existing design solutions. Thus, a design can be
innovative relative to that pool of existing designs.

Of course, it is perfectly possible for a design to be innovative relative to
the individual's standard, but not innovative relative to the community stan
dard. Design problems by themselves are not innovative, only in context.
This demonstrates some of the danger in using the term innovative design.

The routineness axis: First, as routineness is expressed on an axis, with the
possibility of different degrees of routineness, one should not assume that

www.manaraa.com

9. Routineness Revisited 201

there are only four categories of design activity (i.e., it is closer to being contin
uous than discrete). Routine and nonroutine are the extremes. We will try to
restrict our focus to the extremes of both axes, in order to simplify the analysis.

What was learned: The routine -+ nonroutine axis is supposed to reflect the
level of experience with a particular type of design. The more routine a
problem is, the more knowledge is already "known" and is ready for imme
diate use. In the table at the beginning of the chapter we separated what
could be known in advance of carrying out a design into knowledge sources
and problem-solving strategies. The routine -+ nonroutine axis is concerned
with how much is known, but does not distinguish between these two types of
knowledge. A more refined analysis probably should make this distinction.

Subproblem type: Up to this point we have assumed that all subproblems
of a design problem are of the same class. This is not always realistic. In
complicated problems some subproblems will be quite new, and will be
nonroutine, whereas other subproblems will lead to very well-known compo
nents needing routine design, or even merely selection from a catalog.
Clearly, this makes any model of design more complex.

Nonlinear progress: The reader should not assume that the nice, linear
progress through a design problem that is "suggested" by the conceptual-+
parametric axis is correct. Different subproblems can be at different points
on the axis at any point in time. Problem-solving can jump from one point
on the axis to another-for example, when a decision about using a certain
type of component suggests a simplification of the functional design (perhaps
through function sharing). Also, failures during design, due perhaps to in
compatible choices, can lead to redesign (making changes to something
already designed) or to re-design (doing whole portions of the design again
from scratch). Nonlinear progress should not affect the arguments presented
in this chapter.

Other axes: This two axis analysis ignores other dimensions. Several peo
ple, such as Chandrasekaran (1990), Brown (1992), and Hayes-Roth (1990),
have discussed the need for multiple mechanisms, or methods, for design
tasks. For example, the use of constraint satisfaction or case-based reasoning
to produce a design candidate. Our analysis does not reflect that dimension,
and does not require it. The analysis also ignores the effect of the Domain
(e.g., mechanical versus electrical) on the design activity [for example, see
Brown (1990) or Waldron (1990)].

In the next two sections we will examine the four extreme categories of
design activity (RC, RP, NRC, and NRP), giving examples of each.

9.3. Routine Design

In this section we will examine two of the four extreme points defined
by the two axes. They are at the routine end of the routine -+ nonroutine
axis.

www.manaraa.com

202 David C. Brown

9.3.1. Routine, Parametric Design

At the RP point the designer is deciding values for parameters (parametric),
and has well-formed methods for deciding them (routine).

This is a typical routine situation, where a designer uses well-known meth
ods to decide values for parameters. Several existing knowledge-based sys
tems are capable of doing this category of design activity, such as AIR-CYL
(Brown and Chandrasekaran, 1989), and PRIDE (Mittal et al., 1986).

9.3.2. Routine, Conceptual Design

At the RC point the designer is making very abstract decisions (conceptual)
and has well-formed methods for deciding them (routine).

This category of design is done by a designer who often designs complex
things given a rich but fixed set of requirements. For example, the designer
of low-cost office buildings needs to decide which of a standard set of designs
to use, and what type of structural system to use, given the type of equipment
and numbers of people to be placed in the building. He or she also needs to
consider the geological information about the site, as well as other factors
such as the weather. The decisions made are not final values of parameters,
but rather attributes of the design that will allow a list of parameters to be
formed so that parametric design can be done.

The best known knowledge-based system that is close to this kind of
design is HI-RISE (Maher and Fenves, 1985). HI-RISE acts as an assistant
to a designer for the preliminary structural design of high-rise buildings. It
generates "feasible alternatives for two functional systems," in the form of
structural systems. As these functional systems are known in advance, and
the methods for selecting and checking the compatibility of the structural
systems are also known in advance, then the system is doing routine design.
As many of its decisions are fairly abstract, such as "braced frame" versus
"shear wall" construction, the system belongs toward the conceptual end of
the conceptual --.. parametric axis.

A correction: In Section 9 .1.4 we presented a list of implications of the
earlier definition of class 3 design. Unfortunately, a few of the points refer to
"subcomponents." The RC category of design activity need not decide sub
components. Consequently, those points should be changed to include more
abstract decisions, such as "subfunctions."

9.4. Nonroutine Design

In this section we will examine the other two of the four extreme points
defined by the two axes. They are at the nonroutine end of the routine --..
nonroutine axis.

www.manaraa.com

9. Routineness Revisited 203

9.4.1. Nonroutine, Conceptual Design
At the NRC point the designer is making very abstract decisions (conceptual),
and does not have any well-formed approach to making them (nonroutine).

This is the aspect of design about which we know the least. It is easy to
think of the most abstract decisions being nonroutine. A typical early design
task might be deciding the full functionality of the object to be designed
given the requirements. Those aspects of design that we normally consider
to be most creative are precisely those in the NRC category. This is the sort
of activity we associate with the initial stages of architectural design, for
example.

There have been some attempts to produce design systems in this category
[see Gero and Maher (1989) and Joskowicz et al., (1992)]. For example,
Ulrich and Seering (1989) describe a system that generates graphs of func
tional elements (i.e., schematic descriptions) that produce a required rela
tionship between a given input and a given output. They call this process
schematic synthesis. The descriptions consist of idealized elements, such as
pumps, or springs, which contain no information about geometry or mate
rials. Descriptions can then be used to generate a physical description.

9.4.2. Nonroutine, Parametric Design

At the NRP point the designer is deciding values for parameters (parametric),
and does not have any well-formed approach to making them (nonroutine).

One can easily imagine a new designer in industry being given the final step
of a design project, where the rest had been completed by a senior designer.
It is clearly possible for the naive designer to know all of the parameters to
be decided, but not know how to go about deciding them. This would result
in nonroutine behavior, such as analyzing the dependencies between the
parameters in order to determine an appropriate order in which to decide
them, or searching textbooks for appropriate methods or equations.

Another more complex example can be found in the task of designing hulls
for racing yachts, as described by Gelsey in Joskowicz et al. (1992, p. 44).
The hull's shape can be described by a grid of planar panels. The problem
can be viewed as that of finding sizes for those panels, i.e., finding values for
parameters. In actual fact, the grid may need to be changed, in order to
improve expected performance. That sort of change will produce a new set of
parameters. Producing this new set is not a parametric design task.

The statement in Section 9.2 that "routineness is a direct reflection of
experience" is not meant to imply that all problems can produce the same
degree of routineness with experience. For example, some problems have
a dependency structure that is much too complex to be properly analyzed
by the designer. Even if the dependencies were known a priori, the ordering
of the tasks may not be, as in the tasks Balkany et al. (1991) label as
Type 2.

www.manaraa.com

204 David C. Brown

Such complexity might lead to use of the iterative refinement approach to
parametric design (Orelup et al., 1988; Ramachandran et al., 1988). One can
argue that this is not routine design, as it is not possible to anticipate the
order of decisions, therefore preformed plans cannot exist and cannot be
used. In addition, an iterative refinement approach will decide the value of
some parameters more than once, nudging them gradually to their final
acceptable position.

9.5. Related Work

In this section we will consider some recent definitions of, and comments
about, routine design from other authors. This is by no means an exhaustive
review. It does not concentrate on definitions that we consider to be totally
wrong. It is merely intended to show the range of variation in the literature.
Many authors use the term routine with no associated definition.

Gero (1990) proposes a model of design based on the retrieval and
instantiation of "design prototypes" that bring "all the requisite knowledge
appropriate to the design situation together in one schema." This knowledge
includes function, behavior, structure, relational, qualitative, computational,
constraints, and context.

"Routine design can be defined as the design that proceeds within a well
defined state space of potentials designs. That is, all the variables and their
applicable ranges, as well as the knowledge to compute their values, are all
directly instantiable from existing design prototypes" [p. 34].

On the surface this appears to be quite compatible with our definition.
However, he also states that "instances are refined in two ways. The first way
is by pruning the set of variables to the applicable set through a specification
of applicable functions, structures, or behaviors and propagating this specifi
cation. The second way is by determining the values of the applicable set of
variables using the available knowledge."

This "second way" is clearly routine, but the "first way" implies that the
set of variables to be given values needs to be determined via propagation.
This would mean that neither the variables nor the methods for giving them
values are "known," in the sense already defined. Consequently, there is
some conflict here with our view.

Tomiyama (1990) lists classes of design as "Creative, New, Combinatory,
Routine, Parametric, and Redesign." Although he avoids the confusion be
tween routine and parametric, the relationship between routine and the other
types is unclear (especially for "New").

Tomiyama also presents "Attribute Modeling," where design objects only
have attributes/parameters, design objects do not change their structure, and
"Well Formalized" design processes act on attributes. This, he claims, is
used to deal with "Routine-Type Design." However, "constraint solving" is
allowed as a design process. If this were to be done by the usual constraint

www.manaraa.com

9. Routineness Revisited 205

satisfaction methods this would not be routine given our definition, as plans
are not available and some search is required.

Agogino, in her presentation at a recent AAAI workshop (Joskowicz et
al., 1992), argued that routine design introduced "no new variables," while
in nonroutine design "new variables are created." This definition is in terms
of the conceptual -+ parametric axis, and not strictly in terms of routineness.

Snavely et al. (1990) present four "mutually exclusive types of design,"
called invention, innovation, routine, and procedural. For them, routine
design "is the process of filling the slots of a fixed topology (or predeter
mined set of fixed topologies) with catalog entries." A "catalog" is a data
base with multiple levels of abstraction, with the lowest being typical part
catalog entries (e.g., a particular spring). As they allow a catalog entry to be
a "dimension," this appears to overlap parametric design. Although one
could argue that the topology is "fixed" because it is "known" to be the
solution, that does not appear to be their claim. Their main criterion for
distinguishing between their types is the variability of the topology-the
higher the variability, the more inventive.

Sriram and Tong (1990) provide a formal definition of design as (S, C, A,
K, ~). where S is the set of solutions, C is the set of constraints that need to
be satisfied, A is the set of artifacts, K is the knowledge used to develop S,
and ~ is the set of transformation operators. They list "design activities" as
creative, innovative, and routine. They distinguish between them by which
of the ingredients of the formal definition are known. Thus, their definition
is one of the few that have activities arranged solely along the routine-+
nonroutine axis.

9.6. Summary and Confusion

Where do the three classes presented in Section 9.1.1 fit into this new two
axis analysis? As the classes are concerned with how much is already known,
as opposed to what is decided, it is clear that they are positioned along the
routine-+ nonroutine axis (see Figure 9.2).

The figure is not intended to be taken too literally. The rectangles repre
senting the classes are put in representative places. Class 3 covers all the
routine cases. Class 1 covers all the nonroutine cases. Class 2 is between
them. Where exactly are the boundaries? This isn't clear. Does class 2 cover
the rest of the space? Yes, if these are really supposed to cover all the
possibilities.

One could even propose a new class, perhaps Class 2a, with knowledge
sources "not known" and problem-solving strategies "known" -where the
approach to solving the problem was known in advance but the knowledge
to be used wasn't. It isn't clear that this situation would often occur. As
exactly what (i.e., knowledge vs. strategy) is known is yet another dimension,
class 2 and 2a would occupy approximately the same position in Figure 9.2,
as in both cases only one of the two types of knowledge is known.

www.manaraa.com

206 David C. Brown

CLASS I

CLASS 2

CLASS 3

FIGURE 9.2. Three classes of design activity.

9.6.1. Confusion

At the start of this chapter it was pointed out that there has been some
confusion about routine design. The most common confusion is that routine
design equals parametric design. One major reason for this is that it is very
likely that parametric design problems are routine. This is not merely be
cause they usually represent the most "automatic" aspects of design (i.e., the
use of equations to produce values). Another reason is due to the following
argument.

As stated earlier: "For many design problems, the conceptual -parametric
axis represents the flow of time during the design activity, with earlier deci
sions falling towards the left and later decisions falling towards the right."
Because of the impact of experience, repetition of the design problem with
similar but different requirements will cause the amount of reasoning needed
to be reduced.

Thus, conceptual design effort will gradually be reduced, and will become
unnecessary, as it will be the same or similar for every design with similar
requirements. Eventually, all that will be required is parametric design, and
that will become routine.

Thus, in this situation, design problems will gradually take less time and

www.manaraa.com

9. Routineness Revisited 207

will require less reasoning. Consequently, it is natural to associate routine
ness with parametric design, just as it is natural to associate nonroutineness
with conceptual design. This is the source of the confusion.

9.6.2. Summary
In this chapter we have examined routineness, have provided a cleaner
definition, have introduced four extreme categories of design using two
orthogonal axes, have related this analysis to the three classes of design, and
have explained a source of confusion.

Acknowledgments

This work was supported in part by NSF grant DDM-8719960. The author
would like to acknowledge the support and contributions of past and present
members of the WPI AI in Design Research Group, as well as the WPI AI
Research Group.

References

AAAI (1990). AI Magazine, Special Issue on Design, Winter, Vol. 11, No.4, Ameri
can Association for Artificial Intelligence.

Balkany, A., Birmingham, W. P., and Tommelein, I. D. (1991). A knowledge-level
analysis of several design tools. In J. Gero (Ed.). Artificial Intelligence in Design
'91. Butterworth Heinemann, pp. 921-940.

Brown, D. C. (1990). Research into knowledge-based design at WPI. In J. S. Gero
(Ed.). Applications of Artificial Intelligence in Engineering, Vol. 1, Design. London/
Berlin: Computational Mechanics Publications & Springer-Verlag.

Brown, D. C. (1991). Compilation: The hidden dimension of design systems. In H.
Yoshikawa & F. Arbab (Eds.), Intelligent CAD, III, Amsterdam: North-Holland.

Brown, D. C. (1992). Design. Encyclopedia of Artificial Intelligence, 2nd Edn., S.C.
Shapiro (Ed.), J. Wiley, pp. 331-339.

Brown, D. C. and Chandrasekaran, B. (1985). Expert systems for a class of mechani
cal design activity. In J. S. Gero (Ed.). Knowledge Engineering in Computer-Aided
Design. Amsterdam: North Holland, pp. 259-282.

Brown, D. C., and Chandrasekaran, B. (1989). Design Problem Solving: Knowledge
Structures and Control Strategies. Research Notes in Artificial Intelligence Series,
Morgan Kaufmann Publishers, Inc.

Chandrasekaran, B. (1990). Design problem solving: a task analysis. AI Magazine,
Special Issue on Design, Winter, Vol. 11, No.4, American Association for Artificial
Intelligence, pp. 59-71.

Dixon, J. R., Duffey, M. R., Irani, R. K., Meunier, K. L., and Orelup, M. F. (1988).
A proposed taxonomy of mechanical design problems. Proceedings of the ASME
Computers in Engineering Conference. San Francisco, CA, Vol. 1, p. 41.

Finger, S., and Dixon, J. R. (1989). A review of research in mechanical engineering
design, Part I: descriptive, prescriptive, and computer-based models of design.
Research in Eng. Design, 1(1), 51.

www.manaraa.com

208 David C. Brown

Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design.
AI Magazine, Special Issue on Design, Winter, Vol. 11, No.4, American Associa
tion for Artificial Intelligence, pp. 26-36.

Gero, J. S., and Maher, M. L., Eds. (1989). Proc. of the Workshop on Modeling
Creativity and Knowledge-Based Creative Design. University of Sydney.

Hayes-Roth, B. (1990). Three topics for discussion. Working Notes for the Workshop
on Creating a Scientific Community at the Interface between Engineering Design and
AI. Engineering Design Research Center, Carnegie-Mellon University, Pittsburgh,
PA, p.l2.

Joskowicz, L., Williams, B., Cagan, J., and Dean, T. Eds. (1992). Symposium: Design
from Physical Principles, Working Notes, AAAI Fall Symposium, October, Cam
bridge, MA.

Maher, M. L., and Fenves, S. J. (1985). HI-RISE: A knowledge-based expert system
for the preliminary structural design of high rise buildings. Report No. R-85-146,
Dept. of Civil Engineering, Carnegie-Mellon University, Pittsburgh, PA.

Mittal, S., Dym, C. L., and Morjaria, M. (1986). PRIDE: An expert system for the
design of paper handling systems. IEEE Computer Magazine, Special Issue on
Expert Systems for Engineering Problems.

Orelup, M. F., Dixon, J. R., Cohen, P.R. and Simmons, M. K. (1988). Dominic II:
Meta-level control in iterative redesign. Proc. 7th National Conf on Artificial Intel
ligence, AAAI, St. Paul, MN.

Ramachandran, N., Shah, A., and Langrana, N. A. (1988). Expert system approach
in design of mechanical components. Proc. ASME Int. Computers in Engineering
Conf, San Francisco, CA.

Snavely, G. L., Pomrehn, L. P., and Papalambros, P. Y. (1990). Toward a vocabulary
for classifying research in mechanical design automation. First International Work
shop on Formal Methods in Engineering Design, Manufacturing and Assembly.

Sriram, D., and Tong, C. (1990). AI and Engineering Design. Notes for Tutorial
WP2, AAAI-90: the 8th Nat. Conf. on Artificial Intelligence, Boston, MA.

Tomiyama, T. (1990). Intelligent CAD Systems. Notes for Tutorial, Eurographics '90,
Montreux, France.

Ulrich, K. T., and Seering, W. P. (1989). Synthesis of schematic descriptions in
mechanical design. Research in Engineering Design. New York: Academic Press,
Vol. 1, No. 1, p. 3.

Waldron, M. B. (1990). Understanding design. In H. Yoshikawa & T. Holden (Eds.).
Intelligent CAD, II. Amsterdam: North-Holland, pp. 73-87.

www.manaraa.com

10
A Comparative Analysis of
Techniques in Engineering Design

SRIKANTH M. KANNAPAN AND KURT M. MARSHEK

Abstract. This chapter describes the application of seven approaches to
support three basic task types of design (design selection, parametric design,
and design synthesis). The specialization of these approaches to practical
design techniques is analyzed and illustrated with examples.

1. Introduction

The engineering design process critically influences factors of lead time and
cost in product development; factors that frequently determine the profit
ability of products in competitive markets. To reduce the lead time and
cost of product development, it is important to first characterize the design
process so that new technologies and methodologies can be developed to
improve its efficiency.

Characterization of the design process requires both a natural process view
of design and an artificial process view of design (Kannapan and Marshek,
1992a). The natural process view emphasizes cognitive and social processes
such as identification of customer needs, and team design with multiple
perspectives. The artificial process view emphasizes symbol representation
and manipulation processes such as modeling, computation, and reasoning.
Development of design methods, tools, and environments to aid design
teams require careful attention to how the two views interact and comple
ment each other.

In this chapter we focus on basic task types in design from an artificial
process view and analyze the application of alternative approaches to sup
port the tasks. The organization of the chapter is as follows. Section 2
characterizes task types of design selection, parametric design, and design
synthesis. Section 3 summarizes alternative approaches to support these
tasks. Sections 4, 5 and 6 analyze and compare specializations of these
approaches into practical design techniques. Selection of mechanical trans
missions, parametric design of a relief valve, and synthesis of a rotary actua
tor are used as illustrative examples. Section 7 summarizes the analysis.

209

www.manaraa.com

210 Srikanth M. Kannapan and Kurt M. Marshek

2. Basic Task Types in Design Activity

Three basic task types in design are identified here (Kannapan and Marshek,
1992a). The overall goal of the three tasks is as follows: given a description
of a design (requirements), produce new descriptions of the design (imple
mentations) by making decisions that ultimately reduce the space of possible
realizations of the design. The task types are illustrated in Figure I 0.1 and
characterized below:

Design Selection
This task involves selecting a design object that satisfies design requirements
from a specified set of alternatives. Design selection requires the knowledge
of attributes of the alternatives, attributes defining requirements, and choice
criteria to define optimality in selection. The term design object is used in a
general sense, covering, for example, the selection of a working principle for
a device, a material type for a component, a functional module, or a com
pleted design.

alternatives
Al A2
rm~
WJ ~

required
attributes

A2

selected
object(s)

~

behaviors and attributes
of design objects

Bl,Al B2,A2
r7>t. r;rp
V.P WI

parametric model

R(P,d, ...)

A

required
behavior and attributes

BO,AO

behavior and attributes
of structure

BO,AO

~

required
parameter-values pairs

P=20

design
parameter-value pairs

d = 5

FIGURE 10.1. Basic design task types illustrated with a beam cross-section example;
A's are attributes; P,d are parameters; R is a relationship; B!s are behaviors.

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 211

Parametric Design

This task involves determining values or sets of values for a specified set of
variables, called design parameters, that define a design (geometry, material,
etc.) so as to achieve optimal values for parameters that represent design
requirements (behavior, cost, etc.). Values for design parameters must satisfy
constraints among variables arising from specialized engineering and other
disciplines. The form of the constraints varies in complexity from heuristics,
to logical relations, to partial differential equations.

Design Synthesis

This task involves configuring entities such as geometric primitives, machine
components, lumped parameter models, or abstracted principles of a domain
to define a system structure that satisfies design requirements. Design re
quirements specify the required behavior of the design, and criteria for evalu
ation of optimality (such as minimum cost) of a system structure. Knowledge
of previous designs and principles from engineering and other disciplines
specify realizability constraints for behavior and structure.

Design synthesis is distinguished from parametric design in that parametric
design only permits variation of values for a prespecified set of variables. In
design synthesis, introduction of new entities and variables are permitted
in defining a configuration of entities. (We use "configuration" and "struc
ture," and "design synthesis" and "configuration design" synonymously.) In
effect, a synthesized configuration defines the space of parametric design
variation.

Real-world design activity usually involves multiple instances of all three
task types at different levels of abstraction and decomposition, with complex
interactions among them. For example, in designing an automobile, the
headlights might be selected from vendor catalogs, the engine and transmis
sion might be selected from manufacturing lines of different manufacturing
divisions, wheel hubs and bumpers might be parametrically redesigned, while
a new anti-lock brake might be synthesized using first principles and knowl
edge of previous designs. Wheel hub design and brake design interact strongly
in this case.

3. Approaches to Design

Table 10.1 summarizes a variety of approaches for supporting design pro
cesses in general; independent of the types of tasks described in the previous
section. The following three sections analyze how these approaches can be
combined and specialized to produce practical techniques for supporting
tasks of design, selection, parametric design, and design synthesis.

www.manaraa.com

212 Srikanth M. Kannapan and Kurt M. Marshek

TABLE 10.1. Approaches to supporting design processes, and theories and techniques
offered (Kannapan and Marshek, 1992a).

Approach Theories and techniques offered

Algorithmic Finite deterministic processes:
-equation solving
-optimization
-grammars and language compilation

Axiomatic Axiomatization of general intuitively powerful design guidelines;
proof of design theorems.

Database Logically centralized design models and a collection of design
processes:

-relational, hierarchical and network data models
-object hierarchy, methods, inheritance
-blackboards, demons, message-passing

Machine learning Knowledge acquisition from instruction, examples, analogy,
observation, and experimentation:

-inductive generalization
-explanation-based generalization
-case-based reasoning

Problem solving/planning Knowledge representation; reasoning:
-recursive problem decomposition
-state-space search, search control strategies
-rule-based and model-based reasoning
-constraint reasoning
-blackboard systems

System science Identification and modeling of system, environment and
interactions:

-black box theory, state theory, component integration theory
-decision theory
-task planning
-hierarchical control

Transformational Language transformation and translation:
-logical expressions and inference rules
-algebraic expressions and rewrite rules

4. Design Selection

The basic mechanism needed for design selection is that of attribute match
ing. A design is selected when the attributes of a design in a design library
match the required attributes optimally, according to specified criteria. The
deeper issues in supporting the executive mechanism are (a) how design
objects and their attributes are represented and organized in the design
library, and (b) what processes are used to partially or totally match required
attributes to the attributes of stored objects.

We will use an organization of rotary power transmissions (Kannapan,
Marshek, and Gerbert, 1991a) as an illustrative example. Figure 10.2 shows
an hierarchic organization of classes of transmissions organized on the basis

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 213

Mecllanical Rotary

Power Transmission System

Mechanical

~
Force Form

Condirned

Force Form

Con droned eondifoned condifoned

Traction Drives

~
Positive Drives

A ""~· Rolling Wrapping Rolling Wrapping Hydrodynamic
Drives Drives Drives Drives Drives

1. Kopp 1. Flat Belt
Ball/Roller l. V -Beh

l. Wheel Disc
3. Nutating Cone
4. Ring Cone
S. Offlet Sphere
6. Toroidal
7.Spool
8. Roller/Ball

Disc
9. Plonetary

Rollen
10. Beier Disc
11. Rina Cone

Simple l. TimiD& Belt 1. Scoop
Trains: l. Roller O.ain l. Axial Flow
Gean 3. Silent Olain 3. Radial Flow
1. Spur 4. Hannonic 4. Mixed Flow
l. Helical Drive S.Jet (pump)
3. Bevel 6. Pltot Tube
4. Spiral (pump)

Bevel 7. vortex
S. Worm (pump)
6.Hypoid
7.Zcrol
8. Spiroid

Plonetary
Trains:
Gean
l.Spur
l. Helical
3.Bevel

Hydroviscous Hydrostatic
Drives Drives

(hydraulic only)

I
l. Liquid Slip
l. Electroviscous

I~
I. Piston Type l!:ze!......J
.Axial
• Radial
. Eccentric Ring
• Intensifier
l. Gear Type
• External Spur
• Internal Spur
• l'ro&R~sive Tooth
3. Vane Type
. Vane Rotor
. Vane Stator
. Slipper vane
. Flexible Vane
4. Lobe
S.Saew
6. Flexible Type
• Diaphram
• Tube Squeegee
. Liner

FIGURE 10.2. A classification of rotary power transmission systems.

of physical principles, working principles, application principles, design prin

ciples, and structure types.
Developing such an organization of objects requires detailed knowledge of

engineering principles and prototypical artifacts of a domain as well as the

choice of bases for classification. For example, in Figure 10.2, the term form

conditioned refers to cases where the working principle for transmission of

mechanical power relies on the physical form of the transmission compo

nents, and the load normal to their contact surface. The term force condi

tioned refers to cases where the working principle for transmission of me

chanical power relies on the sliding friction or fluid force arising as a result

of the load normal to the contact surface between transmission components.

This distinction is useful in correlating structural properties with behavioral

properties of mechanical transmissions.

www.manaraa.com

214 Srikanth M. Kannapan and Kurt M. Marshek

Mechanical Rotary

Power Transmission System

Mechanical
. Limited range speed ratios

Hydraulic/Pneumatic
. Any speed ratio
. I..aige range of input to output dislances . Short to medimn input output dislance

. Fixed angular difference in input/output
rotation axis

. Flexibility in angle between
input and output rotation axis

. Continuously variable speed ratios
. Limited intermediate energy storage . Flexibility of intermediate energy storage

Force Form Force
Conditioned Conditioned Conditioned

. Speed loss with slip . No slip- no speed loss . Speed loss with slip

. Medimn-low power loss . Low power loss . High power loss

. Better shock and . . Bad shock and . Better shock and
overload torque handlmg overload torque handling overload torque handling

. Fixed or continuously . Fixed speed ratio

Form
Conditioned

. No slip -no speed loss

. Low power loss

. Bad shock and
overload torque handling

'7\' 1\ ""'\ Rolling
Drives

Wrapping Rolling
Drives Drives

Wrapping Hydrodynamic
Drives Drives

Hydroviscous Hydrostatic
Drives Drives

(hydraulic only)
. Coni. variable . Plxe<l'coallnuously. Plxed • Pixed/C<lllliDuOUIIy • Low pessure, . Low pressure . High pre......,, low
speed ralioo vlriable speed ntlo speed ratio variable speed ntlc high Dow • Low to medium Dow appllcatloos

• Fixed aoate obaftsPirallel • Plxed angle • Plnllel applicatl0111 l)lCCds

. Shortdl5tanoco -===um -=-==== -~~!~rcmvcrsion:;=e dl5tances distances ltoriF unit • Low efficiency
. Low to high . Low to medium • Low to very . Low to medium • High to very high
·~ speeds high~ s~ speeds

• Low to medium . Low to high . Low to very • Low to high • Low torques
torques torques high torques . torques . Low efficiency

at low speeds

. Low to medium
speeds

. Low to very high
torques

FIGURE 10.3. Attributes of classes of rotary power transmissions.

Design object hierarchies like Figure 10.2 provide a framework for attach
ing attributes of function, performance, and cost to design objects. Figure
10.3 shows some of the attributes of rotary transmissions attached to corre
sponding nodes of the class hierarchy in Figure 10.2. To associate attributes
to design objects, modeling decisions must be made as to what attributes are
of interest that cover a range of requirement descriptions at an appropriate
level of abstraction. For example, an important behavior characteristic of
hydraulic/pneumatic physical principles that must be represented is that
almost any speed ratio of rotary motion within some range can be achieved
because of the ease of storage of the intermediate fluid energy and control of
the fluid pressure and flow rate by means of valves.

There is a disadvantage in representing design alternatives as class hierar-

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 215

chies with associated attributes as in Figures 10.2 and 10.3. The represen
tation is biased towards a selection process that considers attributes in a
specific order starting from the root of the class hierarchy. For example,
speed ratios must be considered before speed loss, and physical principles
must be selected before working principles. Biases can be avoided by repre
senting alternatives simply as flat structures as in a relational database,
but at a cost of reduced search efficiency where the bias is appropriate.
Representation of multiple class hierarchies on top of flat representations
retain advantages of both but at the cost of additional storage and mainte
nance requirements.

The question now is how required attributes can be matched to attributes
of design objects to enable selection. Class hierarchies described above can
be used to incrementally narrow the space of alternatives in all the tech
niques described below.

Decision Theory

A decision problem (system science approach) can be posed and solved by
weighting the relative importance of required attributes, evaluating alterna
tives by ranking their degree of acceptability with respect to each attribute,
and computing their cumulative rankings by a formula such as a weighted
sum. See Kuppuraju, Ittimakin, and Mistree (1985), for example. If the
design objects are hierarchically organized as described above, design objects
can be searched incrementally starting from the root(s) of the hierarchy. For
example, using Figure 10.3, a large input-output distance may be ranked as
the most important attribute to consider for an application which may nar
row possibilities to hydraulic/pneumatic drives. Next, no-slip requirements
may limit selections to hydrostatic drives. Evaluation of alternative structure
types of hydrostatic drives by weighted attributes of speed and torque ranges,
cost, and reliability may result in the selection of geared hydrostatic drives.

The computation of a cumulative ranking for an alternative is simple by
this technique and works well with qualitative information. However, this
technique typically presumes independence between attributes and relies on
designer intuition in assignment of weights and ranks, although methods
exist for normalizing weights and eliminating biases when ranking alterna
tives on multiple attributes.

Classification Rules

Techniques from expert diagnostic systems (problem solving/planning ap
proach) can be used in design selection. One technique is to encode classifica
tion knowledge as "if-then" rules. See Sim and Chan (1991), for example.
Activation of the rules with respect to a class hierarchy of design objects
incrementally reclassifies the requirements so that it migrates from the most
general to the most specific subclass that satisfies the requirements.

www.manaraa.com

216 Srikanth M. Kannapan and Kurt M. Marshek

Domain-specific rules can be organized by attaching sets of rules relevant
to a subclass to the corresponding object in the class hierarchy. For example,
from requirements for a rotary transmission with a tolerable speed loss of
0.5%, the activation of a rule attached to the class of mechanical physical
principles, such as "if speed-loss tolerance is < 1 %, then reclassify as
form-conditioned drive," can reclassify the requirements under the form
conditioned subclass.

Another technique is to implement explicit choice rules which "rule-in" or
"rule-out" design objects on the basis of their attributes. See McDermott
(1978), for example. An example of a choice rule for transmissions is "if
input-output axis angle= 90 deg, then rule-in worm-gear pair." Rule-based
selection techniques successfully encode selection knowledge of specialized
design domains, although the acquisition of the rules can be laborious and
their ranges of validity tend to be narrow.

Query Languages

Query languages (database approach) can be used to select objects from
relational, object-oriented, and network data models. For example, it is
possible to query a database for rotary transmissions that have attributes of
speed-ratio in the range 10 to 20 and have power losses less than 5%. See
Eastman and Bond (1991) for an example of a design data model. Query
languages provide means for indexed retrieval of design objects but do not
reason with selection knowledge. Also, query operations are mathematically
well founded and closed only for relational data models.

Index-transformation and Analogy

When design requirements do not exactly match an index, rules of index
transformation (machine learning approach) can be used to reformulate the
design requirement into other requirements that can be exactly matched by
indexes. For example, if no transmission fits in the available space for an
application, an index transformation rule for space partitioning may result in
the selection of a piston pump at the input and a axial-flow motor at the
output by instantiation of objects under different subclasses. See Hundal
(1990) and Navinchandra, Sycara, and Narasimhan (1991) for examples of
this technique.

Instead of transforming the index, analogical reasoning provides a means
of associating terms used across different design contexts, and analyzing a
causal explanation of required functions so as retrieve a design whose func
tion is "close" to what is required. For example, knowledge of the context
and manner of use of a transmission for a hand-drill suggests attributes of
low input power and short distance power transmission, thus eliminating
hydraulic/pneumatic transmissions. See Dyer, Flowers, and Hodges (1986)
and Goel and Chandrasekaran (1990) for examples of this technique.

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 217

The ability to select design objects by transformed indexes and by "close"
matches is potentially of great value since design objects exactly matching
the requirements might be unavailable. Furthermore, requirements them
selves might be negotiable or subject to change. However, rules for index
transformation and "closeness" tend to be domain- and context-specific.

Interval and Qualitative Reasoning

Interval reasoning (algorithmic) and qualitative reasoning techniques (prob
lem solving/planning) can be used to represent sets of design alternatives
concisely. For example, requirements on operating speed and power may be
specified as intervals such as [100, 2000] rpm and [50, 500] W that implicitly
represent sets of relevant design objects in a library of transmissions. The sets
of alternatives can be incrementally narrowed either by specifying intervals
on additional attributes or by computing tighter intervals on attributes by
functional composition. See Ward (1989) for an example of this technique.
Alternatively, qualitative representation of machine behavior together with
simplification and abstraction operators can dynamically classify designs for
selection based on their behavior properties (Joskowicz, 1990). For example,
simplification and abstraction of configuration space representations of the
kinematics of transmissions can be used to dynamically create an equiva
lence class of self-locking transmissions.

The advantage here is that requirements can be specified and interpreted
at varying levels of abstraction. However, interval representations are direct
only when attributes can be modeled as variables with ordered values such as
real numbers; while qualitative representations of sets of values may not
narrow alternatives sufficiently for selection.

5. Parametric Design

The abstract formulation of a parametric design task follows a familiar
pattern:

1. a symbolic model of a prespecified design configuration is created where
parameters defining the design, the design requirements, the context of
use, and other attributes of interest in the product life cycle are identified;

2. constraints and goals from domain theories and processes of manufac
turing (and other product life-cycle concerns) applicable to the compo
nents and subsystems are used to derive a mathematical model;

3. from known parameter values representing design requirements, the
mathematical model is solved to determine optimum or acceptable values
for unknown parameters defining the design, its behavior and its attrib
utes. In special cases, parameters defining the design are directly comput
able, while in most cases they have to be estimated initially, and iteratively
improved by evaluating its effects against requirements.

www.manaraa.com

218 Srikanth M. Kannapan and Kurt M. Marshek

A
c
Cv
Cf
d
do
dL
D
Fe
Fd
Ft
G
ks
kact
K
Kw

t
pipe enclosure

pipeline cross-sectional area (in. "in.)
heUcal spring index
valve configuration factor
orifice co-efficient
heUcal spring wire diameter (in.)
orifice diameter (in.)
flow line diameter (in.)
mean helical spring diameter (in.)
cracking force on heUcal spring (lb)
dynamic fluid force (lb)
total force on heUcal spring (lb)
shear modulus of spring material (psi)
computed spring rate (lb/in.)
actual spring rate (lbjin.)
flow co-efficient (head loss factor)
Wahl spring factor

Lf
n
N
p
Pc
p

Q
s
Sp
I
Is
tv
b

... ,

heUcal spring free length (in.)
heUcal spring factor of safety
number of helical spring coils
maximum fluid pressure in pipeUne (psi)
cracking pressure (psi)
pressure drop from valve inlet to outlet (psi)
fluid flow rate {gal/min)
lluid specific gravity
allowable stress for pipe material (psi)
pipe thickness (in.)
seal thickness (in.)
valve cylinder thickness (in.)
max dellection of valve and spring due to fluid force (in.)
heUcal spring maximum stress (psi)
allowable helical spring material stress (psi)

FIGURE I 0.4. Schematic and selected parameters of a relief valve design.

We will use a problem of relief valve design (Lyons, 1982) as an example
to illustrate the application of alternative approaches to the above formula
tion of the parametric design task. Figure 10.4 shows a schematic of the relief
valve configuration. When the pressure of a fluid at the inlet of the valve
equals or exceeds a specified "cracking" pressure, the fluid pushes open the
poppet valve and flows to the outlet while holding the valve in force equilib
rium against a helical compression spring. At pressures below the cracking
pressure, the valve is pressed against a seal by the spring and fluid flow is cut
off.

The first step of formulation of the parametric design problem for the
relief valve identifies parameters defining the design (e.g., geometry and
material properties), the context of use (e.g., specific gravity of fluid, flow
rate, acceleration due to gravity), requirements (e.g. , cracking pressure, fac
tor of safety), and behaviors of interest (e.g., natural frequency of valve
vibration). Some of the parameters are shown in Figure 10.4.

The second step in this case uses domain theories of fluid mechanics and
solid mechanics to develop a mathematical model that constrains the param-

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 219

eters through relationships. In general, a variety of models can be developed
at different levels of abstraction and approximation of the domain theories
with consequences on the tractability of the solution process and the accu
racy of results. The key to this choice is to develop the most efficient model
(in terms of cost and time for model creation and solution) that validates the
achievement of requirements within an interval of tolerance and confidence.
This process in practice is based on specialized human expertise, experience
and intuition. Development of computational tools for modeling is an area
of research-see Falkenhainer and Forbus (1991) for example. Once a math
ematical model is formulated, a variety of techniques may be applied as
described below.

Analytical/Numerical Methods
A direct algorithmic approach can be applied where all the constraints are
collected and unknown parameter values are solved from given parameter
values based on standard analytical (e.g., algebraic manipulation, substitu
tion) and numerical methods (e.g., gradient methods, finite difference, and
finite element methods).

However, four issues need to be addressed in scaling up such direct
solutions:

1. the intractability of simultaneously satisfying multiple goals and solving
large numbers of constraints of varying form and complexity (some may
be as simple as rules of thumb and curve-fitted data while others may be
partial differential equations that require specialized solution techniques);

2. the distributed nature of specialized knowledge on parametric models and
solution methods; creation of a centralized collection of parameters, con
straints, goals, and solution methods is impractical;

3. the need to solve problems in parallel to reduce design time;
4. the need for design decisions; when context and domain information does

not fix a sufficient number of parameters and leads to under-constrained
formulations with large solution spaces.

Task Decomposition

Intractability of simultaneous solution of constraints can be avoided by
problem decomposition (problem solving/planning approach). Subproblems
are defined on the basis of clustering of goal and constraint knowledge in the
domain. For examples, see Brown and Chandrasekaran (1983), Kannapan
and Marshek (1992b), and Bowen and O'Grady (1990).

In relief valve design, clustering of constraint knowledge corresponds to
subproblems of valve-flow, valve-cracking, helical-spring, and pipe-enclosure
design when patterned after different chapters in a relief valve design hand
book (Kannapan and Marshek, 1992b; Lyons, 1982)-see Figure 10.5. In-

www.manaraa.com

220 Srikanth M. Kannapan and Kurt M. Marshek

Legend:

y Given Decision • Conflict

FIGURE 10.5. Relief valve design problem decomposition.

9.0

316
CRES

0.1

0.1

2.5

0.1

teractions between subproblems are represented by shared parameters. To
handle underconstrained subproblems, parameters that are decided by hu
man designers according to typical design procedures are identified, and
preferred values encoded as default values or utility functions (Kannapan
and Marshek, 1992b).

An execution scenario that solves the valve-flow subproblem first, then the
pipe-enclosure subproblem in parallel with the valve-cracking and helical
spring subproblems results in values for parameters shown in Figure 10.5 for
a representative design. The arrows indicate directions of data flow. The
subproblem solution processes themselves can take a variety of standard
forms (e.g., symbolic algebra, numerical methods, constraint propagation)
and are not considered here.

One issue that arises here is that of planning and controlling an efficient
execution order for subproblem solutions. Search techniques from problem
solving/planning approaches, task management techniques from system sci
ence (e.g., PERT, CPM), and optimization techniques such as dynamic pro-

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 221

gramming are applicable. As an alternative to pre-planning the order of
solution, blackboard systems can be used to execute design processes oppor
tunistically when triggered by value binding events of parameters. See Sriram
et al. (1991) for an example.

Another issue that arises in managing solution processes is conflict detec
tion and resolution. The individual decisions made by designers in this exam
ple lead to conflicts in values for the parameters D1 and D0 • One possible
protocol to negotiate such conflicts is to propagate utility functions on deci
sion parameters to the conflict parameters, and to propose agreement values
based on the propagated utility functions and axiomatic theories of bar
gaining-Kannapan and Marshek (1992b) contains details. The resolution
of conflicts by negotiation can also be formulated and solved as case-based
(machine learning) or rule-based inference (problem solving/planning). See
Sycara (1990), Klein (1992), and Lander (1989) for examples.

Optimization

A variety of multi-objective optimization techniques can be applied by
associating objective functions to individual subproblems, and ranking or
weighting the relative importance of objectives. For example, the objective of
maximizing the factor of safety for the helical-spring may be ranked higher
than the objective of minimizing the external diameter D., of the pipe-enclo
sure. See Gero (1985) and Karandikar et al. (1989) for example techniques.

Qualitative reasoning and monotonicity analysis can be combined with
optimization techniques to guide the search for improved objective function
values. For example, we can determine by qualitative reasoning and mono
tonicity analysis of constraints and utility functions that both the helical
spring solution process and the pipe-enclosure solution process drive the
value of the shared parameter D1 in the same direction (Kannapan and
Marshek, 1992b). We can then reason with their active constraints to deter
mine that the corrosion resistance constraint for the pipe-enclosure deter
mines the optimal value of D1• See Agogino and Almgren (1987) for an
example of this technique.

Optimization techniques work well for linear objectives and constraints
but find it difficult to search beyond the neighborhood of point design solu
tions when nonlinearities are involved. Techniques like simulated annealing
attempt to "jump" beyond local optima but their processes and results are
probabilistic.

Coordinated Subspace Optimization

Optimization methods can be combined with system science techniques to
coordinate the solution of coupled subproblems. Subproblems interacting
through shared parameters can be coordinated with the solution of the
global problem by exchanging parameter sensitivity information through

www.manaraa.com

222 Srikanth M. Kannapan and Kurt M. Marshek

penalty functions. For example, if a goal of the pipe subproblem is to mini
mize the external diameter of the valve, and the spring subproblem has a
goal of keeping the spring index (C = D/d) close to 9, a penalty function
for the spring subproblem incorporates the sensitivity of the spring index
to the diameter of the valve. Terms can also be added to the constraints of
the spring subproblem to incorporate penalties for violating constraints of
the pipe subproblem, and vice versa. These penalties include coefficients
modeling the responsibilities and trade-offs of different subproblems in
achieving objectives and satisfying constraints. The responsibility and trade
off coefficients are themselves optimized using sensitivity information from
the subproblems. See Sobieszczanski-Sobieski (1988) for an example of this
technique.

An alternative to using penalty functions is to coordinate solution pro
cesses by hierarchic model-based or feedback control: (a) input parameters
and default values for control variables of the solution processes are used to
initiate subproblem optimizations, (b) outputs and process variables are
sensed, and (c) control variables are updated by a control law that uses
sensed information or models of the process. For example, the shared vari
able D0 may begin with a default value, then the pipe enclosure design and
spring design subproblems optimize on their local goals. After a specified
threshold of resource usage or objective improvement rate is sensed, the
sensitivities of the objectives with respect to D0 are estimated. A control law
updates the value of D0 using, for example, an average value of the sensitiv
ities so as to initiate another cycle of subproblem optimizations. See Bell,
Kannapan, and Taylor (1992) for an example.

While the basic limitations of optimization techniques still hold, tech
niques for coordinated subspace optimizations handle subproblem interac
tion effectively, and permit parallel subproblem solution. If the dynamics of
solution processes are analyzed and possibly predicted, control loops can
maintain process stability and improve process efficiency.

Set-based Reasoning

An alternative to propagating values and utility functions is to propagate
sets of values between subproblems either as intervals or fuzzy sets. For
example, Wood and Antonsson (1990) propagate imprecision (uncertainty
in choice of values) in parameters based on a numerical method (fuzzy
weighted average algorithm), while Ward (1989) develops a labeled interval
propagation calculus for propagating value intervals through functions. For
relief-valve design, by these techniques, the effect of choosing different mate
rials for the spring wire on the outside diameter of the valve (D1) can be
represented by computing a set of values forD; from a set of values for spring
wire strength.

Propagating sets of values has advantages of being able to compactly
represent and reason with a subspace of instantiated designs, although some

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 223

approximations have to be introduced into constraint reasoning. On the
other hand, value and utility propagation do not introduce approximations
but are only capable of reasoning in the neighborhood of a point design
solution.

Constraint and Rule-based Reasoning

Instead of an optimization formulation where subproblems are completely
formulated before solution, a "least commitment" style of design can be
supported using a problem-solving/planning approach by handling interac
tions between subproblems as constraints to be formulated and propagated
(Stefik, 1981; Sussman and Steele, 1980). For example, with the given param
eter values in Figure 10.5, if constraints of different subproblems are intro
duced incrementally, constraints may be evaluated to either determine some
parameter values from givens, or to symbolically manipulate, propagate and
simplify other constraint expressions. When constraints can no longer be
propagated, the location and ordering of design decisions that will restart
constraint propagation can be precisely identified.

However, this technique becomes infeasible when constraint expressions
are too complex to symbolically propagate through other constraints. Where
constraint propagation is infeasible, parametric design heuristics can be en
coded as implementation rules or sensitivity rules using a problem-solving/
planning approach. For example, an implementation rule for designing the
orifice of the relief valve may be encoded as "if sharp-edge orifice is selected
and pressure-ratio< 0.9, then set orifice coefficient (Cf) = 0.65." Alterna
tively, a sensitivity rule can specify that a certain fractional change in orifice
coefficient is expected to result in a certain fractional change in pressure
ratio. For examples of these techniques see Dixon and Simmons (1984) and
Dixon et al. (1987). Heuristic implementation rules tend to have limited
ranges of validity and unforeseen interactions with other heuristics and
constraints.

Rule Generalization and Process Replay

Machine learning techniques can be used to generalize implementation rules
acquired through experience, and to adapt and replay existing design process
plans.

Deductive generalizations of implementation rules are based on a formal
explanation of how the implementation (the "then" part) satisfies the re
quirements (the "if" part). The generalized "then" part comprises those
preconditions that must be met for the explanation to hold. The generalized
"if" part comprises the specification explained by the generalized "then"
part together with preconditions for proper component behavior. An ex
ample of generalization of "if sharp-edge orifice is selected and pressure
ratio < 0.9 and flow rate < 500 gal/min, then set orifice coefficient (Cf) =

www.manaraa.com

224 Srikanth M. Kannapan and Kurt M. Marshek

0.65" would be to replace the flow rate condition to that of "laminar flow."
Such a generalization would be valid if a formal explanation of how the
choice of Cf = 0.65 satisfied requirements only assumed that the flow was
laminar and not necessarily that the flow rate < 500 gal/min. See Mitchell,
Mahadevan and Steinberg (1985) for an example of this technique.

Histories of parametric design processes can be stored as a sequence of
decisions that resulted in a successful design starting from requirements.
Parameters for variation in such a process are those parameters that do not
affect the acceptability of a stored decision sequence. Parametric design with
new instantiations of these parameters then simply corresponds to a replay
of the process history. For example, if a process history for relief-valve
design corresponds to a sequence of valve-flow design, valve-cracking design,
helical-spring design, and pipe-enclosure design, assumptions in the models
may indicate that variation in the flow-rate within the laminar range does
not affect the sequence. The process history can therefore be replayed with
changed flow-rate requirements. See Mostow and Barley (1987) for an exam
ple of this technique.

6. Design Synthesis

Design synthesis is the task of configuring entities of a domain to construct
a realizable system structure that satisfies design requirements. A variety of
design situations are covered by defining entities in the domain at different
levels of abstraction (e.g., geometric objects, lumped parameter models,
functional modules, and physical principles) and decomposition (e.g., air
planes, device level artifacts, material, and chemical structures). "Original
design" is subsumed by design synthesis when original designs are viewed as
non-obvious combinations and utilizations of known objects, models, or
principles (Kannapan and Marshek, 1991). (The discovery of new objects,
models, or principles is not considered part of a design process.) In addition,
design situations where a faulty or suboptimal subsystem of an existing
system must be replaced by an improved one are covered by redefining the
scope of the task to synthesis of the subsystem.

Since a synthesized configuration defines the space for parametric varia
tion, it represents a substantial commitment to the cost and performance
targets achievable when the design is completed. However, this task is the
hardest to support by traditional applications of symbolic and numeric pro
cessing techniques. An exception is the field of digital electronics (VLSI
design) where substantial progress has been made in developing synthesis
techniques and tools. Although synthesis techniques for digital electronics
are candidates for generalization to other domains, many of the inherent
advantages of this domain are difficult to find in other domains of physical
systems. Inherent advantages in the domain of digital electronics are: the
number of component types are small (in fact a NAND gate by itself is

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 225

functionally complete), relationships between components are simple (e.g.
wires), behaviors are easily representable (e.g., boolean functions with time
delays), many implementation side-effects can be controlled (e.g., by keeping
wires sufficiently apart), and functional modularity is feasible and acceptable
(e.g., separate implementation of memory and processing functions) . Some
of the techniques applicable to synthesis of physical systems beyond VLSI
are described in this section.

Consider the task of synthesizing a configuration of mechanical parts to
gradually actuate a flap on the wing of an airplane from a high-speed motor
(MacDonald, 1973). The kinematic behavior requirement may be expressed
as that of constant ratio input-output rotation between fixed angles with
respect to a fixed reference frame of a housing. The MacDonald device
(Figures 10.6 and 10.7) is used here as an example of a design configuration
that can be synthesized to satisfy requirements. The MacDonald device uses
a sliding joint between the actuator and the housing, and a helical spline
between the actuator and an output member to convert rotary motion of a
threaded shaft to slower rotary motion of the output member between fixed
angular ranges (MacDonald, 1973)-see Figure 10.7. In what follows we
neglect the fixed angular range requirement.

Four types of knowledge are involved in such a design synthesis task: (1)

.13

FIGURE 10.6. Schematics of MacDonald rotary actuator (MacDonald, 1973).

www.manaraa.com

226 Srikanth M. Kannapan and Kurt M. Marshek

FIGURE 10.7. Structure of MacDonald rotary actuator.

knowledge of design requirements, (2) knowledge of previous successful and
failed designs, (3) principles of relevant engineering and other disciplines,
and (4) how to use the knowledge in (1), (2), and (3) to construct structures
that satisfy design requirements. In the following discussion, we focus on
techniques for (4) with only indirect reference to representation issues in (1),
(2), and (3). We do not discuss control strategies required in (4).

Structure Enumeration

A direct algorithmic technique to support a synthesis task of this type is to
generate structures and test them for acceptability. First, a set of component
types and component relationship types are selected from a library and a
fixed number of instances of the selected types are created. Second, the
instantiated components and relationships are used to exhaustively generate
all structures feasible by engineering principles. Third, the generated struc
tures are evaluated with respect to design requirements. See Buchsbaum and
Freudenstein (1970) for an example of this technique.

An alternative to this technique is to define a grammar that represents
component types as terminal symbols of a language, and systems of compo
nents as non terminal symbols of the language. Productions of the language
(typically context-free) can be used to generate a space of allowable configu
rations of components and relationships. See Mullins and Rinderle (1991)
for example.

For the problem of rotary actuation, a space of possible structures that
contains the MacDonald device structure can be generated by selecting a few
instances of rigid members and sliding, revolute, threaded, and helically
splined pairs. Configuring the instances of rigid members and kinematic
pairs in all kinematically feasible ways, and analyzing the resulting structures
determines if any of them can be used for rotary actuation.

The advantage of this technique is that the feasibility of a structure is
tested during generation. But there are two important disadvantages in this

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 227

technique. First, the generative process is not directed by the goal of sat
isfying design requirements; although attribute grammars can help in testing
preconditions before activating productions (Rinderle, 1991), and optimiza
tion methods can progressively eliminate redundant components of a struc
ture after it is generated (Topping, 1983). Second, the types and number of
instances of components to be used must be selected at the beginning of the
synthesis process thus a priori limiting the space of structures generated.

Function/ Structure Variation

One way to avoid these disadvantages is to begin with functional require
ments, and combine system science and database approaches to convert the
synthesis task to selection and variation tasks. First, a design library is
created where designs are represented hierarchically as functional block dia
grams. Components are associated with the functional blocks. Second, a
system satisfying requirements is selected from the database if possible.
If this is not possible, the technique resorts to the user for interactive
construction of a system from available functional blocks and associated
components.

Selection or construction of one design satisfying requirements affords
possibilities for synthesis of other designs by function and structure varia
tion. Function variation systematically replaces one or more functional
blocks by others of identical function, while structure variation replaces one
or more components in the structure by others of identical function. For
example, from the MacDonald device, other devices may be generated by
exchanging functions of the sliding and helically splined pairs, or by choos
ing different bearing types and spline profiles. See Hundal (1990) for an
example of this technique.

The space of structures that one can generate by this technique is limited
by the initial configuration that is selected or constructed as well as the
functional blocks represented in the library. Opportunities for implementing
several functional blocks with one component (function sharing) are difficult
to exploit unless they are already implicit in the function block definition.
Also, physical realizability of a generated configuration cannot be ensured.

Case Adaptation

The need for exact matching of requirements in function/structure variation
can be relaxed by retrieving partial matches and "close" matches as de
scribed earlier for design selection. A retrieved design case can then be
adapted if possible to satisfy requirements.

When multiple component selections are made through index transforma
tion rules, the unification of index variables in rules implicitly determine how
selected components can be configured and adapted. For the rotary actuator
synthesis problem, if indexed retrieval of rotation-to-rotation conversion

www.manaraa.com

228 Srikanth M. Kannapan and Kurt M. Marshek

fails, transformed indexes. of rotation-to-translation conversion and transla
tion-to-rotation conversion implicitly specify a rigid connection between the
output of the threaded pair and the input of the helically splined pair.
See Navinchandra, Sycara, and Narasimhan (1991) for an example of this
technique.

When design objects are retrieved by analogical reasoning, the differences
between the requirements and the capabilities of the retrieved design can be
analyzed on the basis of functional and causal representations of the design
and its behavior. Results of this analysis are used to augment or mutate the
design using context specific plans and domain specific rules. For example, it
is possible to reason that rotation-to-rotation conversion is "close" to exist
ing capability of rotation-to-translation conversion by means of a threaded
pair. Augmenting a threaded pair to satisfy requirements in this case involves
detecting that a translation-to-rotation conversion is also required, selecting
the helical-spline for this purpose, and adding it to the threaded pair with
appropriate interfaces. See Dyer, Flowers and Hodges (1986), Goel and
Chandrasekaran (1990), and Murthy and Addanki (1987) for examples of
this technique.

Adaptation techniques exploit knowledge of past designs without necessi
tating initial selection by exact matching. However, the emphasis remains on
reusing known designs and not on synthesizing new designs using task and
domain knowledge.

Task Decomposition
Task and domain knowledge can be exploited by using a problem-solving/
planning approach. The overall synthesis task is recursively decomposed into
primitive tasks that are directly solvable, and the overall solution is com
posed from the primitive solutions. The decomposition is on the basis of the
structure of task knowledge represented as goals, constraints, and rules.
Plans are associated with tasks at each level of decomposition to control the
execution of its sub tasks.

Execution of a top-level plan applies the task knowledge of rules and
constraints by means of rule-based inference engines or constraint propaga
tion tools. The primitive subtasks select design objects from a library, or
parametrically redesign models of prototypical artifacts. The design objects
and models themselves may be organized separately as class hierarchies.

The results of executing lower level plans are composed by higher level
plans while incorporating constraints that incorporate intertask couplings at
each level of decomposition. In special cases it may be possible to order
subtasks that extending partial design configurations so that little or no
backtracking is necessary (McDermott, 1982). In general, plans may fail.
When a plan fails, attempts are made to repair the plan, or alternative plans
are explored by backtracking. Kota and Lee (1990b) and Maher and Fenves
(1985) are examples of this technique.

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 229

For example, based on task knowledge, one decomposition of the task of
synthesizing a rotary actuator that corresponds to the MacDonald device is:
input-rotation-support, rotation-to-translation-conversion, translation
to-rotation-conversion, output-rotation-support. Plans associated with
each of these subtasks may select bearings, threads, helical splines, and so
on, while the top-level plan enforces constraints on the connections between
the selected components to produce the structure of the MacDonald device.

Task decomposition and functional decomposition (used in function/
structure variation and adaptation techniques) tend to be complementary;
one exploiting knowledge of previously known design artifacts and the
other exploiting both declarative and procedural designing knowledge. Task
decomposition techniques are also goal directed and begin with design
requirements.

Graph Transformation and Augmentation

Relying on task or functional decompositions implicitly limits the space of
exploration to previously known decompositions of the task for which plans
succeeded, or to variations and adaptations of known designs. An alterna
tive is to modify the structure enumeration technique described earlier to
make it begin with graph representations of behavioral design requirements.

The first step is to express (a) behavior requirements and primitive behav
ior fragments of an implementation domain as graphs (e.g., bond graphs,
constraint nets) and (b) rules of graph transformation that encode properties
of graph well-formedness and knowledge of the domain. The second step is
to apply transformations to the requirement graph so as to enumerate all
transformed and augmented graphs that retain the intent of the original
requirements. Transformations match and replace subgraphs, while augmen
tations introduce new nodes or new paths between nodes.

The third step is to match subgraphs of the transformed and augmented
graphs to behavior fragments that correspond to components and compo
nent relationships stored in a library. The connectivity among matched be
havior fragments specify a configuration of components and relationships.
The graph corresponding to this configuration is further augmented by the
unused behaviors of the selected components so as to consider possible
side-effects. The final step is to determine if the generated graph satisfies be
havior requirements. If it does not, a rule-based (problem solving/planning)
technique can be used to debug the design by substituting faulty fragments
of the structure by other fragments.

The above steps can of course be interleaved to varying degrees depending
on the control strategy. See Ulrich (1988), Prabhu and Taylor (1989), Finger
and Rinderle (1989), and Williams (1989) for varieties of these techniques.

The rotary actuation design requirement can be represented as a con
straint graph; where nodes are rotation velocity variables of the input, out
put, and housing, and a hyperedge is a relation of constant velocity ratio

www.manaraa.com

230 Srikanth M. Kannapan and Kurt M. Marshek

between input and output relative to the housing. This graph can be trans
formed by replacing the constant ratio rotation-to-rotation conversion re
quirement by fragments of behavior that convert rotation to translation and
vice versa. Augmentations introduce nodes for translation velocity variables
for the reference frame, input, and output; and introduce hyperedges to
establish equality relationships between translation velocities. Such transfor
mations and augmentations permit matching of subgraphs to behaviors as
sociated with rigid members and bearing components, as well as threaded,
helical-splined, and sliding relationships. Connecting components by rela
tionships as specified by the behavior graph produces the structure of the
MacDonald device.

The main advantage of graph-based techniques is that the space of struc
tures explored is not limited by existing functional or task decompositions
even though it is directed by behavioral design requirements from the start.
Thus opportunities for exploiting and sharing functionality of components
can be detected and realized. The costs of creating these advantages is the
possibility of reinventing designs that are previously known, or designs that
can be more efficiently created from known decompositions of task or arti
fact knowledge. Also, only main signal and power flows of required behavior
are considered for structure generation in graph transformation and aug
mentation; many generated designs may be later found unacceptable due to
destructive side-effect behaviors of selected components, or nonbehavioral
design requirements.

Algebraic and Logical Transformation

Transformations and augmentations of graphs tend to be local in effect
whereas transformations of symbolic expressions can make it easier to recog
nize and replace patterns that are noncontiguous.

Given a behavior requirement as a symbolic expression of a language,
algebraic manipulation rules can be used to repeatedly transform the expres
sion. The intent of the transformations is to enable subexpressions of the
requirement to be matched to behaviors of components and relationships in
a library.

Kota (1990a), for example, uses matrices to represent and transform quali
tative behaviors. Application of such a matrix algebraic method to the rotary
actuation example will express the design requirement as a conversion of
input rotation to output rotation by means of a motion transformation
matrix concatenated to constraint matrices on the forms of motions to be
transmitted (e.g., one-way or reversible). The motion transformation matrix
can be rewritten by rules for row /column manipulations and decompositions
to match the motion transformation matrices of rigid members, and threaded,
helically splined, revolute, and sliding pairs creating the structure of the
MacDonald device.

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 231

Unlike graph-based and algebraic languages, predicate logic provides
a basis for expressing conjunctive, disjunctive, conditional, and negated
behaviors as well as type information on behavior variables in a natural
manner. Inference rules provide a formal mechanism for reasoning either
in the forward direction by producing new expressions from expressions
known to be true, or in the backward direction by reducing a goal expres
sion to expressions known to be true. A variety of sound and complete
inference rules exist such as modus ponens, resolution, and natural deduc
tion that apply to different forms of expressions. Other inference techniques
such as abduction are also relevant to design processes since they allow the
hypothesis of a design that logically implies the design requirement but
is not logically equivalent to it. See Dietterich and Ullman (1987), Kannapan
and Marshek (199lb), and Takeda, Tomiyama and Yoshikawa (1992) for
examples.

Application of predicate logic-based methods to the rotary actuation ex
ample begins with the definition of a vocabulary of predicates that represent
primitive behaviors of a domain. For example, kinematic behaviors of rigid
members and bearing components, as well as revolute, threaded, helically
splined, and sliding relationships can be defined as predicates that relate
translation and rotation velocities. Logical equivalences and implications are
defined to formally encode (a) composability of behaviors (e.g., bearing
behavior logically equivalent to a conjunction of revolute and rigid behav
iors), (b) domain theories (e.g., translation velocities add when reference
frames change), (c) properties of the language (e.g., conjunction is symmet
ric), and (d) mathematical properties of terms (e.g., transitivity of =). A
library of components and relationships with associated behaviors is defined
to enable reuse of previously known designs.

Now, the required behavior is defined as a logic expression, in this case as
a predicate prescribing constant ratio of rotation velocity between input and
output relative to the housing. A successful sequence of applications of
selected inference rules to the required behavior produces a transformed
behavior expression that is a conjunction of behaviors of rigid members and
bearings configured as in the MacDonald device using threaded, sliding,
and helically splined relationships. Opportunities for sharing functionality
of components can be exploited in this process (Kannapan and Marshek,
199lb).

Properties of algebraic and logical transformational techniques are very
similar to graph augmentation and transformation techniques. One differ
ence is that algebra and logic provide a richer language for representation
and reasoning but at the cost of less tractable means for controlling the
reasoning process. For logic-based languages, the existence of mathematical
foundations for truth (model theory) and logical entailment (proof theory)
bring problems offormally dealing with time, uncertainty, and monotonicity
of inferences to the fore.

www.manaraa.com

232 Srikanth M. Kannapan and Kurt M. Marshek

Variable Expansion and Optimization

Representation and reasoning with languages based on graphs, algebra, and
logic is difficult when models of physical phenomena lead to complex mathe
matical expressions that require numerical methods for their solution.

Symbolic and numerical methods can be used to evolve structures from
prespecified physical domains by introducing new design variables and opti
mizing over them. A boundary variational technique is developed by Bend
soe and Kikuchi (1988) for structural design where the design synthesis
problem is posed as the determination of the optimum distribution of holes
in a structural material. Cagan and Agogino (1992) show how by optimiza
tion on an expanded domain of variables structural changes in the design
can be obtained. It is unclear how these techniques would apply to synthesis
of the MacDonald device; but see Gupta and Jakiela (1992) on how new
variables can be introduced to simulate kinematics and generate shapes by
discretizing geometric boundaries.

Variable expansion and optimization techniques address the need to repre
sent and reason with complex behavioral expressions and geometric detail
when required. One disadvantage is that the methods are sensitive to the
types of domains (e.g., solid mechanics, kinematics) to which they are ap
plied. The other disadvantage is shared with methods of structure enumera
tion described earlier: a structural domain from which the design is to be
created (e.g., a block of material) has to be specified beforehand.

7. Summary

This chapter focused on three basic types of design tasks (design selection,
parametric design, and design synthesis) and seven approaches to support
these tasks from an artificial process view. The specialization of these ap
proaches into techniques to support each task were analyzed, compared, and
illustrated with examples. A summary of the techniques applied to each task
is given below:

Design Selection Techniques

• decision theory
• query languages
• interval and qualitative reasoning
• classification rules
• index transformation and analogy

Parametric Design Techniques

• analytical/numerical methods
• optimization

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 233

• set-based reasoning
• rule generalization/process replay
• task decomposition
• coordinated subspace optimization
• constraint and rule-based reasoning

Design Synthesis Techniques

• structure enumeration
• case adaptation
• graph transformation/augmentation
• variable expansion/optimization
• function/structure variation
• task decomposition
• algebraic/logical transformation

References

Agogino, A. M., A. Almgren, 1987, Symbolic Computation in Computer Aided
Optimal Design, Expert Systems in Computer Aided Optimal Design, J. S. Gero
(Editor), North-Holland, Amsterdam, pp. 267-284.

Bell, D. G., S. Kannapan, D. L. Taylor, 1992, Product Development Process
Dynamics, Proc. ASME Design Theory and Methodology Conf, Scottsdale, AZ,
pp. 257-266.

Bendsoe, M. P., N. Kikuchi, 1988, Generating Optimal Topologies in Structural
Design Using a Homogenization Method, Computer Methods in Applied Mechan
ics and Engineering, Vol. 71, pp. 197-224.

Bowen, J., P. O'Grady, 1990, A Technology for Building Life-Cycle Advisers, Proc.
of Computers in Engineering 1990, Vol. I, ASME, Boston, MA, August 5-9,
pp. 1-7.

Brown, D. C., B. Chandrasekaran, 1983, An Approach to Expert Systems for
Mechanical Design, IEEE Computer Society Trends and Applications '83, NBS,
Gaithersburg, MD, May 1983, pp. 173-180.

Buchsbaum, F., F. Freudenstein, 1970, Synthesis of Kinematic Structure of Geared
Kinematic Chains and Other Mechanisms, J. of Mechanisms, Vol. 5, pp. 357-392.

Cagan, J., A.M. Agogino, 1992, Dimensional Variable Expansion-A Formal Ap
proach to Innovative Design, Research in Engineering Design, Vol. 3, pp. 75-85.

Dietterich, T. G., D. G. Ullman, 1987, FORLOG: A Logic-Based Architecture for
Design, Expert Systems in Computer-Aided Design, John Gero (Editor), IFIP,
Amsterdam, North Holland, pp. 1-24.

Dixon, J. R., A. Howe, P. R. Cohen, M. K. Simmons, 1987, Dominic I: Progress
Toward Domain Independence in Design by Iterative Redesign, Engineering with
Computers, Vol. 2, pp. 137-145.

Dixon, J. R., M. K. Simmons, 1984, Expert Systems for Design: Standard V-Belt
Drive Design as an Example of the Design-Evaluate-Redesign Architecture, Proc.
ASME Computers in Engineering Conf, Las Vegas, NV, August 12-16.

www.manaraa.com

234 Srikanth M. Kannapan and Kurt M. Marshek

Dyer, M.G., M. Flowers, J. Hodges, 1986, Edison: An Engineering Design Invention
System Operating Naively, Proc. of the 1st Inti. Conf on Applications of AI to
Engineering Problems, Southhampton, U.K., Vol. I, pp. 327-341.

Eastman, C. M., A. H. Bond, 1991, Application and Evaluation of an Engineering
Data Model, Research in Engineering Design, Vol. 2, No.4, pp. 185-207.

Falkenhainer, B., K. D. Forbus, 1991, Compositional Modeling: Finding the Right
Model for the Job, Artificial Intelligence, Vol. 51, pp. 95-143.

Finger, S., J. Rinderle, 1989, A Transformational Approach to Mechanical Design
Using Bond Graph Grammars, Proc. ASME Design Theory and Methodology
Conf, Montreal, Canada, pp. 107-116.

Gero, J. S., 1985, Design Optimization, Academic Press Inc., New York, NY.
Goel, A., B. Chandrasekaran, 1990, A Task Structure for Case-based Design, Proc.

IEEE Inti. Conf. on Systems, Man and Cybernetics, November, pp. 587-592.
Gupta, R., M. J. Jakiela, 1992, Qualitative Simulation of Kinematic Pairs via Small

scale Interference Detection, Proc. ASME Design Theory and Methodology Conf.,
Scottsdale, AZ, pp. 351-363.

Hundal, M. S., 1990, A Systematic Method for Developing Function Structures,
Solutions and Concept Variants, Mechanism and Machine Theory, Vol. 25, No.3,
pp. 243-256.

Joskowicz, L., 1990, Mechanism Comparison and Classification for Design, Research
in Engineering Design, Vol. 1, pp. 149-166.

Kannapan, S., K. M. Marshek, G. Gerbert, 199la, A Framework for a Design
Library for Mechanical Transmissions, Proc. of 1991 NSF Design and Manufac
turing Systems Conf, Austin, TX, January 9-11, pp. 1079-1088.

Kannapan, S., K. M. Marshek, 199lb, Design Synthetic Reasoning, Parts I, III and
III, Mechanism and Machine Theory, Vol. 26, No.7, pp. 711-739.

Kannapan, S., K. M. Marshek, 199lc, Evaluating the Patentability of Engineered
Devices, Proc. Artificial Intelligence in Design, Edinburgh, Scotland, Butterworth
Heinemann, pp. 683-701.

Kannapan, S., K. M. Marshek, 1992a, Engineering Design Methodologies: A New
Perspective, In Intelligent Design and Manufacturing, ed. A. N. Kusiak, John Wiley
and Sons, pp. 3-38.

Kannapan, S., K. M. Marshek, 1992b, A Schema for Negotiation between Intelligent
Design Agents in Concurrent Engineering, In Intelligent Computer Aided Design,
eds. D. C. Brown, M. B. Waldron and H. Yoshikawa, IFIP Transactions B,
Elsevier Science, Amsterdam, pp. 1-25.

Karandikar, H., R. Srinivasan, F. Mistree, W. J. Fuchs, 1989, Compromise: An
Effective Approach for the Design of Pressure Vessels using Composite Materials,
Computers and Structures, Vol. 33, No.6, pp. 1465-1477.

Klein, M., 1992, Detecting and Resolving Conflicts among Cooperating Human and
Machine-based Design Agents, Artificial Intelligence in Engineering, Vol. 7, pp.
93-104.

Kota, S., 1990a, Qualitative Motion Synthesis: Towards Automating Mechanical
Systems Configuration, Proc. of the 1990 NSF Design and Manufacturing Systems
Conf, Arizona State University, Tempe, AZ, pp. 77-91.

Kota, S., C-L. Lee, 1990b, A Computational Model for Conceptual Design: Configu
ration of Hydraulic Systems, Proc. of NSF Design and Manufacturing Systems
Conf, Arizona State University, Tempe, AZ, Jan. 8-12, pp. 93-104.

www.manaraa.com

10. A Comparative Analysis of Techniques in Engineering Design 235

Kuppuraju, N., P. Ittimakin, F. Mistree, 1985, Design through Selection: A Method
that Works, Design Studies, Vol. 6, No.2, pp. 91-105.

Lander, S. E., 1989, Knowledge-based Systems for Cooperating Experts, Computer
and Information Sciences Technical Report 91-28, University of Massachusetts,
Amherst.

Lyons, J. L., 1982, Lyons' Valve Designer's Handbook, Van Nostrand Reinhold
Publishing Co.

MacDonald, J. G. F., 1973, Power Operable Pivot Joint, United States Patent 3, 731,
546, May 8.

Maher, M., S. Fenves, 1985, HI-RISE: An Expert System for the Preliminary Struc
tural Design of High Rise Buildings, Knowledge Engineering in Computer Aided
Design, (Editor) J. S. Gero, North-Holland, Amsterdam, pp. 125-135.

McDermott, D., 1978, Circuit Design as Problem Solving, Proc. IFIP Workshop
on AI and Pattern Recognition in CAD, ed. J-C. Latombe, North Holland,
Amsterdam, pp. 227-259.

McDermott, J., 1982, Rl: A Rule-Based Configurer of Computer Systems, Artificial
Intelligence, Vol. 19, pp. 39-88.

Mitchell, T. M., S. Mahadevan, L.l. Steinberg, 1985, LEAP: A Learning Apprentice
for VLSI Design, Proc. IJCAI, Los Angeles, California, pp. 573-580.

Mostow, J., M. Barley, 1987, Automated Re-Use of Design Plans, Proc. Inti. Conf
on Engineering Design, Boston, Aug. 17-20, ASME, Vol. 2, pp. 632-647.

Mullins, S., J. R. Rinderle, 1991, Grammatical Approaches to Engineering Design,
Part 1: An Introduction and Commentary, Research in Engineering Design, Vol. 2,
No.3, pp. 121-135.

Murthy, S. S., S. Addanki, 1987, PROMPT An Innovative Design Tool, AAAI-87,
pp. 637-642.

Navinchandra, D., K. P. Sycara, S. Narasimhan, 1991, A Transformational Ap
proach to Case-based Synthesis, Artificial Intelligence in Engineering Design and
Manufacturing, Vol. 5, No. 1, pp. 31-35.

Prabhu, D. R., D. L. Taylor, 1989, Synthesis of Systems from Specifications Contain
ing Orientations and Positions Associated with Flow Variables, 1989 ASME De
sign Automation Conf., Montreal, Canada, September 17-21, pp. 273-280.

Rinderle, J. R., 1991, Grammatical Approaches to Engineering Design, Parts II:
Melding Configuration and Parametric Design by Attribute Grammars, Research
in Engineering Design, Vol. 2, No.3, pp. 137-146.

Sim, S. K., Y. W. Chan, 1991, A Knowledge-based Expert System for Rolling
Element Bearing Selection in Mechanical Engineering Design, Artificial Intelli
gence in Engineering, Vol. 6, No.3, pp. 125-135.

Sobieszczanski-Sobieski, J., 1988, Optimization by Decomposition: A Step from
Hierarchic to Non-hierarchic Systems, Technical Report TM-101494, September,
NASA Langley Research Center, Hampton, VA.

Sriram, D., R. Logcher, A. Wong, S. Ahmed, 1991, An Object-Oriented Framework
for Collaborative Engineering Design, In Computer-Aided Cooperative Product
Development, eds. D. Sriram, R. Logcher, S. Fukuda, Springer-Verlag, pp. 51-92.

Stefik, M., 1981, Planning with Constraints (MOLGEN: Part 1), Artificial Intelli
gence, Vol. 16, pp. 111-140.

Sussman, G. J., G. L. Steele, 1980, CONSTRAINTS-A Language for Expressing
Almost-Hierarchical Descriptions, Artificial Intelligence, Vol. 14, pp. 1-39.

www.manaraa.com

236 Srikanth M. Kannapan and Kurt M. Marshek

Sycara, K. P., 1990, Negotiation Planning: An AI Approach, European Journal of
Operations Research, Vol. 46, pp. 216-234.

Takeda, H., T. Tomiyama, H. Yoshikawa, 1992, A Logical and Computable Frame
work for Reasoning in Design, Proc. ASME Design Theory and Methodology
Conf, Scottsdale, AZ, pp. 167-174.

Topping, B. H. V., 1983, Shape Optimization of Skeletal Structures: A Review,
Journal of Structural Engineering, Vol. 109, No. 8, pp. 1933-1951.

Ulrich, K. T., 1988, Computation and Pre-Parametric Design, PhD Dissertation,
Massachusetts Institute of Technology, Cambridge, MA.

Ward, A. C., 1989, A Theory of Quantitative Inference for Artifact Sets, Applied to a
Mechanical Design Compiler, PhD Dissertation, Massachusetts Institute of Tech
nology, Cambridge, MA.

Williams, B., 1989, Invention from First Principles via Topologies of Interaction, PhD
Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Wood, K. L., E. K. Antonsson, 1990, Modeling Imprecision and Uncertainty in
Preliminary Engineering Design, Mechanism and Machine Theory, Vol. 25, No.3,
pp. 305-324.

www.manaraa.com

11
A Data Representation for
Collaborative Mechanical Design

RICHARD L. NAGY, DAVID G. ULLMAN, AND THOMAS G. DIETTERICH

Abstract. Collaborative design projects place additional burdens on design
documentation practices. The literature on group design has repeatedly doc
umented the existence of problems in design decision making due to the
unavailability of design information. This paper describes a data representa
tion developed for collaborative mechanical design information. The data
representation is used to record the history of the design as a sequence of
design decisions. The resulting database records the final specifications, the
alternatives that were considered during the design process, and the de
signers' rationale for choosing the final design parameters. It is currently
implemented in a computerized data base system under development by the
Design Process Research Group (DPRG), at the authors' institution (Ore
gon State University).

1. Introduction

The data representation described in this chapter was developed to record
design information from collaborative mechanical design projects. This data
representation is implemented in computerized design history tool (DHT). It
is the authors' opinion that mechanical design practice is moving toward
collaborative design efforts involving interdisciplinary design teams. A con
sequence of this shift toward collaborative design is an increase in the prob
lems associated with managing the information generated in the design
process. Problems in managing design information for collaborative design
projects have been identified in other design process research efforts. Several
examples from the literature are

The three most salient problems found across different design projects, were:
1. the thin spread of application domain knowledge
2. fluctuating and conflicting design requirements.
3. communication and coordination breakdowns (Curtis 1988)

The rationale and context for key design decisions and assumptions becomes lost and
confused, both over time and between development groups (Curtis 1988).

237

www.manaraa.com

238 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

Critical errors are commonly made in the formulation and resolution of design
decisions (Yakemovic 1989).

A substantial portion of design related information from group meetings is not easily
shared with other members to aid in decision making or problem solving (Morjaria
1989).

The above quotations are not all from research directly related to mechanical
engineering design. However, it seems reasonable to assume that collabora
tive design projects in general will share the type of problems identified in the
above quotations. It is the opinion of the authors that, with the exception of
the problem concerning "the thin spread of application domain knowledge,"
these problems demonstrate an ever-increasing need for information man
agement tools to aid designers in collaborative design projects. Information
management tools can aid designers by organizing design documentation,
including new types of design information not traditionally recorded, and
integrating all recorded information in a shared database.

The traditional methods of recording mechanical design information are
in design drawings, plans, and specification sheets. These recording methods
do not represent the decision process, and only the end result of design
decisions are recorded. Other traditional forms of recorded design informa
tion, such as design notebooks, logbooks, meeting notes, and revision draw
ings, often exist, but this information is generally not available to all the
design participants, nor is it in a form easily shared between design groups.
The alternative proposals considered during the decision process and the
reasons for rejecting the alternatives and accepting a particular proposal are
either not recorded or that information is difficult to access.

For recorded design information to be useful during the design process, it
must be readily accessible to the designers. It is the opinion of the authors
that a computer database is currently the most suitable tool to organize
design process information. The traditional methods of recording design
information are too poorly integrated to serve effectively as a shared data
base for collaborative design. This chapter describes a data representation
developed for collaborative mechanical design information. The data repre
sentation is used to record the history of the design as a sequence of design
decisions. The resulting database records the final specifications, including a
three-dimensional rendering of the design. The database contains informa
tion on the alternatives that were considered for each design parameter
during the design process. This includes the arguments for and against the
alternate proposals and the designers' rationale for choosing the final design
parameters and rejecting the alternatives.

Section 2 of this chapter summarizes research related to this topic; Section
3 describes the data representation; Section 4 briefly describes the implemen
tation of the data representation in a computer database; and Section 5
states some conclusions drawn from current implementation.

www.manaraa.com

II. A Data Representation for Collaborative Mechanical Design 239

2. Background

2.1. Related Internal Research
The context of the research described in this chapter is the ongoing effort at
the authors' institution to understand and develop tools to support the
mechanical design process. As part of this effort a model of the mechanical
design process was developed based on studies of single engineers perform
ing novel (nonroutine) mechanical designs of moderately complex compo
nents (Ullman et al., 1988). This model is referred to as the task/episode
accumulation model.

A conclusion, drawn from the model and analysis of the protocol data, is
that the temporal history of a mechanical design process can be mapped by
recording the individual episodes as a sequence of decisions. A computerized
DHT was developed based on this model, which is capable of recording
design process information from individual design projects (Chen, 1990).

2.2. Related External Research
The collaborative design history data representation developed in this re
search, as well as several other recent efforts to develop design history tools,
is based on the IBIS (Issue-Based Information System) method. IBIS was
developed by Horst Rittel for organizing the deliberation process that occurs
during complex decision making (Rittel et al., 1973). The IBIS method orga
nizes the deliberation process into a network of three data elements: issues,
positions, and arguments. An issue is an identified problem to be resolved by
deliberation. Each issue can have many positions that are proposed solutions
developed to resolve the issue. Each position can have any number of argu
ments that support or oppose that position. Using the IBIS model, a deliber
ation is started when someone creates an initial data element and others
respond with additional data elements based on one of the defined legal
inter-element relationships. Figure 11.1 is a network diagram of the IBIS
method with data elements depicted as network nodes and relationships
depicted as arrows. IBIS is a general model of the deliberation process. It
does not directly provide a way to indicate a successful issue resolution or,
which position was finally accepted by the participants in the deliberation
process. Nor does it incorporate a method of representing the temporal
sequence of the deliberation process.

One computer application based on the IBIS model is giBIS (graphical
IBIS}1 (Conklin and Begeman, 1988). The giBIS tool was developed as
a computer aided design tool to capture design histories and support

1 giBIS was developed at Microelectronic and Computer Technology Corp.

www.manaraa.com

240 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

Generalizes
Specializes

Suggested-By

Expands-On

Challenges

POSITION

Supports

Verb 1 1 Read as: Ll :su:;b::.;j~e~c~t_J,--.,.·I..:O~b:j!.:e:c:,:tJ

FIGURE 11.1. IBIS network.

Replaces.
Challenges
Suggested-By

ARGUMENT I J
Objects-To

I ARTIFACT 1---R-e-v-ie_w_s ___ l ISSUE I J
~~UWo / ~

I STEP 1-I.__POS_I_T_ION _ _, _______ ARGUMENT I ~
Contributes-to J Objects-To

Verb
Read as: ILs:u::b~je:c~t_J·--.,..LI..:o:b:.!.je:c:;:tJI

FIGURE 11.2. giBIS network.

computer-mediated teamwork (groupware). Groupware refers to "computer
based systems that support two or more users engaged in a common task, and
that provide an interface to a shared environment" (Ellis et al., 1988). The
giBIS system uses an extension of the IBIS model, developed by Collin Potts,
that includes artifacts and steps (see Figure 11.2) . .Artifacts represent what
ever documents and standard notations are used to represent the steps and
steps represent the changes that are made to artifacts to revise them toward
correctness or completeness. The giBIS system employs a commercial rela
tional database system (that supports report generation) as the output inter
face, and it uses a unique hypertext input interface. The hypertext system
supports multiple users, via a computer network. In the giBIS system the
latest agreed-upon position to resolve a particular issue is marked. By

www.manaraa.com

I I. A Data Representation for Collaborative Mechanical Design 241

recording the current accepted position on each issue of a design process, the
giBIS system can identify the current state of the design, but it does not
record the temporal history of the design process.

Another computer-aided design history tool based on the IBIS method is
the MIKROPLIS hypertext system. MIKROPLIS is a computer program
for managing textual design information, representing designers' reasoning
(McCall, 1989). It is based on PHI (procedural hierarchy of issues), de
veloped by Raymond McCall, and it is an extension of Rittel's IBIS system.
PHI extends IBIS's network structure by allowing each primary structure to
be decomposed as subissues, subpositions, and subarguments to any level of
granularity. PHI imposes a quasihierarchial structure on the recorded infor
mation, as opposed to the IBIS multilinked network. Whereas IBIS supports
several inter-issue relationships, PHI connects issues only by a serve relation
ship. Issue-2 serves Issue-1 if answering (resolving) Issue-2 is useful for an
swering Issue-1. This simpler structure alleviates some problems in retrieving
information from large, complex databases. Like giBIS, MIKROPLIS rec
ords only the current state of the design process and does not record the
temporal history of the design process.

2.3. Data Source
The design process data representation was developed by the author based
on both a review of related research, and by examining videotaped protocol
data of engineers doing mechanical design. The protocol data used in this
research is from three sources. One source was the protocol data recorded
earlier by researchers at the authors' institution. This data is of five individ
ual professional designers performing mechanical design, and includes all
phases of the design process: conceptual, layout, and detail design.

The other two sources of videotaped protocol data are from outside re
searchers, which record students performing collaborative design. 2 One set
of data recorded at Stanford University, involved group design sessions
recorded to understand collaborative workspace activity (Tang and Leifer,
1988). The video data from the University of Queensland was recorded to
support developing statistical methods to quantify the quality and effec
tiveness of mechanical designs (Radcliffe and Lee, 1989). These three sources
of protocol data were studied to determine the kinds of information, gener
ated in mechanical design processes that the design history representation
would need to embody. As the representation evolved it was continually
tested using design episodes from this protocol data. The tests were con
ducted by entering a representation of design episodes into a computer
database.

2 The author is indebted to Dr. John C. Tang, currently at Sun Microsystems, Inc.,
and Drs. Tat Y. Lee, and David F. Radcliffe from the University of Queensland,
Australia, for the Joan of video tapes of collaborative, mechanical design sessions.

www.manaraa.com

242 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

3. Design Process Data Representation

3.1. Data Elements
The objective of this research was to develop a data representation for
collaborative mechanical design. The data representation is used to represent
design information in the DHT computer database. The representation de
veloped in this research is composed of four data-elements: issues, proposals,
arguments, and decisions (see Figure 11.3). A design process history is rec
orded in the database by representing the actual design process with these
four data-elements. The representation is based on an idealized four-step
model of mechanical design. In the first step designers identify a design issue
or issues. During the second step proposals are developed to resolve particu
lar design issues. In the third step the designers formulate arguments either
supporting or opposing specific proposals, and in the fourth step a design
decision is made to accept or reject the proposals.

The data representation is developed to record the results of the creative
design activity. It does not represent the creative process itself, which is
internal to the designer's mind, and not articulated during the design pro
cess. Although developed to record collaborative design processes, the data
representation is also suitable to record the design history of individual
designers. In this report the use of the words group or designers should, in
general, be interpreted as meaning one or more participants in a particular
design process.

~ Generalizes.
" I Specializes

I ISSUE

"'"'~··-'"
PROPOSAL I

~!:;
~-AR-G_UME_NT _ _,

Rejects. Accepts

Read as: I Subj act I Verb I Object I

Precedes.
Continued-By

FIGURE 11.3. Data representation network.

www.manaraa.com

11. A Data Representation for Collaborative Mechanical Design 243

The four principle data-elements are linked to form compound networks
that serve to organize the design history data in the computerized database.
The design process data-elements and networks used in this representation
are described below.

A design issue is any question or problem identified by a designer or design
team, that will need to be resolved to complete the design process. An issue
may be the desire to satisfy a design requirement, the need to establish the
value for some design object parameter, or any other design related question
or requirement identified by a design participant.

A proposal is a suggested addition or change to the current design, de
veloped by a designer or design team to resolve a particular design issue. Any
number of proposals may be developed to resolve the same design issue.

An argument is the designers' rationale for either supporting or opposing
particular proposals. Arguments identify the relative merits or demerits of
proposals. A design argument is a comparison, which can be either absolute
or relative (Ullman, 1991). In an absolute comparison, there is only one
proposal being focused on, and it is directly compared to a set of require
ments defined by the given design specifications and the results of previously
accepted proposals. A decision may evaluate only one proposal based exclu
sively on absolute type arguments. In a relative comparison, there is a set of
proposals being focused on, and the ability of each proposal to satisfy the set
of requirements is compared relative to the other proposals.

A design decision is a continuous segment of the design process in which
the participants evaluate a proposal or proposals to resolve a particular
design issue by weighing the arguments supporting or opposing the pro
posals. The result of a decision (if it is concluded) is either to accept or reject
the proposals. The evaluation may be based on an informal consensus or on
a formal method such as Pugh's method of concept selection. A decision also
may be suspended without accepting or rejecting any proposal, as when the
designers that feel additional information is required or that no satisfactory
proposal is currently available. In this sense a proposal can exist in the
database in one of three states: accepted, rejected, or proposed. When a
proposal is accepted, it effects the current state of the design. A rejected
proposal has been determined to be unacceptable for the current design
(it may have been previously accepted), and does not effect the current
state of the design. A proposal that is simply proposed was part of a sus
pended decision process and also does not effect the current state of the
design.

3.2. Example 1

The following is a hypothetical example of design history data of a cantilever
beam design problem (see Figure 11.4) organized using the four data-elements
of this representation. For this problem Table 11.1 lists the given specifica
tions. This simple example is only meant to clarify how the data-elements are

www.manaraa.com

244 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

P (load)

~ t H (height) -L (length) W (width)

FIGURE 11.4. Cantilever beam.

Issues

Proposals

Arguments

Decisions

Design Process History
Tiae

c:=::========~

FIGURE 11.5. Design process diagram.

TABLE 11.1. Given specifications.

l. Beam is made out of aluminum.
2. Allowable stress is 2000 psi.
3. Beam length is 12 in.
4. End load is 10 lb.
5. Beam cross-section is rectangular.
6. Minimize production cost.
7. Minimize beam weight.

used in the representation. The statements recorded in the outline are para
phrased from what the designers articulated during the design process.

Figure 11.5 is a diagram of the data-elements that represent this particular
segment of the hypothetical collaborative design process. Each of the data
elements of Figure 11.5 is summarized in Outline- I. In this design process
segment the design issue (I-1) was the need to establish the cross-section
dimensions for a cantilever beam. Two alternative proposals were developed
to resolve this issue by different team members (P-1 and P-2). Argument A-1
represents the designer's reasons for supporting proposal (P-1). Argument
(A-2) represents a second designer's rationale for supporting proposal (P-2)
and opposing (P-1). Decision (D-1) represents the evaluation process of
weighing the arguments and accepting a particular proposal. In this case, the
evaluation process was a unanimous group consensus that favored accepting
proposal (P-2) and rejecting (P-1). Outline- I is not a complete example of all

www.manaraa.com

11. A Data Representation for Collaborative Mechanical Design 245

the information recorded in the current implementation. Other information
such as a time and date stamp and additional inter-object links are not show
in this example. The reader is referred to (Nagy, 1990) for a detailed descrip
tion of the current implementation of the data representation in the DHT.

Outline-]

Issue-1: (I-1)
Description: We need to establish the cross-section dimensions for the

cantilever beam.
Decisions: Decision-1
Source: Designer-1

Proposal-]: (P-1)
Issue: Issue-I
Description: Let the beam width= 0.50 inches, and the beam height=

1.00 inches.
Source: Designer-1

Argument-]: (A-1)
Supported Proposals: Proposal- I
Opposed Proposals: none
Rationale: Using the proposed cross-section dimensions, the calculated

maximum stress for this cross-section, based on d.nax = Mcfi, is 1440 psi.
This is well below the maximum allowable stress. In addition, as
1/2" x 1" is a standard stock size, it will keep production cost low.

Source: Designer-1

Proposal-2: (P-2)
Issue: Issue-1
Description: Let the beam width = 0.45 in., and the beam height =

0.90 in.
Source: Designer-2

Argument-2: (A-2)
Supported Proposals: Proposal-2
Opposed Proposals: Proposal-I
Rationale: If we keep the height to width ratio 2: 1, we can reduce beam

weight by letting maximum stress equal allowable stress, and then
solve for a minimum cross-sectional area. The proposed values are
rounded to the nearest 1/20 in. I believe the resulting 19% reduction
in weight is more important than the possible additional production
cost.

Source: Designer-2

www.manaraa.com

246 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

Decision-]: (D-1)
Issue: Issue-1
Arguments: Argument-1, Argument-2
Accepted Proposals: Proposal-2
Rejected Proposals: Proposal-1
Evaluation: unanimous consensus
Source: Designer-1, Designer-2, Designer-3

The above outline of a naive collaborative design secession is meant to
demonstrate how design process information is recorded using the four data
elements. In order to organize the data within the database the four data
elements are linked to form higher-level data-structures. Four such linked
networks are implemented: the decision-chain, which is used to record the
chronological history of the design process; the decision-process, which is
used to record the evolution of one issue's resolution; and the issue
decomposition and issue-network, which are used to represent the intercon
nectivity of the design-issues. These four network structures are described
below.

3.3. Decision-Chain
The method used in this representation to record the temporal history of
a design process is to form a chronological sequence of decisions, called a
decision-chain (see Figure 11.6). As defined above, an individual decision is
a continuous segment of the design process where proposals on a particular
issue are evaluated. However, individual segments of a design process on a
particular issue will not always conclude with accepting or rejecting a pro
posal. A decision may be suspended without acting on any proposal, or
designers may move from one issue to another without evaluating or even
identifying any proposals. This is likely to occur during the conceptual de
sign phase where the main focus may be in identifying the design issues.
Because the temporal history of the design process is recorded as a sequence
of decisions, a decision data-element is used to record each continuous seg
ment of the design process where a different issue is considered. A decision
data-element is created even if no proposals or arguments are developed, or
an argument evaluation is not carried out. For example, consider the case

Design Process History

Time .------->
I Decision-11---..1 Decision-21---..1 Decision-31

FIGURE 11.6. Decision-chain.

www.manaraa.com

11. A Data Representation for Collaborative Mechanical Design 247

where a designer identifies several design issues, such as the need for a
particular part to be both thermally conductive and electrically nonconduc
tive, without proposing any solutions. Two issues have been identified but no
additional design work on those issues takes place at that time. This design
process segment would be recorded as two issue data-elements each encapsu
lated in a separate decision data-element. In this case these decision data
elements only serve to record the chronological sequence of the design pro
cess and are not "decisions" in the normal sense of the word. The evolution
of any particular issue's resolution during the entire design project is rec
orded as a network of decision data-elements described below.

3.4. Decision-Process

The process of resolving a particular issue may be addressed any number of
times during a design project. In collaborative design projects, individual
designers or separate design teams may even make independent decisions on
the same design issue. At a later point in the design process, the separate
groups may get together to resolve any conflicts in the previously accepted
proposals. This merging and re-evaluation of previous decisions is modeled
by linking the decisions concerning one issue into a decision-process network.
A decision-process can be considered as a meta-decision on a particular
issue, which evolves during the course of the design process. Each re-evalua
tion process is represented as a new decision with pointers from any previous
decision that the designers were aware of when making the re-evaluation.
The resulting network of linked decisions forms a tree that grows from the
root (see Figure 11.7). At the end of the design process all decisions that
focus on a particular design issue would normally be merged at design group
meetings into a single composite design-process with one final root decision.

Figure 11.7 is interpreted as follows. The six decisions (Dec-1, Dec-2,
Dec-13, Dec-35, Dec-62, Dec-87) represent all those segments of the design
project where Issue-1 was considered and, hopefully, finally resolved. When
decision Dec-2 took place the participants were aware of the proposals, the
arguments, and the evaluation associated with decision Dec-1. This could
have been the same group or a different group who had access to a design

Design Process History

Time >

FIGURE 11. 7. Decision-process.

www.manaraa.com

248 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

history that included decision Dec-1. Decision Dec-13 took place shortly
after Dec-1 and without knowledge of what transpired in decision Dec- I.
Decision Dec-35 was a continuation ofDec-13, again without knowledge of
decisions Dec-1 or Dec-2. The participants in decision Dec-62 were aware of
all the previous decisions as were the participants of the final decision,
Dec-87.

3.5. Issue-Decomposition
A third data-element network implemented in the representation is the issue
decomposition. The issue-decomposition represents the breakdown of an issue
into subissues. It is used in the database to organize the total set of identified
issues into hierarchies based on the concept of connected issue resolution. It
is therefore used to define whether a particular design issue is currently
resolved. The relation between a parent issue and its child subissues is based
on an issue's resolution. A parent issue is not defined as "resolved" unless all
of its immediate subissues are resolved. As subissues also may be decom
posed, the issue-network can have any number of levels (see Figure 11.8).

Child issues are connected by "and" links to form a decomposition of the
parent issue analogous to a table decomposed into a top and four legs. Just
as the table is complete only if each of its parts is complete, a parent issue is
resolved only when each subissue, connected by an "and" link, is resolved.
Any proposal developed directly to resolve a parent issue must resolve all the
immediate "and" linked child subissues.

3.6. Issue-Network
The fourth data-element network, called an issue-network, is composed of
issues and proposals (see Figure 11.9). As described above, an issue is not
resolved unless its "and" linked subissues are also resolved. An additional
requirement for issue resolution involves the "or" linked child issues. Sub
issues are connected by "or" links to a parent issue through the proposals
developed to resolve that parent issue. Any proposal may introduce new

FIGURE 11.8. Issue-decomposition.

www.manaraa.com

11. A Data Representation for Collaborative Mechanical Design 249

A
"or• link ~•and" link

FIGURE 11.9. Issue-network.

"created-issues" that only affect the design if that proposal is accepted.
These "stepchild" issues, connected by "or" links, do not decompose the
parent issue into parts, so they do not form part of that issue's issue-decom
position. Nevertheless a parent issue is not defined as "resolved" unless any
subissues, inherited from an "accepted" proposal, are also resolved. For
example, a proposal to use steel for the material of a design object might
create the issue of a need to protect that part from direct exposure to mois
ture. If the proposal to use steel is accepted, then the issue of needing to
choose a type of material for the design object would not be resolved until
the created issue of needing to prevent corrosion also was resolved.

4. Implementation

The purpose of this research is to augment the current DHT so that it can be
used to record the history of collaborative design processes. Two of the
data-elements used in design process representation presented here were
previously developed by other researchers at the authors' institution: design
objects and constraints (McGinnis, 1990). Design-objects are the graphical
and semantic representations of the physical artifacts developed in the design
process. A design constraint is the fundamental data-structure of the repre
sentation. Design constraints define all the values and features of the design
objects, and all relationships between design-objects. In the DHT, a con
straint represents the finest grain size of information about the design.
Figure 11.10 depicts the relationships (arrows) between the six data-elements
(boxes) implemented in the design process representation.

The design process representation is implemented in the LISP program
ming language using HyperClass, 3 an object orientated extension to Com-

3 HyperClass was developed at Schlumberger Technologies Inc. for building, main
taining, and using database systems.

www.manaraa.com

250 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

Rejects. Accepts

Read as: I Subject 1...:::::.!:.-.1 Object I

FIGURE 11.1 0. Data-element network.

mon Lisp. A HyperClass object (which should not be confused with a
"design-object"), is a type of data record that encapsulates, in a single entity,
the object's data with procedures that operate on that data. These encapsu
lated procedures are called methods. The data and methods of an object are
stored in slots of the object. A complete explanation of HyperClass can be
found in (Smith et al., 1988).

Each of the six data-elements depicted in Figure 11.10 is implemented
in the DHT as a HyperClass object: design-object, constraint, proposal,
argument, decision, and issue. As the design-object and constraint were
previously developed, the reader is referred to McGinnis (1990) and Chen
et al. (1990) for complete descriptions of these two objects. The four
principal objects developed in this research are the proposal, argument,
decision, and issue objects. Two additional supplementary objects, the
source, and date, are encapsulated in each instance of the four princi
pal objects to identify the designer(s) originally responsible for develop
ing that particular data-element, and the day and time the development
occurred.

The design process representation uses four data-element networks:
decision-chain, decision-process, issue-decomposition, and issue-network (see
Figures 11.6-11.9) to represent a design process history. These data net
works are formed by linking the six principal data-objects as shown in Figure
11.10. The data-element networks are implemented in order to organize the
design history data stored in the database for later retrieval by users of the
database. The links between the six principal data-objects are implemented
by the slots in each object.

www.manaraa.com

11. A Data Representation for Collaborative Mechanical Design 251

5. Conclusions

The design history data representation described in this chapter was de
veloped to record information generated in collaborative mechanical design
processes. By encapsulating proposals, arguments, and an evaluation within
a decision data-element the representation can record the designers' ratio
nale for supporting or opposing alternative proposals, as well as the deci
sion's evaluation process and the effect (if any) of a decision on the design. A
history of the design process can be played back by retracing the chronologi
cally ordered decision-chain. In addition, the representation includes the idea
of a design issue as the tie that binds alternative proposals to a particular
decision, and individual decisions into a decision-process that maps the his
tory of an issue's resolution. The design issue data-element is also used to
record the process of issue-decomposition common to the conceptual design
phase of the mechanical design process.

The data representation developed in this research borrows from the IBIS
deliberation method described in Section 2. This can readily be seen by
comparing Figures 11.1 and 11.3. The position element in the IBIS system
has been renamed proposal in this representation to better describe the pro
cess that it is used to represent in mechanical design. The data representation
described in this chapter adds three principal data-objects to the three used
in the IBIS method; design-object, constraint, and decision (see Figure 11.1 0).
Design-objects are the physical artifacts conceptually developed in the design
process. The design-objects are defined by the constraints that identify all the
values and features of design objects. This relationship is depicted in Figure
11.10 by the modifies link between the CONSTRAINT and the DESIGN
OBJECT blocks. The design decision is the third data-element not found in
the IBIS system. The decision data-element serves three distinct purposes in
the DHT that are not represented in the IBIS system. The first is to identify
which of all the proposals developed to resolve a particular issue are cur
rently accepted, and which are rejected. The second is to represent the tem
poral history of the design process. As described in Section 3, the decision
chain network is used to represent the temporal history of the design process
as a chronological sequence of decisions. The third is to record the chrono
logical history of an issue's resolution as a network of decisions concerning
that issue in a decision-process.

By going beyond the IBIS method and including three additional principal
data-elements, the DHT design process data representation is capable of
representing the kinds of design information observed in the design protocol
data reviewed for this research. The resulting database is an extension of the
kinds of design knowledge currently recorded in design drawings, sketches,
designer's notebooks, and meeting notes. It extends current design records
by both recording a chronological history the decision process, including the
alternatives considered, and by centrally organizing the recorded informa-

www.manaraa.com

252 Richard L. Nagy, David G. Ullman, and Thomas G. Dietterich

tion in a computer database. By organizing the design data into the four
data-element networks described in Section 3, the temporal design history,
issue resolution, and issue interaction is represented. By structuring the rec
orded information in the design history and centrally locating that informa
tion in a computer database, the data representation should allow the infor
mation to be easily shared among the design participants.

In the introduction of this chapter, six problems associated with collabora
tive design efforts are cited from current design literature. It is the authors'
hypothesis that a design history tool (DHT) employing the data representa
tion described here could help resolve the later five of these six issues. Man
aging fluctuating design requirements and preventing conflicts should be
assisted by design participants readily having access to the most current
requirements (recorded as issue data-elements). An additional issue man
aging aid is provided by maintaining an up-to-date history of an issue's
resolution (organized as a decision-process). Communication and coordina
tion between the various design groups as well as among group members
should be facilitated by sharing ideas (issues, proposals, arguments) through
a centralized database. By recording the design decision process, the data
representation directly addresses the problem of preventing the loss of the
context of design decisions, and coordinating the decision process between
development groups. Having the arguments upon which a decision was
based readily accessible to be scrutinized by all members of a design process
should help expose critical errors before the final decision evaluation. And,
finally, having a centralized design history database should considerably
facilitate the sharing of design information from group meetings.

The data representation as implemented in the DHT has currently been
tested by the author using videotaped protocol data. These feasibility tests
were used simply to verify that the system could be used to record and
retrieve the information generated in collaborative mechanical design pro
cesses. Research to verify the effectiveness of such a system is proceeding at
the authors' institution under the directorship of Dr. Ullman.

References

Chen, A., McGinnis, B., Ullman, D. G., and Dietterich, T. G. (1990). Design history
knowledge representation and its basic implementation. Department of Mechani
cal Engineering, Oregon State University.

Conklin, J., and Begeman, M. (1988). giBIS: A hypertext tool for exploratory policy
discussion. Proceedings of the Conference on Computer Supported Cooperative
Work, September 1988, ACM, pp. 140-152.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design
process for large systems. MCC Technical Report, Number STP-233-88.

Ellis, C. A., Gibbs, S. J., and Rein, G. L. (1988). The groupware project: An over
view. MCC Technical Report, Number STP-033-88.

McCall, R. J. (1989). MIKROPLIS: A hypertext system for design. Design Studies,
10(4), 228-238.

www.manaraa.com

11. A Data Representation for Collaborative Mechanical Design 253

McGinnis, B. D. (1990). An object orientated representation for mechanical design
based on constraints. Master of Science Thesis, Department of Mechanical Engi
neering, Oregon State University.

Morjaria, M., Kelsch, R., and Draugelis, V. (1989). Computer-supported tools for
collaborative engineering design. Design Institute, Xerox Corp.

Nagy, R. L. (1990). A knowledge base data representation for collaborative mechani
cal design. Master of Science Report, Department of Mechanical Engineering,
Oregon State University.

Radcliffe, D., and Lee, T. Y. (1989). Design methods used by undergraduate engi
neering students. Design Studies, 10(4), 199-207.

Rittel, H. W. J., and Webber, M. M. (1973). Dilemmas in a general theory of
planning. Policy Sciences, 4 155-169.

Smith R. G., Kleyn, M. F., and Schoen, E. (1988). Impulse reference guide. Research
Note SYS-47-41, Schlumberger Technologies Corp.

Tang, J. C., and Leifer, L. J. (1988). A framework for understanding the workspace
activity of design teams. System Sciences Laboratory Xerox Palo Alto Research
Center, Center for Design Research Mechanical Engineering Dept., Stanford Uni
versity.

Ullman, D. G. (1991). Mechanical Design Process. New York: McGraw Hill.
Ullman, D. G., Dietterich, T. G., and Stauffer, L.A. (1988). A model of the mechani

cal design process based on empirical data. Artificial Intelligence in Engineering,
Design, and Manufacturing. 2(1), 33-52.

Yakemovic, K. B., and Conklin, J. (1989). The capture of design rationale on an
industrial development project: preliminary report. MCC Technical Report, Num
ber STP-279-89, July 14, 1989.

www.manaraa.com

12
Characterizing Human Analogical
Reasoning*

BETH ADELSON

1. Introduction: Motivation and Approach

Skilled problem-solvers often work by analogy as opposed to solving from
scratch every new problem they encounter. And this is very much the case in
engineering design. For example, a cantilevered beam provides an anology
for a cantilevered bridge; as does a suspension bridge for a suspension build
ing. With regard to invention, according to Samuel Morse's diaries, 24 ini
tially, in trying to transmit telegraphic signals across significant distances
Morse tried the strategy of building successively stronger generators. He
found however, that the signals still degraded with distance. Supposedly the
solution to the problem came to him in the following way. While riding on a
train, he happened to look out of the window and notice a Pony Express
depot, at which horses were being fed and watered. Morse realized that the
relay station strategy constituted an analogical solution to the telegraph
problem as well. t In a similar vein Edison's diaries recount that he invented
the kinetiscope by setting out to "do for the eye what he had done for the
ear" with the phonograph. 4

The work described here is part of a research program to develop a
computational theory that makes use of the central characteristics of human
analogical reasoning. We begin by studying the phenomenon in context.
Because the purpose of analogical reasoning is to learn and solve problems,
we have developed our theory by consistently observing subjects within a
problem-solving context. This approach has yielded insights into the nature
of the phenomonon being modeled and, as a result, has provided constraints
allowing us to specify the theory in a number of ways that increase its
power.

• Thanks to Dedre Gentner, Brian Falkenhainer, and Ken Forbus for their loan of
SME. This work was funded by grants from NSF's CISE and Engineering Director
ates and a Henry Rutgers Research Fellowship.
t Although accounts from diaries may not be entirely accurate, as here, they often
provide excellent examples of familiar a phenomenon.

254

www.manaraa.com

12. Characterizing Human Analogical Reasoning 255

As we will discuss in Section 3.1, recent research suggests a class of theory
that rests on a process consisting of retrieval, mapping, evaluation, debug
ging, and generalization.8• 10• 11• 1s· 19•28•20•22 Each of these components of
the process is defined in detail in Section 3.1, but it is useful to give the reader
an immediate feel for the process here.

In this process, a problem that is analogous to the current "target do
main" problem, but that previously has been solved, is retrieved from mem
ory. The solution to the old "base domain" problem is then "mapped" or
imposed on the new problem, giving the problem-solver a way of looking at
the new problem. The old solution is then evaluated and debugged. That is,
the problem-solver considers the ways in which the old solution needs to be
modified in order to lead to success with respect to the new problem. Once
the new problem is solved the method may become a part of the problem
solver's general bag of tricks.

We can use the example from the case study discussed in Section 2 to
illustrate the process. In the example, a student is being taught about com
puter stacks by analogy to cafeteria stacks. The student is reminded that
cafeteria stacks exhibit the last-in-first-out property of the data structure
being presented to him. This allows him to map or impose the cafeteria
domain model onto what he knows about data structures. He then evaluates
and debugs the cafeteria model, modifying it in a way that is appropriate for
the computer domain.

The work we present here extends existing cognitive theories of analogical
reasoning by specifying some possible mechanisms for mapping evaluation
and debugging. In our theory these three processes are active and problem
driven. Additionally, they are heavily dependent on the use of knowledge
about function, structure, and mechanism. From this point of view we dis
cuss the following processes in detail in Section 3:

1. Purpose-Constrained Mapping: In teaching about a complex domain,
tutors focus their students' attention on individual aspects of the domain,
allowing the students to map models that are partial but sufficient for
their immediate purpose.8 •9 As explained below, this strategy results in
incremental learning that makes both mapping and debugging more trac
table. In this way, purpose provides a powerful and useful constraining
strategy that needs to be included in a specification of the mapping
process.

2. Active Evaluation: A system that models human problem-solving needs
to be able to identify the bugs inherent in an analogically acquired do
main model. Our system actively searches for bugs in newly mapped
domain models; the system, rather than a human tutor, initiates the
search. The system does so by comparing the nature of the actions and
objects in the newly mapped model to the nature of the actions and
objects appropriate in the domain being mapped into (see Section 3.3.1
for algorithmic details). This allows the system to identify the aspects of

www.manaraa.com

256 Beth Adelson

the model that are inappropriate and therefore unlikely to hold in the
domain being mapped into. Our system also has knowledge about the
way in which analogical correspondences are meant to be understood
across domains. These aspects of our system reflect powerful elements of
human reasoning.

3. Active Debugging: Once the buggy portion of a domain model has been
identified, it must be replaced by a representation that is accurate in the
new domain. Our system constructs and runs target and base domain
simulations of the operations embodied in the models. This allows the
system to identify mechanisms in the target domain that are functionally
analogous to portions of the base domain models. The system can, as a
result, correct mapped models, maintaining the functional explanation
provided by the analogical example while building a representation of a
mechanism appropriate to the target domain.

Here, too, our system's behavior characterizes the constrained way in
which analogical examples are understood and used; they are not taken
literally, rather they are understood to be only partially applicable.
(See the "spring and capacity limitation" example in the next section.)
This understanding of the constrained applicability may be what allows
problem-solvers to consider analogies to be helpful even though it is
known both that they provide imperfect explanations and that the nature
of the imperfection is unknown.

We are not alone in the view of analogical reasoning implied by the above set
of issues. The spirit ofCarbonell's11 work on derivational analogy; Holyoak
and Thagard's19•28 work on multiple constraint satisfaction; Kedar-Cabelli's
work on purpose-guided reasoning, 22 Burstein's6 work on causal reasoning
and Falkenhainer, Forbus, and Gentner's work15 on structure mapping is
consonant with our view of analogical reasoning as an active, knowledge
intensive process. Nevertheless, we make a contribution by adding these
particular features, representative of human analogical reasoning, to each
element in our theory.

2. Case Study: Protocol Data Illustrating the Issues

In developing our theory, we conducted a case study and collected protocol
data from it. 1• 14•23 Repeatedly we have drawn on the protocol data de
scribed below. These data yield insights into the mechanisms that underlie
analogical reasoning.

The Protocol

In collecting our data we videotaped a tutor teaching a student about com
puter stacks as last-in-first-out data structures. The tutor's goal was to have

www.manaraa.com

12. Characterizing Human Analogical Reasoning 257

the student be able to specify the procedures for "pushing" and "popping"
items onto and off of stacks both in Pascal code and in box and arrow
diagrammatic notation. We chose box and arrow notation, as well as code
generation, because it is a frequently used exercise designed to have students
understand the procedures involved in data structure manipulation. At the
beginning of the protocol session, the student had just completed an intro
ductory programming course in which he had learned about some basic pro
gramming constructs and about elementary data structures such as arrays
and simple linked lists. He had not learned about using a linked list as a
stack. The tutor had the intention of building upon the student's existing
knowledge of Pascal through the use of analogy.

The relevant events of the protocol can be summarized as follows:

Learning About the Behavior of a Stack

The tutor told the student that in the field of computer science the data
structures referred to as stacks are so named because their behavior is analo
gous to the behavior of the similarly named device that holds plates in a
cafeteria. The student then proceeded to assimilate the information about
the behavior of a stack. He thought of ways in which he might have previ
ously encountered the use of stacks in programming. He suggested that
stacks might be useful in implementing subroutine calls. He then also stated
that, in general, when a task had an unmet precondition it would be useful
to delay execution of the task by pushing it onto a stack.

Learning About the Mechanism Underlying the Behavior

The tutor told the student that the mechanism of the computer science stack
is in some sense analogous to the mechanism of the cafeteria stack. In order
to achieve "last-in-first-out" (LIFO) behavior, items are pushed and popped
at the top of the cafeteria stack. The student drew a diagram of a cafeteria
stack and described how push causes the stack's spring to compress and pop
causes it to expand.

Implementing Push and Pop in the Target Domain

The student next drew the box and arrow diagrams for implementing push
and pop using a linked list. He also wrote the Pascal code.

After writing push, the student asked if the capacity limitation that results
when the spring is fully compressed is relevant in the new domain. The tutor
told the student that the physical elements of the analogy (springs, movement
of plates, etc.) do not apply. The student then asked if the concept of capac
ity limitation applies even if the spring doesn't. The tutor responded that
although capacity limitation is an important concept, the student should
disregard it for now.

www.manaraa.com

258 Beth Adelson

3. Issues for Specifying a Theory of Analogical
Problem-Solving

3.1. A General Theoretical Framework
We begin the discussion of our work by describing the class
of theory that emerges from the current literature on analogical
learning.1,3, 5,8,2S,10,11,15,19,28,20,22,31,32

Converging evidence suggests a model that embodies the following set of
processes:

• Retrieval: A relevant conceptual model of a familiar "base" domain
is retrieved from memory. This retrieval process is incremental. Base
domain models relevant to the emerging "target" domain will be retrieved
throughout learning. The retrieval process is affected by factors such as
the problem-solver's purpose, his general world knowledge, his knowledge
of various base domains, and, importantly, his preexisting knowledge of
the target domain.

• Mapping: Correspondences are established between the entities in the
base domain model and the currently known entities in the target domain.
The base domain model is then mapped to form a model of the target
domain.

• Evaluation: Evaluation can be thought of as an experimentation process.
The Ieamer attempts to use the newly mapped model to solve problems.
The generation of these problems is equivalent to the generation of a set
of experiments to test the newly mapped model's accuracy and sufficiency.
As we discuss later, part of our goal is to build a system that models the
way human learners actively and strategically seek to generate these
experiments.

• Debugging: The results of the evaluation process are used to extend and
correct the model of the target domain during debugging. Each analogical
example is, by definition, only partially correct. As a result, we treat
debugging as a central issue in analogical learning.

• Generalization: Here the structures shared by the analogically related
domain models may be abstracted away from both domains, to form a
more general understanding.

A sufficient account of analogical learning in complex domains must provide
detailed specifications of each of the above processes. In this chapter we
concentrate on the mapping, evaluation, and debugging components of ana
logicallearning. In Section 4 we touch on retrieval.

Figure 12.1 diagrams the mapping, combined evaluation and debugging,
and problem-solving components of our system. The system's mapper takes
as input a base domain model and a list of the correspondences between
elements in the base model and already known target elements. The mapper
produces tentative target domain models, which are then debugged and

www.manaraa.com

12. Characterizing Human Analogical Reasoning 259

I I
map eval & debug problem. solver

FIGURE 12.1 Components of the analogical reasoner.

evaluated. The debugged models are then passed to a problem-solving com

ponent that can generate box and arrow diagrams and Pascal code. Addi

tionally, in our system, the output of the debugger can be used to guide

subsequent mappings.

3.2. Purpose-Constrained Mapping

Purpose provides an essential constraint in problem-solving, but current

implementations of cognitive theories do not make heavy use of this con

straint. • The argument for why purpose is necessary in constraining problem

solving runs as follows. Reasoning about a complex domain requires under

standing a number of distinct aspects of the domain and the relationships

among those aspects. 2 • 7•12 Given the constraints of the cognitive system, it

is not possible to learn all of these various aspects at one time. Rather, to

make learning of a complex domain more tractable, students and instructors

typically focus on individual purpose-defined aspects of the domain and, one

at a time, map partial models from more familiar analog domains. 8• 9 These

partial models can later be integrated to provide a more full understanding

of the target domain. 7

One section of the protocol data described above provides an example of

the way in which purpose can successfully constrain the mapping process by

limiting attention to currently relevant aspects of the domain being learned.

In teaching the student about stacks, the tutor first explained the LIFO

behavior of a stack without regard to the underlying mechanism. The stu

dent used this focus of attention suggested by the tutor. He proceeded to

think of ways in which he might have unknowingly encountered the use of

stacks in programming; he suggested that stacks might be useful in imple

menting subroutine calls. He then generalized their usefulness, stating that

whenever a task had an unmet precondition it would be useful to delay

execution of the task by pushing it onto a stack. Note that the student

ended up with a sophisticated and correct understanding of one aspect of

the domain. This enabled him to then sucessfully tum his attention to the

mechanism underlying the now well-understood behavior.

• Two notable exceptions are Thagard and Holyoke, 19• 28 and Kedar-Cabelli, 22 who
also stress the theoretical importance of purpose.

www.manaraa.com

260 Beth Adelson

3.2.1. Implementing a Purpose-Guided Mapper

In our computational description, the learning process starts with this selec
tion and mapping of purpose-constrained aspects of the target domain. Our
mapping mechanism focuses on partial models of the base domain whose
type reflects the problem-solver's purpose, and maps these models, type by
type, over to the target domain.

Basically, our mapper uses the focus suggested by the tutor to select a
model from the set of models in the base domain. The selected model is then
mapped by using whatever cross-domain correspondences may have been
supplied by the tutor to replace base domain elements of the model with
target domain elements. The mapper also builds, for each element mapped
into the target, the "template definitions" described below. Additionally, if
our mapper is currently mapping a causal model that provides an underlying
mechanistic explanation for a previously mapped "higher-level" behavioral
model, the results of having debugged the higher-level model will guide the
current mapping (Section 3.3.1). Note that we define a behavioral model
as one that describes the results of an action and a causal model as one
that describes how that action happens. The behavioral model can then be
thought of as "higher-level" than the causal, in that the behavioral model
can provide an explanation of an underlying mechanism. 2• 30

Our mapping algorithm is similar to Gentner's17 in that it uses SME's*
central principle of mapping structure by mapping objects connected or
"structured" by relations. The relations are referred to as "predicates" in
that they are aspects predicated to be true of the related objects. t

There are, however, four ways in which our mapping algorithm differs
from SME. (1) We have implemented a purpose-guided focusing mechanism
that allows our mapper to select a model of a specified type from a base
domain containing a variety of models. As discussed below, this allows
incremental learning and debugging. (2) The results of debugging early
mapped models will guide the mapping oflater mapped models that underlie
them. As a result, the mapping process becomes more focused as more is
known about the relationship between the base and target domains (Section
3.3.1). (3) Descriptive predicates will be mapped by our mapper, but not by
SME. We have chosen to map descriptive predicates because we have found
that they can have a role in the functioning of the model. For example, as
shown in Figure 12.2a, because full is a predicate describing the state of its
argument, stack, it is likely that SME will not map it over; this will make it
difficult for SME to produce a target domain model that specifies the current

• Gentner's Structure Mapping Theory17 is implemented in Brian Falkenhainer's
Structure Mapping Engine, SME.1 5 .

t For example, if Fido the dog is my faithful companion we can predicate a compan
ion relationship between Fido and Beth Adelson, companion (beth, fido). We could
then use that relationship via a mapping process to understand the relationship
between other pets and humans.

www.manaraa.com

12. Characterizing Human Analogical Reasoning 261

push(plate,stack) ~ on-stack(plate,stack)

l "'on(plate,old-top-plate)

increase(full(stack))
(a)

push(node,stack)

I
put-on(node,stack)

on-stack(node,stack)

increase(number
(node-set) on(node,old-top-node)

increase(compression(spring))

l
increase(full(stack))

(b)

FIGURE 12.2. Push: behavioral and causal models in the base domain. (a) Behavioral
model in the base domain; (b) causal model in the base domain.

fullness of a stack. However, other problem-solving processes may need a
model that contains this attribute, so that, for example, a stack that is
already full will not be pushed onto. For this reason, we prefer to keep
descriptive predicates until after mapping, and then have a debugger get rid
of extraneous features that can be found not to participate in problem
solving. (4) Whereas SME tends to drop a base domain entity whose target
analog is unknown, our mapper leaves such an entity in the newly mapped
model. This allows our system's evaluator to find domain-appropriate re
placements. It results in newly mapped models that have the complexity of
the models from which they were derived (Section 3.3.2).

Gentner's Structure Mapping Theory1 7 is powerful in that it describes a
process that serves the purpose of analogical mapping. That is, structure
mapping provides the learner with a way to view a barely familiar target
domain as a structured and, therefore, functional system. (And hence one
that is useful in problem-solving.) Building on Gentner's idea, we have im
plemented a mapper that preserves structure. Our theory additionally asserts
that the mapper should produce a model that maintains the functionality of
the source model (points 3 and 4 above) and should make use of acquired
knowledge about cross-domain differences (point 2 above).

www.manaraa.com

262 Beth Adelson

3.2.2. A Sample Mapping

The following illustrates a mapping produced by our system:
In this example our overall goal is to have the system model the problem

solving in our protocol. That is, we want the system to learn about computer
science stacks and stack operations by analogy to cafeteria stacks and to
produce box and arrow diagrams and code for the operations push and pop.
To accomplish this, the system begins by taking the tutor's suggestion to
focus initially on the behavioral model for push. In addition to supplying a
focus, the tutor also supplies a list of base and target domain correspon
dences stating, for example, that push in the base corresponds to push in the
target and plates correspond to nodes. The system selects the suggested
model from a base domain containing behavioral and causal models of both
push and pop. The selected model is then mapped into the target domain. The
behavioral and causal models for push in the base domain can be seen in
Figure 12.2a and 12.2b, respectively. How these models are used in the
learning process is discussed in the sections that follow.

In Figure 12.3 we see the behavioral model of the target domain produced
by our mapping mechanism. What is important to note here is that the
nature of the models allows them to be used in the problem-solving that is
the system's ultimate goal. That is, tracing along the arrows in, for example,
the causal model in Figure 12.2b we see the chain of events that occur when
push is performed.26•27 Following the model right to left and depth first:
Pushing is equivalent to putting a new node on the stack; this new node is on
top of what previously was the top node of the stack. However, having put
the new node on the stack causes the spring to become further compressed;
this causes the stack to increase in fullness; and the number of nodes in the
stack increases.

The format of the models is represented graphically here. In actuality,
within the system, the models contain instructions for carrying out the causal
chain of state changes described in the diagrams. That is, they are composed
of instructions for computing an increased value for the compression of the
spring and then based on that new value instructions for computing an
increased value for fullness. These instructions are carried out by the sys
tem's simulation machine. 1• 16• 13•18 The simulation machine's output is a list
of the current values of the variables that describe a state after the operation
described in the model has been performed.

push(node,stack) R on-stack(node,stack)

! "on(node,old-top-node)

increase(ful/(stack))

FIGURE 12.3. Newly mapped behavioral model for push in the target domain.

www.manaraa.com

12. Characterizing Human Analogical Reasoning 263

Additionally, the format of the models allows them to be examined by a
debugger, (Sections 3.3.1 and 3.3.2) to be used to generate box and arrow
diagrams after debugging.

Although the contents of the models were inferred through protocol
analysis, the assertions in the model can be formalized to allow, for example,
the deduction that the old-top-node is the last-pushed-node. Additionally,
because the predicates specify computations that result in state changes they
have an underlying "procedural" semantics.

The following section describes how our system debugs the newly mapped
model of push so that problem-solving can be carried out successfully.

3.3. Debugging a Newly Mapped Model
3.3.1. Actively Seeking out Bugs

In our theory, debugging is characterized by an active search for bugs, one
that is initiated by the system rather than by the tutor. The base domain
model is known, by definition, to provide an imperfect model of the target
domain. The base model may contain inappropriate elements that require
deletion or transformation; or it may require additional knowledge specific
to the target domain.

Our current example illustrates the case in which a newly mapped model
contains a concept that is inappropriate in the target domain and needs to be
deleted. In subsequent sections we deal with increasingly complicated cases
of transforming a newly mapped model. Looking at the behavioral model
that our mapper produced for the target domain (Figure 12.3) we see that
pushing a node onto a stack that is implemented as a list of nodes, leads to
the stack being more full. However, the system contains prior knowledge
about the target domain that asserts that lists of nodes are used when a data
structure without a prespecified capacity limitation is desired. • Since linked
lists have no specified capacity limitation there is an inconsistency between
the newly mapped model and prior knowledge of the target domain. The
system must have the ability to notice and resolve this inconsistency.

Identifying and Fixing Bugs in a Runnable Model

Here we describe how the system's evaluation and debugging mechanism
resolves the "fullness bug" in the course of evaluating the behavioral model
of push. The system's evaluator looks in tum at each element of a newly
mapped model in an attempt to determine whether each element it encoun-

• For this example we have supplied the system with the same knowledge of the target
domain that our novice programmer had. We have given it models for performing
typical operations on variables, arrays, and linked lists. It also has world knowledge
about boxes and containers.

www.manaraa.com

264 Beth Adelson

ters is appropriate in light of the domain the model has been mapped into. In
order to allow the evaluator to carry out the evaluation, the system has been
given several kinds of knowledge, labeled K 1-3 below:

Kl. Any element that occurs in a model has a definition, a template con
sisting of a set of features. 6 •29•31 •32 Elements in the model are either
objects (e.g., stack) or predicates. Predicates describe attributes of, or
actions on, objects (e.g.,fullness or push, respectively). For objects, one
feature in the template specifies the class it belongs to. For predicates,
the class of both the predicate and the objects it applies to (its argu
ments) are listed. For example, the predicate full has a template that
specifies that full's class is a measurement of capacity; that full takes a
container as an argument and that container's class is an object with a
limited capacity.

K2. The system knows not only which specific objects and predicates are
appropriate to each domain, but also which classes of objects and predi
cates are appropriate. For example, the system knows that integer vari
ables in particular, and data structures in general, are appropriate in the
computer domain.

K3. The system has general knowledge about how analogical correspon
dences are meant to be taken. For example, the system contains knowl
edge that physical contiguity in the base can be appropriately thought
of as corresponding to virtual contiguity in the target.

The system uses the knowledge described above in applying rules that allow
it to evaluate each element in the newly mapped model. The rules, labeled
Rl-4, are

Rl. Infer that an element currently in the target domain is appropriate in the
new model.

R2. If the element is not currently in the target domain but it is of a class
currently in the target domain, infer that a modified version of the
element is appropriate in the new model and use the existing domain
definition of the class to modify the element.

R3. If the newly mapped element belongs to a class that has a corresponding
class already existing in the target domain (point K3), infer that a
modified version of the element is appropriate and use the existing
target domain definition to modify the model. (See modfication example
below.)

R4. A predicate can only be applied to an argument of an appropriate type;
that is, fullness cannot be predicated of a container without capacity
limitations (point Kl).

We see each of the above rules (and the knowledge they embody) being
applied as we follow the evaluator working its way through the model for

www.manaraa.com

12. Characterizing Human Analogical Reasoning 265

push in Figure 12.3. (The convention we are using for reading through the
models is breadth-first, right to left.) Starting at the root of the tree, the
evaluator encounters the element push. Because the tutor had specified that
push in the base corresponded to an asserted, but as yet undefined, version of
push in the target, the system infers that push is appropriate to the model and
turns to the predicates that follow from it.

Although on-stack does not yet exist in the target, its definition states that
it is a "membership relation." Applying rule R2, the system finds that other
predicates in the target are membership relations [e.g., the Pascal function
in(set)] and, therefore, the system hypothesizes that the predicate holds.

The evaluator next comes to the predicate on. The template for on states
that it is a "physical contiguity relation." The system knows that physical
contiguity in the base corresponds to virtual contiguity in the target (rule
R3). It therefore makes this change to the predicate's template and then
infers that the predicate holds. This is an example of the system's ability to
model human problem-solvers in interpreting analogical correspondences in
an appropriate, nonliteral manner.

The evaluator turns to the predicate full; it finds that full is potentially
appropriate in that it already exists in the target as knowledge that arrays
can be full (rule Rl). However, the evaluator finds that fullness can only be
predicated of containers having capacity limitations (rule R4). It knows that
the stack is being implemented as a list of nodes and that lists do not have
capacity limitations. The system suggests that the concept fullness should be
removed from the model. It then removes fullness. At this point, if the system
is told that the problem arose because no capacity limited containers were
being used in this example it will also remove all other predicates whose
definitions involve capacity limitations. Figure 12.4 shows the debugged
version of push after fullness has been deleted.

But more mileage can be gained from this evaluation. The system has just
mapped and debugged the behavioral model. It will now go back and map
the causal model using information gained in debugging the behavioral one.
When this mapping begins, the system will take note of any elements that
have been deleted from the behavioral model (in this example,full). Pieces of
the causal model that only explain already deleted behavior will not be
mapped.

For example, the dashed branch ofthe causal model in Figure 12.5 will not
be mapped, since its only role in the model is to provide a way of computing
fullness by specifying that fullness can be determined by considering the

push(node,stack) ~ on-stack(node,stack)

on(node,old-top-node)

FIGURE 12.4. Behavioral model for push in the target domain: debugged version.

www.manaraa.com

266 Beth Adelson

push(p/ate,stack)

j
put-on(p/ate,stack)

~ on-stack(plate,stack)

increase(number / : ~ .
(plate-set)) ~ on(plate,old-top-p/ate)

increase(compression(spring))

I
I
I

t
increase(fu/l(stack))

FIGURE 12.5. Causal base model.

current degree of spring compression* in relation to the maximum possible
compression. t

This means that the model in Figure 12.7 rather than the more complex
one in Figure 12.6 will be mapped into the target domain. As a result, the
debugger will have a simpler causal model to deal with; one in which the
mechanism supporting the inappropriate concept of full has already been
removed. As illustrated here, this strategy of incrementally mapping partial
models and using earlier mappings to guide subsequent ones, can simplify
the potentially complex process of debugging causal models.

Using the procedure described above, the system now debugs the causal
model in Figure 12.7 modifying the definition for put on according to its
definition in the target domain. This debugging procedure results in the
causal model shown in Figure 12.8. Reading from left to right we see that the
model now correctly specifies the sequence of actions that make up push
(setting the new node's next-pointer to the top node in the stack, setting the
stack's head-pointer to the new node). It also specifies the results that follow
from these actions (the new node being on the stack, etc.). This model will
now be passed to the "box-and-arrow-drawing" portion of the system's
problem-solving component. This component of the system can, using the
sequence of actions specified in the model, generate box-and-arrow diagrams

*We present this model where the fullness of the stack is calculated using the com
pression of the spring because it reflects the model used in our protocol. In the next
section we present the intuitively appealing example of a base domain model in which
fullness is calculated using the number of plates in the stack.
t Recall that the system models contain instructions that specify how to compute
fullness based on spring compression.

www.manaraa.com

12. Characterizing Human Analogical Reasoning 267

push(node,stack)

j
put-on(node,stack)

oti-stack(node,stack)

increase(number
(node-se on(node,old-top-node)

increase(compression(spring))

j
increase(full(stack))

FIGURE 12.6. Newly mapped causal model with fullness.

push(node,stack)

l
put-on(node,stack)

~ on-stack(node,stack)

increase(number(node-set)) on(node,old-top-node)

FIGURE 12.7. Newly mapped causal model with fullness.

of push on a computer screen. That is, the "box-and-arrow" portion of the
system has knowledge that allows it to carry out the type of actions that
occur in the models (such as set-next-pointer). These actions are carried out
in a way that causes diagrams representing the actions in the models to be
drawn on the computer's screen.

3.3.2. Transforming a Mapped Model: Reasoning About Simulations

In the example just described we considered the case where an element needs
to be deleted. Our system also handles more complex cases in which a model
needs to be transformed in various ways by finding correspondences between
a target-domain inapropriate element mapped over from the base and exist
ing target domain elements.

The first case in which a model needs this type of transformation is illus
trated by the example in which the goal is to implement a stack using an
array as opposed to the previous example in which a linked list was used. The

www.manaraa.com

268 Beth Adelson

push(node,stack)
-+ set-next-pointer(node,old-top-node) + set-head-pointer(stack,node)

-+ on-stack(node,stack)

increase(number(node-set)) on(node,old-top-node)

FIGURE 12.8. Debugged causal model in the target.

representation of the base domain is the same as it was for our previous
example. Knowledge of the target domain still consists of information about
variables and arrays but, this time, not about linked lists. The system again
has runnable models for typical array operations such as initialization and
search.

The behavioral model of push is again mapped into the target domain.
This time no changes are made in the behavioral model; the fullness of the
stack is found to be consistent with the system's knowledge of the capacity
limitation of an array. After mapping the behavioral model, the system maps
the causal model of the stack into the target domain and then begins to
evaluate and debug it. During this process the system questions the tutor on
the appropriateness of the spring in the causal model (Figure 12.9). (The
system's knowledge specifies that physical objects like springs do not belong
in models of computer memory.)

The tutor tells the system that the domain-appropriate functional analog of
the spring needs to be found. In finding the functional analog of the spring
the system will draw on several types of relational knowledge (RKl-3). This
relational knowledge is learned by the system; the system notices and stores

put-on(data,stack) 0 on-stack(data,stack)

increase(number
(plate-set) on(data,o/d-top-data)

increase(compression(spring))

j
increase(ful/(stack))

FIGURE 12.9. Newly mapped causal model of pushing onto an array.

www.manaraa.com

12. Characterizing Human Analogical Reasoning 269

these relations whenever it acquires a new model. They do not have to be
hand-coded by the programmer.

RKl. The system contains functional to structural mappings; knowledge
relating state changes and the mechanisms causing them.2 • 13• 16• 21

For example, it knows that "changes in fullness are supported by
changes in the mechanism comprised of the spring, the set of plates,
etc."

However, we want to stress that the system's knowledge does not
contain any explicit statement concerning how changes in fullness are
related to changes in the spring. This is what needs to be determined.

RK.2. The system has knowledge relating actions and the state changes
they produce. It knows, therefore, that "pushing leads to changes in
fullness."

RK3. The system also has knowledge relating actions and the mechanisms
involved. It knows that "pushing involves a change in the spring."

In order to find the piece of target domain mechanism with the same func
tion as the spring, the system will find what sort of state change in the base
is associated with a particular change in the spring. It will then turn to the
target, look at the parallel state change, and determine what piece of mecha
nism is effected in the way that the spring was. To do this the system first
needs to focus on the base and find what state changes the spring is involved
in. It examines its knowledge of functional to structural mappings (RKl)
and finds that the spring is involved in changes in fullness. Now, in order
to find out the nature of the relationship between changes in fullness and
changes in the spring, the system runs a simulation of push and obtains
values for the fullness of the stack and the compression of the spring before
and after the simulation is run. The system then compares the direction of
change in both fullness and spring compression and finds that there is a
positive relationship between the two. Currently, the system can recognize
positive and negative correlations, as well as the lack of relationship between
two state variables. It is possible to expand this part of the system to include
the recognition of more complex, but regular relationships.

The system now needs to find what piece of mechanism in the target
domain changes for the same reason and in the same way as the spring (i.e.,
increases with fullness). The system begins by retrieving an operation in
which fullness increases. It will then run this operation and look for pieces
of mechanism that register increases in fullness. Target domain knowledge
about the relation between actions and state changes (RK2) asserts that
initializing an array causes fullness to increase; the system simulates the
process and finds that in the target, it is the array-index that increases with
fullness.

As a result of this process, in which corresponding simulations are sought,
run, and evaluated for the purpose of finding functionally analogous mecha
nisms, the system correctly hypothesizes that the array index is the analog of

www.manaraa.com

270 Beth Adelson

push(data,stack)

j
put-on(data,stack)

on-stack(data,stack)

increase(number
(plate-set on(data,old-top-data)

increase(value(index))

j
increase(full(stack))

FIGURE 12.10. Partially debugged causal model of pushing onto an array.

the spring. The system can then substitute the array-index for the spring
(Figure 12.10). This method of finding functional analogs for base domain
mechanisms allows the system to choose and maintain the part of a causal
analogy that is appropriate across the base and target domains. It reflects the
way in which human problem-solvers understand both the limitations and
the utility of analogical examples.

3.3.3. Breaking Ties

The system is also able to deal with a variation on the previous example of a
transformation. That is, it is able to break ties when more than one piece of
target domain mechanism is found to be analogous to a piece of the base. In
these cases the ties are broken by considering the role that the base domain
object played in the base model and comparing that to the role played by the
tied target objects. A situation in which the system needs to choose among
competing potential analogs is illustrated by considering an example in
which the base domain model and the preexisting target domain knowledge
are different than they were in the previous example. For this example, in
which the stack is again being implemented using an array: (I) A base
domain model is used in which fullness is calculated using the number of
plates in the stack. As mentioned above, this is an intuitively appealing
representation, although it differs from the one used in our protocol. This
situation produces the target model shown in Figure 12.11. (2) The target
domain includes the concept of a data-set, which comprises the contents of
an array.

When the evaluator reaches the branch that contains the assertion that
the number of plates in the plate-set increases as a result of push, it questions

www.manaraa.com

12. Characterizing Human Analogical Reasoning 271

push(data,stack)

l
put-on(data,stack)

~ on-stack(data,stack)

! ""on(data,old-top-data)

increase(number(p/ate-set))

j
increase(ful/(stack))

FIGURE 12.11. Causal model using plates to calculate fullness.

the appropriateness of the plate-set. Once again, the tutor tells it to find the
functional analog. Using the method described just above in Section 3.3.2
the system finds that the number of elements in the array's data-set and the
value of the array's index both increase as an array is initialized. In order to
determine which is the better analog for the plate-set the system now looks
at the role played by the plate-set in the act of pushing. The system looks at
the template definition for push and finds that for this action, the plate-set
is the contents of the container. Turning to the target domain, the system
finds that during array initialization, the data-set also serves as the contents
of the container, whereas the index serves to locate the cell currently being
initialized. As a result of comparing the roles of the index and the data-set to
the role of the plate-set, the system breaks the tie; it decides that the data-set
provides a better analog to the plate-set than does the index. The system then
replaces plate-set with data-set in the model.

4. Future Work

There is an aspect of the debugging process that still needs to be addressed.
Now that the models mapped from the base domain have had changes made
to them, they must be checked to see that they are still sufficient. We are in
the process of implementing a mechanism to do this through a series of
simulations designed to test that the models still exhibit aspects of LIFO
behavior that the system knows are important. For example, pushing and
then popping a set of elements must result in reversing their ordering.

Additionally, we have not discussed the retrieval process. Currently, we
are working on expanding our code generator to reflect the repeated re-

www.manaraa.com

272 Beth Adelson

trievals we have observed. These retrievals produced at least two qua/tita
tively different kinds of examples, used in two different kinds of processes,
both of which are analogical in nature. One is a process in which the surface
features of past examples are put into correspondence with the surface fea
tures of the current problem. This is strongly reminiscent of the process
described by Anderson and Pirolli. 5•25 The second is a process of reasoning
from the constraints made explicit in diagrams that depict the actions in
volved in the concept being learned. The models that have been presented in
this chapter are meant to serve as underlying representations for these draw
ings. We need to address the issue of which kind of process occurs at differ
ent stages in problem-solving in order to predict which kind of analogy will
be retrieved at a given time.

Last, we have already collected protocols on the task of turning a stack
into a queue. This will allow us to address several issues. (1) The problem
solving involved will put more pressure on the processes and the representa
tional format specified in our theory. (2) Because turning a stack into a queue
requires reasoning about the relationship between structure and function, we
will be able to look at that important issue. (3) We will also be able to make
statements about the important, but less frequently studied, process of within
domain analogy, which is highly important or engineering design.

5. Summary and Conclusions

We have presented a discussion of three of our system's mechanisms: one for
mapping, one for evaluating mapped models, and one for debugging incon
sistencies. We have implemented a purpose-constrained mapper that reflects
the way students increasingly limit their focus of attention as more is known
about the relationship between a base and a target domain. We have also
implemented an evaluation mechanism that identifies inconsistencies as ele
ments of newly mapped models are checked to see if they are the sort of
elements that are known to exist in the target domain. In doing so the
evaluation mechanism uses knowledge about the nature of the base and
target domains and the way in which relations apply across analogous do
mains. The evaluation mechanism reflects the nonliteral way in which ana
logies are understood. Finally, we have presented a debugging mechanism
that maintains functional aspects of base models while adding target
appropriate causal explanations. This allows the system to model the way
human problem-solvers select and use the level of explanation that is appro
priate in an analogical example.

The development of the theory has been possible because we have worked
within a problem-solving context, reflecting the purpose of analogical rea
soning. This approach has yielded insights into the nature of the phe
nomenon being modeled and, as a result, has allowed us to develop active,
reasoning, and knowledge-intensive mechanisms that are characteristic of
the nature of the analogical reasoning process.

www.manaraa.com

12. Characterizing Human Analogical Reasoning 273

References

[I] Adelson, B. (1989). Cognitive modeling: Uncovering how designers design. The
Journal of Engineering Design. 1, 1.

[2] Adelson, B. (1984). When novices surpass experts: How the difficulty of a task
may increase with expertise. Journal of Experimental Psychology: Learning,
Memory and Cognition, July.

[3] Adelson, B., Gentner, D., Thagard, P., Holyoak, K., Burstein, M., and Ham
mond, K. (1988). The role of analogy in a theory of problem-solving. Proceed
ings of the Eleventh Annual Meeting of the Cognitive Science Society.

[4] Brian, G. (1926). Edison: The man and his work. Garden City, NY: Knopf.
[5] Anderson, J., Farrell, R., and Sauers. (1985). Cognitive Science.
[6] Burstein, M. H. (1983). Causal analogical reasoning. Michalski, R. S.,

Carbonell, J. G. and Mitchell, T. M. (Eds.), Machine Learning: Volume I. Los
Altos, CA: Morgan Kaufman Publishers, Inc.

[7] Burstein, M. H. (1986). Concept formation by incremental analogical reasoning
and debugging. In Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.)
Machine Learning: Volume II. Los Altos, CA: Morgan Kaufmann Publishers,
Inc.

[8] Burstein, M., and Adelson, B. (1987). Mapping and integrating partial mental
models. Proceedings of the Tenth Annual Meeting of the Cognitive Science
Society.

[9] Burstein, M., and Adelson, B. (1992). Analogical reasoning for learning. In
R. Freedle (Ed.) Applications of Artificial Intelligence to Educational Testing.
Hillsdale, NJ: Erlbaum.

[10] Carbonell, J. G. (1983). Transformational analogy. Problem solving and exper
tise acquisition. In Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Ed.),
Machine Learning: Volume I. Los Altos, CA: Morgan Kaufman Publishers,
Inc.

[II] Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive prob
lem solving and expertise acquisition. In Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Ed.), Machine Learning: Volume II. Los Altos, CA: Morgan
Kaufman Publishers, Inc.

[12] Collins, A., and Gentner, D. (1983). Multiple models of evaporation processes.
In Proceedings of the Fifth Annual Conference of the Cognitive Science Society.
Rochester, NY: Cognitive Science Society.

[13] de Kleer, J., and Brown, J. S. (1985). A qualitative physics based on confluences.
In D. Bobrow (Ed.), Qualitative Reasoning about Physical Systems. Cambridge,
MA: MIT Press.

[14] Ericsson, A., and Simon, H. (1983). Verbal reports as data. Psychological Re
view, 87(3), 214-51.

[15] Falkenhainer, B., Forbus, K., and Gentner, D. (1986). The structure-mapping
engine. In Proceedings of AAAI-86. Los Altos, CA: Morgan Kaufman, Inc.

[16] Forbus, K. (1985). Qualitative process theory. In D. Bobrow (Ed.), Qualitative
Reasoning about Physical Systems. Cambridge, MA: MIT Press.

[17] Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy.
Cognitive Science, 7(2), 155-70.

[18] Hammond, K. (1988). A Theory of Planning. New York: Academic Press.
[19] Holyoak, K., and Thagard, P. (1987). Analogical Mapping by Constraint Satis

faction. Cognitive Psychology.

www.manaraa.com

274 Beth Adelson

[20] Kolodner, J., and Simpson, R. (1984). Experience and problem solving: A
framework. In Proceedings of the Sixth Annual Conference of the Cognitive
Science Society. Boulder, CO: Cognitive Science Society, pp. 239-243.

[21] Kuipers, B. (1985). Commonsense reasoning about causality. In D. Bobrow
(Ed.), Qualitative Reasoning about Physical Systems. Cambridge, MA: MIT
Press.

[22] Kedar-Cabelli, S. (1984). Analogy with purpose in legal reasoning from prece
dents. Technical Report 17. Laboratory for Computer Science, Rutgers, NJ.

[23] Newell, A., and Simon, H. A. (1972). Human Problem Solving. Englewood
Cliffs, NJ: Prentice-Hall.

[24] Okagaki, L., and Koslowski, B. (1987). Another look at anologies and problem
solving. Journal of Creative Behavior. 21(1).

[25] Pirolli, P. and Anderson, J. (1985). Canadian Journal of Experimental
Psychology.

[26] Schank, R., and Abelson, B. (1977). Scripts, Plans, Goals and Understanding.
Hillsdale, NJ: Erlbaum.

[27] Schank, R., and Riesbeck, C. (1981). Inside Computer Understanding. Erlbaum:
Hillsdale, NJ.

[28] Thagard, P., and Holyoak, K. (1985). Discovering the wave theory of sound:
Inductive inference in the context of problem solving. In Proceedings of the
Ninth IJCAI, Los Altos, CA: Morgan Kaufmann Publishers, Inc., pp. 610-612.

[29] Waltz, D. (1982). Event shape diagrams. In Proceedings of the National Confer
ence on AI.

[30] Winograd, T. (1974). Natural Language Understanding. New York: Academic
Press.

[31] Winston, P. (1977). Learning by creating and justifying transfer frames. TR
414a. MIT AI Lab. 1977.

[32] Winston, P. (1982). Learing new principles from precedents and exercises. AI.

www.manaraa.com

13
Entropy Measures in Engineering
Design

RONALD S. LAFLEUR

Abstract. The development of a design science requires that progress made
through research and technology be accountable. The difficulty in measuring
progress lies in the different points of view of researchers, teachers, man
agers, and practitioners. This is compounded by design issues such as specifi
cation fuzziness, individual/team decision making, multifunctional design,
and concurrency in the product development. A common, universal measure
is needed. A commonality between problems is that mass, energy, and infor
mation are stored and transferred in the product or technical system. The
entropy function has the power to integrate the mass, energy, and informa
tion measures of multifunctional problems into one measure. This provides
a way to measure, in an unbiased way, the efficacy of design solutions, design
methods, technical systems, and the advancement of design science.

1. Introduction-Diversity in Engineering Design

Diversity is a beneficial character of design evolution of products, engineer
ing methods, or technical systems. The more choices available, the higher the
chance of satisfactory progress in engineering. The diversity in engineering
methods, design research, multifunctional problems, and engineering envi
ronments creates a problem when measuring alternatives in order to make
comparisons and insure progress.

Diversity is a necessary feature of engineering design methods. On a very
basic level, there is a lack of information in design problems. The designer
must provide information as design specifications, decisions, and constraints.
The method and substance of these input conditions are different between
countries, regions, companies, groups, and design problems. The selection of
one method over time reduces the number of potentially successful methods.
The chances for evolving the "best" method are highest if method diversity
allows choices.

Engineering design research augments industrial practice and the teaching
of design methods. Progress is the identification of important design-related

275

www.manaraa.com

276 Ronald S. LaFleur

TABLE 13.1. Nomenclature

System Fields

Ill General fitness functional t Time
v Volume A.t Time differential
N Mole number of species i s Mass specific entropy
E Energy e Mass specific energy
I Information v Mass specific volume
X General variable vector n Mass specific mole numbers
s Entropy of species i
T Temperature p Material density
p Pressure J Flux rate
/A Electrochemical potential X Spatial coordinate
M Number of subunits u Velocity
n Number of configurations w Molecular weight
K Boltzmann's constant F Body force
p Configuration probability c Concentration
w Frequency of occurrence (] Entropy production
D Degrees of freedom A Reaction affinity
vi Variation level L Phenomenological coefficient

k Thermal conductivity

Superscripts Subscripts

DES Design environment Electrochemical species
VER Verification environment k, l,p, q,m Vector counters
CON Construction environment in Flow inward
APP Application environment out Flow outward

Overbar-averaged E Energy degree of freedom
E Heat flux 0 Zero energy state
T Temperature gradient env Environment value
/A Electrochemical potential gradients (). Natural process
s Entropy flux ()v Virtual process
u Velocity gradients
N Species flux
v Visco-plastic stress
R Electrochemical reaction

variables and understanding relationships between them. In any one research
endeavor, a diversity of conceptual and detailed ideas are considered from
which candidate hypotheses evolve. The potential for the research to yield
new understanding is higher when diversity is higher; diversity is good for
design science.

The complexity of the design problem is highest when considering a num
ber of different functions. For example, the external shape of a modern
turbine blade is governed primarily by its aerodynamics and strength. The
aerodynamic and fatigue physics, units, and methods of measure are differ
ent enough to constitute discrete disciplines. But disciplines are for engi
neering convenience. In the true situation, different physics interact. Mea-

www.manaraa.com

13. Entropy Measures in Engineering Design 277

surement of these interactions is along the lines of established disciplines; one
being the input to the other.

The various situations in design evolution can be distinguished by "engi
neering environments" of differing conditions, activities, and goals. For ex
ample, a test engineer works with prototypes while a manufacturing engineer
works with the subunits and their assembly. Each environment has its own
goals and, consequently, differing measures and units of "goodness" or
fitness. Concurrent engineering attempts to meet the diverse concerns of
application, manufacturing, and testing environments at the time of design
decision making. This complicates the designer's job. The complexity can
only be managed using design tools for the diverse concerns plus their
interactions.

This chapter proposes a single measure that is universal and not arbitrary:
the entropy function. The need for a single measure of fitness in engineering
design and metadesign is explored in Section 2. This is followed by a descrip
tion of a viable single measure, the thermodynamic entropy in Section 3. In
successive sections, the single measure is discussed in terms of its ability to
represent different scales, variable types, and levels of variation.

2. The Need for a Single Measure-Single Measure
Criteria

The required features of a universal measure are formed as a set of criteria
addressing design effectiveness, mutual existence of natural and human pro
cesses, scale, residence in engineering environments, and uncertainty.

2.1. Representing Different Scales of Engineering
Problems
The engineering of useful devices and the development of design methods are
processes that occur on a variety of scales. For example, the design of a
cleanroom and the design of VLSI microcircuits are on opposite ends of
scale. This example can be stretched further by considering engineered mate
rials and industry design. Scale is a measure of amount of material or
smallest resolved length that is configured in the design.

Engineering problems are usually solved by "decomposing" the system
into smaller, more manageable, design problems. Then the scale of a prob
lem is determined by the scale of its subunits. Combination is the reverse of
decomposition. However, the best system is not necessarily a combination of
the best subunits due to boundary interactions. The boundaries are defined
by the surface geometry and the types of fluxes they permit such as mass and
energy.

Scale is a relative observation based on the form of a system and its
subunits. The system decomposition process leads to a larger number of

www.manaraa.com

278 Ronald S. LaFleur

simpler design problems. The simplification is a byproduct of subunit spe
cialization. A system often has complex multifunctional purposes. The sub
unit functions must contribute to the function of the system as

~single = ~(~subunirl • ~subunir2• • • ·) (13.1)

This interaction between form and function transcends scale.
The form-function of the different scale structures is related to physical

behavior. Due to various boundary conditions on a structure, the collection
of matter will respond or "behave." The physical laws that govern behavior
are scale independent; e.g., conservation of mass, chemical species mass,
mechanical and thermal energy. However, the detail of behavior and func
tion description is only as good as the scale of the system and its subunits;
i.e., the smallest resolved scale. To simplify through detailing, the engineer is
motivated to decompose the system into subunits already designed and well
characterized. This is the case when the subunits are known materials or
off-the-shelf items. Therefore, a single measure of performance must be
applicable over many scales occurring in design and engineering systems.

2.2. Representing Different Points of View
The engineering process involves a diversity of issues such as performance,
manufacturability, and environmental impacts. Consequently, the process is
affected by people with differing points of view. In a typical company, a
variety of people all wearing different hats are involved with product devel
opment. Small businesses require individuals to wear many hats. A product
or design method is initiated by a need stated by marketing personnel or
managers. Project design engineers plan, configure, or analyze candidate
components or systems. Manufacturing engineers interactively input require
ments of fabrication and assembly. Technicians enact the manufacturing
plan, turning raw materials into the product and assembling components.
Test engineers verify product safety, performance, and tolerances. The pri
mary product evolution ends when sales personnel enact packaging and
shipping of the approved products. A secondary product cycle arises when
servicing, failure, recycle, or disposal are considered.

Different personnel have different concerns in the product evolution.
These concerns are measured differently. For example, the design perfor
mance of a heat exchanger is measured by effectiveness (actual heat exchange
divided by the maximum possible exchange) while material cost is measured
in parts such as tubing, 180 degree bends, thin fins, and solder. The overall
fitness of a design or method must reflect diverse issues and accommodate
various measures.

The evolution of products or engineering methods can be detailed by a
sequence of single decisions. A single decision is a yes or no to either accept
or reject choices. A single decision is quantified because yes and no are
discrete values of a single variable. The single decision must weigh the differ-

www.manaraa.com

13. Entropy Measures in Engineering Design 279

ent issues and integrate them into one measure. The functional relationship
between the many special measures and the single decision variable has been
arbitrary. A special example is a weighted sum of presumed independent
measures such as

«~»single= 1.8«1»aerodynamic:s + 0.9Cl»manufacturing + 2.5«1»/atigue· (13.2)

The coefficients indicate the relative weight of the contributions while ensur
ing dimensional consistency of engineering or economic units. More gener
ally, the presumably independent measures of special domains represent
coordinate axes such that the single measure depends on them as

(13.3)

The dependency of one measure upon another reduces the dimensionality
but may increase the nonlinearity of the single decision variable.

Alternatively, the independent performance measures can be defined along
the special types of fundamental fluxes in engineering systems. The funda
mental physics of mass, chemical species, and energy fluxes suggest that

A single measure of performance must allow for a variety of physical effects,
integrate the different measures of physical effects, and accommodate differ
ent domains of engineering and technology.

2.3. Information Flow Between Engineering Environments
On the technical system scale, engineering environments are defined in terms
of the different activities that occur in the engineering method. Different
tools and personnel, with their different points of view, act within four
primary environments: application, design, verification, and construction
(LaFleur, 1992). Information can flow between environments as shown in
Figure 13.1 below.

The application environment is the origin of the product idea or need and
raw materials. The product will encounter actual conditions and perform an

APPLICATION

---------- VERIFICATION

FIGURE 13.1. Information flows between engineering environments.

www.manaraa.com

280 Ronald S. LaFleur

actual task in the application environment. In the design environment, the
product, conditions, and functions are abstract. The abstract variables are
determined by information gathering, input decisions, physical modeling,
and solution techniques. In the verification environment, the candidate de
sign is prototyped and instrumented to test for task satisfaction, tolerances,
and safety. Computer simulations that test the design under artificial condi
tions are a part of verification. The abstract design is brought into reality in
the construction environment. Raw material or subunits are shaped, treated,
and assembled. The constructed product may then be verified for quality and
tolerances.

The routing of the product through the environments establishes the engi
neering method. The location and routing is associated with time in the form
of schedules and logistics. Branching of the path, such that information from
different environments operates on the design simultaneously, is the cornerstone
of concurrent engineering. The product is in different forms in the applica
tion, design, verification, and construction environments. Consequently, fit
ness is measured differently in each environment. The overall fitness of the
engineering method should account for all special fitness measures as

cf) = Cl»(ct»DES cf)YER cf)CON ~PP)
single • • • • (13.5)

where the three-letter abbreviations are the engineering environments. The
information flowing from one environment to another requires the use of
common units of fitness measuring. A single measure of design and method
fitness must be evaluated in each engineering environment.

2.4. Evaluation Uncertainty
Evaluation of the special fitness measures is accompanied by a degree of
uncertainty. The special measures of fitness are quantitative and qualitative
variables. Fitness evaluation is completed through experiments or modeling.
Interpretation of operational conditions, experimentation, modeling of de
sign physics, and the quantification of design effectiveness are imprecise
processes.

(13.6)

Qualitative variables are fuzzy due to language imprecision. For example, an
automobile seat may be comfortable or uncomfortable. Although comfort or
discomfort is very important to the consumer, the two conditions do little to
help the engineer change the design. The test engineer could devise a verifica
tion experiment using a rating system. This process of quantification is ac
companied by a degree of uncertainty due to population statistics and rating
uncertainty.

Quantitative measures are not immune from fuzziness and uncertainty.
The use of instruments and a single prototype is accompanied by scatter and
averaging. The test engineer seeks precise and accurate instruments but still

www.manaraa.com

13. Entropy Measures in Engineering Design 281

must live with a limited population of prototypes or test cases. Statistics
plays an important role in evaluating the measures of fitness.

When evaluating the fitness measures, a prototype is modeled using com
puter simulations or experiments. Either situation requires adoption of a
typical operating environment. In the application environment, the condi
tions are real. Therefore a degree of uncertainty is introduced by modeling
the actual operational environment. This type of uncertainty can only be
diminished by performing tests over a range of expected operational varia
tions. This yields statistics and a measure of product robustness.

Computer and experimental models of the candidate design represent a
typical configuration. Experimental verification attempts to produce actual
physical behavior and task functioning as a model to the application envi
ronment. The system may need to interact with other devices, in which case,
the verification model approximates the interactions.

In computer models, simulations are produced using idealized laws of
physics, which neglect many real effects such as friction, nonlinear interac
tions, and inhomogeneities. Only the primary physical processes are cap
tured. This is not a problem because, usually, the engineer is concerned only
with the primary physical behavior that leads to task functioning. Nonlinear
interactions could amplify neglected secondary terms such that the primary
physical behavior is altered. This leads to an unpredicted discrepancy or
another type of uncertainty.

Although it is usually ignored, a level of uncertainty is present in every
engineering problem. A single measure of design or method effectiveness
should account for the built-in uncertainties.

2.5. Summary: Features of a Single Measure
There is a need for a single measure of fitness for a variety of reasons. These
reasons are formalized in the single measure criteria. Then the product effec
tiveness and the method by which it is produced could be assessed at the
same time. The effectiveness criterion is stated as follows: The single measure
must assess the effectiveness of designed products, design methods, and engi
neering technical systems.

The design of products and the design of engineering methods can be
considered on equal footing if both natural physical processes and human
decision processes are represented. Since the engineering process is a combi
nation of human and natural produced effects, this leads to the mutual
existence criterion as the single measure must permit both natural and human
effects to be assessed at the same time.

Decomposition is a common tool in the design and analysis of devices.
The single measure must transcend all scales from microscopic systems up to
large macroscopic technical systems. The scale criterion is stated as the single
measure must be quantifiable at any scale and remain applicable over decompo
sition or combination.

www.manaraa.com

282 Ronald S. LaFleur

Different variable types are due to different concerns and the engineering
environments that must be represented. The diverse ways of assessing fitness
may be transferred to a single measure. The residence criterion is the single
measure must quantify design fitness in the different engineering environments
with consistent units.

The information flow between environments is accompanied by uncer
tainty. The level of variation of variables must be represented. This will
provide an expression of uncertainty that can be tracked and assessed in the
evaluation. Therefore, the uncertainty criterion is stated as the single measure
must represent different uncertainty levels of conditions and variables in the
engineering method.

This section outlined the need for a single measure and some of the funda
mental requirements the single measure must satisfy. In the next section,
entropy is proposed as the single measure that can satisfy these criteria.

3. The Concept of Entropy: Basis and Balance

Entropy is proposed as the single functional measure. This section reviews
the foundation of the entropy function and its role in system description.
The geometric foundation of equilibrium thermodynamics was pioneered by
Josiah Willard Gibbs (Gibbs, 1961). Gibbs saw the system state as a surface
with geometric properties such as slope and curvature. Later work led for
mulations of nonequilibrium that rectify and incorporate accepted dynam
ical laws.

3.1. Macroscopic Properties
Thermodynamic theory describes the interaction of hidden microscopic
modes of action in matter with macroscopically observable states and pro
cesses. Classically one begins with a series of postulates (Callen, 1985). The
first postulate addresses the macroscopic equilibrium of a system as charac
terized by energy, chemical species mole numbers, and volume. Extensive
variables are divisible during decomposition and additive during combina
tion of subunits k.

X= Xsystem = L xk, where X is v, M. or E.

"
(13.7)

Equilibrium is a macroscopic property. On the subunit scale, the energy of
any one subunit may fluctuate due to configuration changes with its neigh
bors. Thus the subunit is not at equilibrium. However in an isolated system,
the macroscopic scale averages the subunit fluctuations:

(13.8)

www.manaraa.com

13. Entropy Measures in Engineering Design 283

The state of equilibrium is observed when the system's scale is sufficiently
large to produce constant and uniform characteristics. A macroscopic sys
tem that is not isolated is not at equilibrium. Since X is conserved, the X
fluctuations about equilibrium must flow to and from neighbors; the subunit
has amounts of fluxing sources/sinks of X onjboundaries with its neighbors:

xk = X" + L Xkj,in(L\t) - L xlcj,out(L\t) = X,.(L\t). (13.9)
j j

A macroscopic system that is in communication with other systems cannot
be at an equilibrium state. The system's state is then a question of constraints
on the system. Consequently, decomposition and combination are important.

3.2. Required Amount of Information and Entropy
Equilibrium is one configuration out of many possible configurations consis
tent with the boundary constraints. Alteration of the constraints allows the
system to access different, nonequilibrium configurations. A certain amount
of information is required to characterize each configuration (Shannon and
Weaver, 1949). Less information is needed when constraints affect the de
signed system; constraints are input information to the system configuration
problem.

Something is zero at equilibrium. Equilibrium is characterized by a bal
ancing of "forces" or uniform and constant energy, mole numbers, and
volume. Equilibrium is also indicative of noncommunication with neigh
boring systems, i.e., isolation by zero boundary fluxes. More information is
needed to describe a system configuration at a new equilibrium state when a
constraint (information) is removed; information is transferred. Therefore,
given constant constraints, the equilibrium configuration will require the
maximum amount of information for description (Raisbeck, 1963). The
amount of information needed to characterize the state of a system is a
function of the set of configuration variables. For example, a special, ther
mally open system of constant volume and chemical species

(13.10)

The maximum information needed to describe equilibrium when fluxes are
zero occurs when the "slope" of the information hypersurface is zero,

01 o 'lib· h -ax= at eqw num, w ere X E E", v, N;. (13.11)

Equilibrium is represented by the maximum amount of information needed
for characterization. This sheds light on the decomposition method. Smaller
systems have less possible configurations and require less information to
describe. Subunits are formed by internal partitions or constraints.

Alternatively, the traditional thermodynamic view originates from the
second postulate: the existence of entropy and its maximization at equilib-

www.manaraa.com

284 Ronald S. LaFleur

rium (Callen, 1985). The entropy depends on the same variables as the
information measure:

S = S(E", E"i.tn• E"i,out• V, N;). (13.12)

Information is a human-descriptive variable and entropy a natural variable.
Entropy is postulated to be a maximum at equilibrium.

;: = 0 at equilibrium, where X e E~r;, V, N;. (13.13)

A third postulate states that the entropy is extensive and therefore is divisible
by decomposition and additive by combination.

(13.14)

Similarly, the information required to describe a system is equal to the sum
of the information required to describe its subunits:

(13.15)

Thus, decomposition does not create or destroy information or entropy, but
breaks the system into smaller, more manageable subunits.

3.3. Intensive System Variables-Temperature and
Entropy Units
The use of entropy allows the classical definition of slope functions. The
hypersurface of the system's state has slopes that are zero at equilibrium and
nonzero elsewhere. The entropy relation is partially differentiated to yield
definitions of the temperature, pressure and electrochemical potentials such
as

1 as r = aE T(E, v, N;). (13.16)

The slope functions are known as the equations of state. The slopes are
intensive and are not additive when combining a decomposed system. Each
subunit has its own set of intensive variables. Consider an isolated system
decomposed into subunits. Since the energy, mole numbers, volume, and
entropy are extensive, the equilibrium condition for the system yields that
the temperature, pressure, and electrochemical potentials be the same be
tween adjacent subunits that have a mutual, fully communicating boundary.
Since intensive variables drive fluxes, the fluxes are zero at equilibrium.

The temperature is qualitatively consistent with the human observations
of "hot" and "cold." The concept of temperature led historically to tempera
ture instruments and scales. Units of measure were defined to give quantita
tive measure to the qualitative sensations. Units placed on temperature re-

www.manaraa.com

13. Entropy Measures in Engineering Design 285

quire that entropy have the units of energy divided by the temperature units.
For entropy to maintain its nondimensional status, temperature must have
units of energy.

3.4. Nonequilibrium Entropy Balance for Continuous
Systems
Real systems are rarely in true equilibrium. Most functions of engineered
devices utilize continuous energy, mass, and volume transfer and are not
isolated. The continual transfer requires gradients of intensive variables be
tween the subunits or through the system in communication with its sur
roundings. Behavior, task functioning, and effectiveness of a system are
related to the transfer of energy, mass, and volume. The fundamental en
tropy relation dictates that such transfers create a transfer of entropy dic
tated by a balance of entropy equation.

The nonequilibrium change of a system's entropy is tracked in terms of
entropy flux to and from the system and the entropy produced or destroyed
within the system. The entropy-changing processes are produced by the
transfers of energy, mole numbers, and volume. The balance of entropy is
the variation of the fundamental entropy relation:

(13.17)

In terms of material time derivatives of mass-specific variables,

1', Ds De Dv Dn1
p Dt = p Dt + pp Dt - Jl.iP Dt ' (13.18)

where density is mass averaged. Each term on the right-hand side is evalu
ated by incorporating the dynamical physical laws of conservation of ther
mal energy (total-mechanical), mass, and chemical species.

Recognizing the common form of conservation equations as a rate of
change term being equal to the net flux plus a net source term yields

Ds aJ!
p Dt =-ax,.+ u, (13.19)

where the entropy flux, in terms of heat and chemical species fluxes, is

J.• = J:/. - Jl.i J!;
m T WiT'

(13.20)

and the entropy production (source), in terms of viscous dissipation, chemi
cal reactions, heat dissipation, gravity work on mass species, and mass spe
cies dissipation is the scaler (de Groot and Mazur, 1984):

1 v aui 1 R 1 E aT J!; [a Jl.i]
u = TJ"'1ax.,.- TA1~ - T 2 J.,. ox,.+ w1 F.,.1 - ox,. T · (1 3·21)

www.manaraa.com

286 Ronald S. LaFleur

The terms have a common form of a spatial gradient multiplied by a flux.
Thus, the entropy production is related to mass, chemical species, thermal
and mechanical energy behaviors, and functions within the system.

3.5. Phenomenological Laws
Physical effects, produced by gradients within the system or subunits, are
responsible for the function of designs or engineering methods. These gradi
ents are supported by boundary conditions on the system or decomposed
interfaces between the subunits. The entropy production and entropy flux
terms are related to these boundary induced gradients.

Phenomenological laws are the relationships between fluxes and gradients.
A special example is Fourier's law of heat conduction for a homogeneous
isotropic system where heat flux is the thermal conductivity multiplied by
the temperature gradient. Other examples include Pick's law, Hooke's law,
Ohm's law, and Stoke's law. These laws were developed for specific physical
systems in the absence of other physical effects. The laws were also developed
in terms of energy-type measurements.

Alternatively, nonequilibrium thermodynamics utilizes general flux
gradient relationships stated in terms of entropy. This results in kinetic
coefficients as an alternative to the traditional material properties of thermal
conductivity, binary diffusion coefficient, or resistance (de Groot and Mazur,
1984; Haase, 1969). For example, the general phenomenological relation for
heat flux is expressed in terms of temperature, electrochemical potential, and
velocity gradients as

J.E = -LE:f_1_ fJT- LE!f _!_ OJI.i- LEu _!_ oup (13.22)
m m} T 2 OX· mdc Tox mpq Tox .

J " q

However, some of the kinetic coefficients can be stated in terms of accepted
material properties and temperature. For example, the kinetic coefficient for
temperature driven heat flux is related to the thermal conductivity tensor as

(13.23)

Anisotropic and cross-effect kinetic coefficients are not readily available but
may be symmetric due to Onsager's reciprocal relations. For example, the
Dufour effect is the flux of heat driven by species concentration gradients
and the Soret effect is the mass flux of species driven by temperature gradi
ents. Material properties for the Soret and Dufour effects are not as widely
available as scaler thermal conductivities, viscosities, and mass diffusion
coefficients.

The fluxes occur on the boundaries and within the system or subunits.
Since scale is selected by decomposition, there is an opportunity for approxi
mation of the transfer laws. The different effects of system functioning can be
modeled in terms of phenomenological flux equations with gradients and
kinetic coefficients. The interior fluxes of a system can be approximated

www.manaraa.com

13. Entropy Measures in Engineering Design 287

using the fluxes on the boundaries. The boundary fluxes are relevant in task
functioning while interior fluxes contribute to entropy production.

The entropy function can be calculated and tracked in terms of a variety
of underlying physical processes. The equilibrium fundamental relation links
entropy to mechanical (volume), electrochemical (mole numbers), and en
ergy processes. The processes between decomposed units are driven by dif
ferences of temperature, pressure, and electrochemical potentials. At the
heart of all processes in a design's operation or in the engineering method are
the fundamental mass and thermal, mechanical, and electrochemical pro
cesses. Therefore, entropy is proposed as the single measure for effectiveness
of designs and engineering methods. It will be shown in successive sections
that the entropy quantity has the ability to represent many aspects of the
design process and technical system development. Some of the criteria out
lined in Section 2 will be addressed in a general fashion.

4. Application of Entropy and Scale Issues

The properties of designed systems or subunits change when the boundaries
are open or closed to fluxes. The effects of internal and external partitions
that define the scale of systems and subunits are important. This section
addresses satisfaction of the scale criterion.

4.1. Special Decomposed Subunits
The constraints on the system's boundaries produce the gradients that sup
port physical behavior and task functioning. Chemically closed systems refer
to systems with no chemical species fluxes. Thermally closed systems do not
have thermal energy (heat) flux and mechanically closed systems do not have
work fluxes. These special situations are of interest to designers of special
components.

Each type of closed system yields a special form of the entropy balance
equation and method of calculating the subunit entropy. For example, the
rate of entropy change in the fully closed system is equal only to the entropy
production inside the system.

Ds
p Dt = u. (13.24)

Using phenomenological flux-force relations, the entropy production is a
positive definite quantity. For example, for a homogeneous, isotropic, in
compressible material with linear phenomenological relations and no cross
terms, the entropy production is

www.manaraa.com

288 Ronald S. LaFleur

This can be used for many systems as material requirements dictate. All
electrochemical, thermal, and mechanical systems have positive definite
entropy production inside their boundaries.

In open systems, the increase or decrease in entropy rests with the net
entropy fluxes compared to the positive definite entropy production. The
only way to decrease the entropy and required information of a system is to
have openings to fluxes. Fluxes are the realm of nonequilibrium thermody
namics and are dictated by the special functions of the decomposed system
and its subunits.

The entropy balance applies to macroscopic scales of the systems or sub
units. In macroscopic cases, the continuum assumption leads to a wealth
of special discipline knowledge for the determination of gradients, kinetic
coefficients, and boundary fluxes (Bejan, 1982; Haase, 1969; and LaFleur,
1990a). The decomposed scale also leads to approximations of interior fluxes
for the calculation of entropy production. The macroscopic entropy is calcu
lated in terms of near-equilibrium physical behaviors and functions. The
alternative is to calculate the system's entropy in terms of "in the limit"
decomposition to a large number of microscopic subunits followed by com
bination. This idea leads to quantum mechanics and thermostatistics.

Extensive properties, coupled with conservation laws, indicate that system
decomposition or subunit combination do not create or destroy energy, mole
numbers, volume, entropy, or information. The fundamental relation of
entropy links the observable macroscopic configuration variables and the
hidden, microscopic configurations within all matter. The scale indepen
dence of the first law of thermodynamics yields a balance that is not affected
by decomposition. The fundamental entropy relation is independent of scale
in macroscopic systems.

The jump to microscopic description is not kind to the fundamental en
tropy relation. As the scale of a system approaches the macroscopic to
microscopic boundary, the number of subunits that affect the system in
creases dramatically. The number of configurations is related to the number
of atoms using combinatorics. A large number of configurations are possible
and the required information is large. Microscopic systems design is the
realm of materials scientists and engineers.

4.2. Combining Finite State Subunits-Thermostatistics
In the limit, the microscopic subunits have a large number of configurations
and the fluctuations allow the system to visit different configurations fre
quently. This idea may also be applicable to design or combinations of
macroscopic subunits with finite numbers of states.

The finite configurations of the subunits are described by quantum theory
where each configuration is a certain energy state. Combination of the sub
units creates a combinatorics problem where the number of combined sys
tem configurations is factorially related to the number of subunit configura-

www.manaraa.com

13. Entropy Measures in Engineering Design 289

tions. Fluctuations from one system configuration to another is assumed to
be random. Therefore each configuration is equally probable. Unequal prob
abilities are discussed later.

For example, consider a system decomposed into M similar subunits of
two states each (of energy 0 and energy E1). The number of subunits at the
E1 state is the total energy divided by the subunit energy or

E
~ = E· = ~(E, Ej).

J

(13.26)

The number of subunits at the 0 state is the balance or

M0 =M-~. (13.27)

The number of configurations is equal to the number of ways to distribute ~
energy packets among the M subunit compartments. Combinatorics yields
the number of possible configurations as

n = M! M!
~!Mol= ~!(M _ ~)! = O(~,M) = O(E,Ei,M). (13.28)

A similar approach can be used for dividing a system into discrete subunits
with individual configurations. The key is to model each subunit with a
limited number of finite energy states and probabilities for the energy states.

The number of possible configurations is related to the information re
quired for description and the system entropy. The number of configurations
is multiplicative between the subunits while information and entropy are
additive among the subunits. The function that connects the entropy to the
number of configurations is the natural log function. Thus the fundamental
relation for entropy stated in terms of configurations is

S(E, V,N1,Ei, f1,Nii,M) = KlnO(E, V,N1,Ei, f1,N;i,M), (13.29)

where K may be chosen as Boltzmann's constant and fix the scale of S to
match the Kelvin temperature scale. From this entropy fundamental rela
tion, versions of temperature, pressure, and electrochemical coefficient can
be found (the quantities that drive fluxes and produce the design's function).
Equation (13.29) can be used as an explicit basis to track entropy changes in
terms of finite configuration changes.

Natural fluctuations between the different configurations are described by
thermostatistics. Consequently, the state of the system is not known but is
described by probabilities and statistical moments. Thermostatistics pro
vides a method of calculating entropy for finite state systems when each state
has a level of probability. Similar mechanisms occur during the design pro
cess when different configurations are tried and probabilities of design out
comes can be formulated. The probabilities depend on the number of possi
ble design solutions and the amount of extensive quantities associated with
the choices.

www.manaraa.com

290 Ronald S. LaFleur

4.3. Material Partitions and System Environment
The change of the system's configuration leads to observable, macroscopic
changes in energy, mass species, and volume. Often this is seen as matter
segregation or the formation of material partitions. A system with dis
cernable material partitions is not at true equilibrium. The condition for zero
fluxes requires uniform character of the matter. This can not be accommo
dated in systems with open material partitions. Organization of systems into
uniform property subunits creates a singularity of entropy at the subunit
interfaces. The material partitions can be defined as configured subunits
when decomposing.

At nonequilibrium, the conditions external to the system have the oppor
tunity to influence the internal entropy and information required for descrip
tion. The internal information is associated with the concept of organization
or order/disorder by Shannon and Weaver (1949). It is the action of external
effects that creates organization such that less information is required for
characterization. The external conditions and constraints are defined as the
system's environment (LaFleur, 1991). The exterior of a subunit is the sub
unit's environment. In most cases, subunits are the environment of other
systems or subunits. Therefore, the environment itself is a system that has
its own configuration variables and entropy and information.

Defining a large closed system (supersystem) as a system plus its environ
ment yields the traditional view that entropy, information, and disorder are
maximized. Since entropy production is positive definite, the supersystem
entropy will monotonically increase with time. Therefore entropy is max
imized in the supersystem. This does not mean that the system's entropy is
maximized; the system's entropy may be minimized at the expense of its
environment, i.e., environmental impact.

5. Representing Different Variable Types

One required feature of a single measure is the representation of different
variable types. Entropy is an appropriate measure if it is applicable to multi
functionals, qualitative or quantitative variables, uncertainty, and continuous/
discrete systems.

5.1. Multifunction Design
High functioning systems, such as products and technical systems can be
decomposed into subunits with lower, special functioning. Subunit measures
of fitness must be related to performances such as task functioning, safety,
environmental impact, and required technical system resources. Functioning
that is reduced by decomposition is stated in terms of fundamental fluxes.

www.manaraa.com

13. Entropy Measures in Engineering Design 291

The technical system can be examined in a similar way, i.e., decomposition
to special subunits and functioning in terms of thermal and mechanical
energy and chemical species fluxes. Technical system measures of fitness such
as economics, personnel time, scheduling, quality, and market share can all
be fundamentally related to the physics in the entropy balance equation.

For example, considering personnel as a subunit in the technical system,
the cost of workers is related to the amount of work done. Work done
transforms inanimate products as changes in thermal energy, mechanical
energy, and electrochemical species. Apparently diverse measures can be
stated in terms of the entropy balance when measured by extensive quantity
changes.

5.2. Quantification of Qualities: Fuzziness and
Probabilities

In engineering design, qualitative variables are not accountable unless con
verted to quantitative measures. The conversion is not exact and may allow
fuzziness using statistics of population data. The conversion yields averages
and statistical moments, a quantified statistical representation of the qualita
tive variables. Statistics plays a role in calculating entropy and required
information.

For example, if a system and its environment are subunits of a closed
supersystem of fixed volume and mole numbers, the super-system energy is

D

Esuper = E + Eenv and E = ~ PEmEm,
m=l

(13.30)

where the configuration probability equals the number of available envi
ronment configurations divided by the number of possible supersystem
configurations

p, = OE,env(Eenv,m) = OE,env(E..,per- Em)= p, (E E) (13 31)
Em n (E) n (E) Em m• super ' .

E,super super E,super super

where O(E) is the number of configurations of energy E (Callen, 1985). For
example, if many configurations of the environment are possible with a
particular system configuration, then the system configuration is probable.

Information theory (Shannon and Weaver, 1949) yields that the en
tropy of the qualitative configuration is related to the probability of the
configuration

(13.32)

The total number of configurations is a multiple of the number of configura-

www.manaraa.com

292 Ronald S. LaFleur

tions, ni, over each degree of freedom, D:

(13.33)

For every degree of freedom, configuration frequency of occurrence based
on sorting in qualitative bins, is related to outcome probability as

(13.34)

For example, a questionnaire on learning environment was used to poll an
undergraduate and graduate class. The questionnaire had numerous ques
tions from four categories unknown to the student. The results for the two
degrees of freedom are shown in Table 13.2 below. The frequency data can
be reduced to probabilities using equation (13.34) for each ofthe two degrees
of freedom.

The entropy in each degree of freedom (LaFleur, 1990a) is calculated by
adding the entropy of the configuration, weighted by the probability of
occurrence or

(13.35)

Therefore, the entropy can represent fuzzy variables, population-frequency
data and uncertainty in the engineering method. Based on the example in
Table 13.2, the entropy of the undergraduate and graduate classes were
1.328 K and 1.276 K respectively. Adding these two degrees of freedom
yields a total entropy of 2.604 K. From the entropy measure, it is clear that
the graduate class had less entropy; the experience and knowledge of gradu
ates are constraints and graduate classes tend to be more specialized. In a
similar way the entropy can measure the advancement of knowledge through
design science research.

The probabilistic calculation of entropy is especially applicable to the
conversion of qualitative variables to accountable quantitative variables. In
the example given above, each qualitative question could form a finite state
subunit and could be analyzed in detail to give an entropy for each outcome.
Then the total entropy would be calculated in terms of the middle of equa
tion (13.35), the sum of the product between an outcome's entropy and the
probability of that outcome.

TABLE 13.2. Learning environment questionnaire responses.

Class w11 WJz wi3 wJ4 wJ

Undergraduatej = 1 34 91 53 62 240
Graduate j = 2 8 35 30 37 110

www.manaraa.com

13. Entropy Measures in Engineering Design 293

5.3. Continuous and Discrete Systems
Entropy can be used to assess the fitness of both continuous and discrete
systems. Continuous systems contain a continuum of matter and allow fields
to form. Fields are mathematically described by dependent variables such as
temperature, pressure, electrochemical potential, concentration, etc., and in
dependent variables (space and time). System characteristics are described by
field distributions with partial differential equations for balance equations.

Discontinuous systems have partitions usually formed along interfaces
between different matter. The discontinuous system can be viewed as a sum
of continuous subunits with interfaces between them. Continuous subunits
can be treated in terms of fields. The interface between the discrete subunits
is a surface that has its own balance equation.

The entropy is discontinuous between continuous subunits and the inter
face is a subunit that contains the entropy discontinuity. Boundary surfaces
are of lower spatial dimension than a system volume; a lower number of
configurations are possible. Variationally, a quantity is constant on the sur
face. Geometrically, at any instant, the surface is a special function of three
spatial coordinates. This can be expressed as a zero variation of the function
between the coordinates.

A system and environment may be treated as both continuous and dis
continuous. The field equations for continuous systems or subunits are
used in the entropy balance to find entropy fluxes and production. The
interior entropy fluxes can be approximated in terms of boundary fluxes. For
example, LaFleur (1991) gives the solution of a pipe insulation problem in
terms of thermal and fluid entropy production. The entropy associated with
the configuration of discontinuous units into a system is measured using
information-thermostatistical theory discussed above. Configuration pro
bability is stated in terms of the frequency of occurrence or the number of
configurations along the degrees of freedom of energy, volume, and electro
chemical mole numbers.

6. Representing Different Levels of Variation

In engineering methods and environments, there are a variety of variables
such as constraints, conditions, specifications, physical behaviors, material
properties, and geometries. A single measure is required to represent quan
tities with different levels of variability. The entropy measure tracks engi
neering method progress and represents the different variables using a level
of variation hierarchy (LaFleur, 1989).

6.1. Variable Types

Some features of engineering problems are constant. A distinction can be
made between different types of constants. One type is a universal constant.

www.manaraa.com

294 Ronald S. LaFleur

For example, numbers, conversion constants, pi, Boltzmann's constant, etc.
are accepted as universal constants. Another constant type is derived from
the material tables referenced in engineering. Tabulated material properties
are accepted as constant although the materials may be unknowns in the
design problem. Another type of constant is the constraints on the design
problem or method. Constraints define the design problem and limit the
system configurations. These are adjustable but do not vary during the
solution process of one problem. Another type of constant is the physical
boundary conditions on the system. These limit the physical behavior and
produce the gradients needed for functioning. Condition adjustment is
usually performed between solutions in search of control or application
matching operating conditions.

The problem contains unknowns that characterize the effectiveness of the
solution. Behavior variables represent the internal configuration of the sys
tem including temperature, pressure, energy, chemical species concentration,
velocity, and strain. Spatial coordinates and time locate field distributions
and internal and boundary fluxes. Task performance variables, such as
safety and efficiency, characterize the system or subunit fitness. Unknown
variables may have known upper and lower bounds due to conditions and
constraints. Qualitative measures, imprecise specifications, or nonlinear
behavior require the use of probabilistic variables. Statistical measures are
derived from histograms that indicate probabilities under the action of
random effects or imprecision.

6.2. The Variable Hierarchy
The constant, characterization, and statistical variable types have different
levels of variation. Entropy must be influenced by the problem variables to
reflect the overall effectiveness of the technical system or engineering method.
The problem's variables can be organized into a hierarchy based on the level
of variation. This sorts and organizes knowns and unknowns to be expressed
in the entropy measure. Lower entropy means more order or more constraint
on possible configurations. Knowledge lowers the variability of the solution
set.

The problem variables' levels of variation lead to a hierarchy of variation.
Variables can be arbitrarily sorted into compartments of different variation
levels. For example, a nine-level hierarchy is defined in Table 13.3 below
(LaFleur, 1989).

Incomprehensibles are unobserved variables and are usually assumed to
be ineffective on the system operation. Level 3 and lower variables are
known variables and are available after problem set-up. Research is needed
if the problem statement does not explicitly state the knowns. Level 4 re
presents the independent coordinates that arise in the governing physical
equations and are used to track field, behavior, and performance variables.
Unknowns are identified by levels 5 and higher and are evaluated in the

www.manaraa.com

13. Entropy Measures in Engineering Design 295

TABLE 13.3. Example variable hierarchy of nine levels.

X(vi)= variable X of

vi
0
1
2
3
4
5
6
7
8

Variational level vi

Description
Universal constants
Material properties
Geometric constraints
Physical conditions
Independent variables
Bounded dependent variables
Unbounded dependent variables
Random variables
Incomprehensible variables

engineering method. Behavior variables are governed by physical laws. Per
formance measures are defined in terms of behavior variables. Design or
configuration are determined by a decision-making process; input informa
tion provides closure.

For example, the design of a heat exchanger can be treated using the level
of variation hierarchy to yield:

vi= 0 pi
vi= 1 for the two fluids: thermal conductivity, specific heat, viscosity
vi = 2 inlet and exit fitting sizes, maximum length and shell, diameter
vi = 3 for the two fluids: inlet flow temperature and flow rate
vi = 4 radius, axial coordinate, time
vi = 5 for the two fluids: temperature distribution, flow velocity distribu

tion, pressure drop, net heat exchange and materials of the shell,
tubes and fins, tube diameter, number of tubes, tube pattern, tube
wall thickness, fin spacing, fin thickness, shell diameter, shell thick
ness, head thickness

Level 5 variables may be categorized in terms of behavior variables (gov
erned by physical principles), performance variables (governed by function
definitions), and design variables (degrees offreedom). Using levelS assumes
that the bounds of variables are known (bounds are level2 or 3 variables).

6.3. Implicit Variations
The entropy, as the single measure of system or method efficacy, must de
pend on the variables sorted in the variation hierarchy. Thermodynamics
requires that a fundamental relation be derived from which all properties
and design sensitivities can be found such as the implicit formula of

S = S(X(O), X(l), X(2), X(3), X(4), X(5), X(6), X(7), X(8)). (13.36)

www.manaraa.com

296 Ronald S. LaFleur

Nonequilibrium is stated in terms of an expansion using sensitivities as

as
fJS =oX(vi) fJX(vl), where vl = 0, 1, 2, 3, 4, 5, 6, 7, 8. (13.37)

The variation of entropy is due to processes in the system or method. Level
0 variables do not vary, variation of independent variables are zero, and
incomprehensibles are assumed to be ineffective. The nonequilibrium en
tropy variation can be split into natural and human-controlled processes
(LaFleur, 1990a). Natural processes governed by conservation laws are the
variation of level 5, 6, and 7 variables. Human-controlled or virtual pro
cesses are the variation oflevel1, 2, and 3 variables

(13.38)

where

(fJS),. = fJS(5, 6, 7) and (fJS)., = fJS(1, 2, 3). (13.39)

Spatial or time dependence is not tracked in the variational process.
The unknowns sorted as levels 5, 6, and 7 must be solved to characterize

the system or engineering method in terms of the entropy measure. These
variables are solved in the engineering method using analysis, design deci
sions, and statistics. Unknowns depend on the knowns, independent vari
ables, and each other. Levels 7, 6, and 5 variations can be solved successively
or simultaneously in terms of lower level variables as

fJX,.(5, 6, or 7) = ft(X(4), X(3), X(2), X(l), X(O)). (13.40)

The processes of solution can occur if the number of unknowns is matched
by an equal number of governing equations or input decisions, i.e., an infor
mational balance. Input decisions derived from engineering environments
are of level 3 or lower, i.e., they are constant but adjustable. The input of
information constrains the engineering problem degrees of freedom. The
entropy of the problem, as a function of the levels of variations, should
decrease with solution knowledge. This tracks the advancement of the design
process or method improvement.

If the system is characterized by integral variables (space and time aver
ages), then the unknowns are reduced to level 3 variability. The solution
process reduces the level of variability. Therefore, the determined system or
engineering method has entropy of level 3 variation. System or method
improvement is attained through the engineer-controlled virtual process of
level 1, 2, and 3 variations. Therefore, the problem solution effectiveness
of the engineering system is measured by how the levels of variation of
a problem decrease. The entropy tracks the problem's highest level of
variation.

Nonlinear systems are not well behaved and may produce instability and
multiple solutions. For example, LaFleur (1991) gives the design of pipe
insulation using four methods. The genetic algorithm results in a nonlinear

www.manaraa.com

13. Entropy Measures in Engineering Design 297

design evolution that has a "strange attractor" as a fuzzy region of solutions.
In this case, the solution process does not fully reduce the problem level of
variation completely and leaves degrees of freedom. The remaining degrees
of freedom require extra information inputs leading to one system design or
one engineering method. In the case where nonlinearity produces multiple
solutions, one must be selected. Human control is a virtual process and
constitutes artificial selection (LaFleur, 1990b). The natural selection is a real
process produced through fluctuations that act on unstable solutions that
separate regions of stable solutions.

Using the variable hierarchy, the entropy can be stated in terms of vari
ables with different levels of variations, from constants up to random vari
ables. The engineering method's effectiveness is accountable in terms of how
unique (linear) problem solutions are found or how nonunique (nonlinear)
solutions are selected naturally or artificially.

7. Summary

Entropy was hypothesized to meet the single measure criteria as a common
basis for measuring the effectiveness of designed products, engineering
methods, and technical systems. The entropy function thermodynamics were
reviewed and entropy was found to be widely applicable over macroscopic to
microscopic scales, equilibrium or nonequilibrium processes, and continuous
or discrete systems. Entropy was found to apply to the decomposition of a
system into smaller subunits and to the combination of components into a
system. The general system was treated as a sum of subunits that themselves
may be systems. The treatment of a system's environment as a system iden
tifies environmental entropy.

Multifunctional system performance can be measured using the entropy
calculated from the special actions of mass species, thermal energy, and me
chanical energy on the systems's boundary. Internal fluxes that cause entropy
production could be modeled in terms of boundary fluxes for specific engi
neering domains. Qualitative variables can be converted to quantitative mea
sures of entropy by tracking the number of degrees of freedom, number of
configurations, and the probabilities of each configuration occurring.

The entropy function is related to the engineering problem's level of varia
tion. Important variables are sorted into a variation hierarchy where implied
relationships govern the overall problem level of variation. Both natural and
human controlled processes in engineering design are tractable through the
natural and virtual processes of the entropy function. The increase of under
standing is the statement of variables and relationships between them.
Knowledge reduces the problem's level of variation. Therefore, research
on applied design, new methodologies, and testing of hypotheses could be
tracked using the single measure of entropy. Design science advances are
reflected by lowered entropy.

www.manaraa.com

298 Ronald S. LaFleur

References
Bejan, A. (1982). Entropy Generation through Heat and Fluid Flow. New York: Wiley.
Callen, H. B. (1985). Thermodynamics and an Introduction to Thermostatistics. New

York: Wiley.
de Groot, S. R., and Mazur, P. (1984). Non-Equilibrium Thermodynamics. New York:

Dover.
Gibbs, J. W. (republished 1961). The Scientific Papers of J. Willard Gibbs, Ph.D.,

LL.D., Volume I, New York: Dover.
Haase, R. (1969). Thermodynamics of Irreversible Processes. Addison Wesley.
LaFleur, R. S. (1989). A hierarchy for organizing multivariable design and analysis

problems. Proceedings of the Annual ASEE Meeting of the St. Lawrence Section,
Session 14A3, Engineering Education Methods, pp. 1-10.

LaFleur, R. S. (1990a). Lecture Notes of Advanced Thermodynamics. Clarkson
University.

LaFleur, R. S. (1990b). The role of evolution in design. ASEE DEED Bulletin, 14(3),
Spring 1990.

LaFleur, R. S. (1991). Evolutionary design theory using dynamic variation and
thermodynamic selection. Research in Engineering Design, 3, 39-55.

LaFleur, R. S. (1992). Principle engineering design questions. Research in Engineering
Design, 4, 89-100.

Raisbeck, G. (1963). Information Theory, Cambridge, MA: MIT Press.
Shannon, C. E., and Weaver, W. (1949). A Mathematical Theory of Communication,

Urbana, IL: University of Illinois Press.

www.manaraa.com

14
Design Education

KENNETH J. WALDRON AND MANJULA B. WALDRON

Abstract. The instruction of design in engineering curricula has long been
controversial. New influences such as changes in industry practices, changes
in the approach of the profession, as reflected in accreditation criteria, and
changes in the legal and regulatory environment within which we must
operate, mandate some rethinking of design instruction. Some traditional
approaches continue to be useful, but new technical materials and methodol
ogies must be incorporated into already crowded curricula. Some sugges
tions are provided in this chapter.

1. Introduction

The essential difference between an engineer and a scientist is that the engi
neer creates new artifacts and technologies, whereas the scientist studies the
world as it currently exists. The parts of engineering that relate directly to
this creative or synthetic activity are design and manufacture (Waldron,
1992). In some engineering fields we are not accustomed to think in terms of
"manufacture," but there are other, equivalent words such as construction,
which is really the same concept applied to artifacts of larger scale. In other
cases the engineer's product may be a process chart, or a set of software.
Nevertheless, some sort of artifact is produced, and there is a sophisticated
planning process involved in the production of that artifact.

Design is planning for manufacture. An excellent command of manufac
turing processes will avail nothing without good design (Hoover and Jones,
1991). This point has tended to be lost in the current concern over improving
manufacturing industry.

Is there enough emphasis on design in engineering education? This is an
old question that we keep revisiting. Nevertheless it is an appropriate ques
tion at this time for several reasons.

One reason is the new Accreditation Board for Engineering and Technol
ogy (ABET) criteria. These specify one year of mathematics and basic sci
ences, one-half year of humanities, and one- and one-half years of engi-

299

www.manaraa.com

300 Kenneth J. Waldron and Manjula B. Waldron

neering topics. There is no longer any set number of hours for design as
opposed to engineering science topics. There is a requirement for a meaning
ful design experience toward the end of the student's educational program.
There is also a requirement for the integration of open-ended problems
throughout the curriculum.

Another reason is that industry has now absorbed the concept of concur
rent engineering into their culture, and they are demanding that students
have experience in working in teams and, in particular, in cross-disciplinary
teams.

Yet another reason is the current trend among university administrations
to insist that curricula extend over no more than 120 semester credit hours.
Since almost all engineering curricula currently require substantially more
credits than this it is predictable that there will be pressure to cut material.
Time in the curriculum devoted to design activities will be vulnerable to
reduction under these pressures.

The new ABET criteria (Engineering, 1994) throw the responsibility for
ensuring that our curricula have appropriate design content onto us, the
engineering academic community, and onto the professional community of
which we are part. It is no longer possible to hide behind the ABET require
ments. Equally, it is no longer possible to use them as a reason for a lack of
innovation. It is up to us whether we treat this as a disaster, or as an
opportunity.

As far as providing experiences in working in multidisciplinary teams is
concerned, we are at the same point that industry was at 5 or 10 years ago:
we are not set up for that kind of activity. We will not get much sympathy
from our colleagues in industry, since, in many cases, companies had to go
through very painful restructuring exercises to get to a point that they could
fully utilize the interdisciplinary teaming ideas of concurrent engineering. We
need to get to work and remove whatever barriers we may have to this mode
of operation.

Students learn to design by doing it (Koen, 1994). Meaningful project
experiences must form the core of any educational program in engineering
design. This is because it is in part a creative activity akin to that of a creative
artist. The medium is different and is, in fact, very much more complex, but
the nature of the process is very similar.

This central fact has made design instruction the bane of generations of
academic administrators. Design resists being taught "efficiently" by pack
ing students into lecture classes that can be taught with minimal faculty
effort. Design instruction demands individual interaction between the stu
dent and the instructor. Consequently, design instruction is manpower inten
sive and does not fit when universities make policies about course section
sizes and instructor workload.

Another consequence is that design resists attempts to tum it into a "sci
ence" (Dixon, 1988). It is, fundamentally, a synthetic activity. Sciences are
fundamentally investigative activities. Once again, design does not fit the

www.manaraa.com

14. Design Education 301

pattern. Consequently, faculty who make design their primary focus face
problems with the promotion and tenure process when that process is based
on a narrow, science-based definition of scholarship. This does not have to
be. Most universities also use different definitions of scholarship as criteria
against which synthetic activities are judged. There is no reason these defini
tions cannot be adapted to evaluation of design activities. However, the use
of design activities in promotion and tenure is perceived to be a problem by
engineering faculty, which negatively impacts their willingness to commit
effort to design activities and design instruction.

For all these reasons, there is a continuing tension in engineering curricula
between the need to give instruction in design and the tendency to reduce, or
even eliminate that instruction since it doesn't fit the primary instructional
paradigm of the university for science-based subjects.

2. Project Work

As was pointed out above, students learn design by doing it. The provision
of meaningful project experiences is therefore crucial in any design curricu
lum. Of course, good feedback on the project work is essential to the learn
ing experience. The most effective feedback comes from having the artifact
designed actually manufactured as a prototype. Many manufacturing prob
lems will not be identified until a part is put in the hands of a technician
for manufacture. It is important for students to learn, early, the importance
of communicating with those who will be making the artifact. Functional
shortcomings may not be easily envisaged when the design only exists on
paper, but will be immediately apparent when it is prototyped. Finally, the
experience becomes more vivid to the student and is consequently better
remembered.

It is easy to shy away from carrying projects through to manufacture of a
prototype. Large and expensive artifacts, such as civil engineering structures,
may be economically impossible to prototype. Even smaller items may be
expensive to prototype, particularly since most prototypes must be predomi
nantly handmade. Nevertheless, carrying projects through to the prototype
stage gives the students the best possible design experience.

Paper projects, in which only drawings and specifications are produced,
may be the only viable option given the fiscal and temporal constraints of the
program. However, to be effective, a paper design project must be exhaus
tively critiqued by one, or preferably several, experienced designers. Doing
this in the format of a design review in which the students must present their
work for criticism by the rest of the class, the instructors, and experienced
invited experts, is effective in focusing the students' attention by requiring
them to defend their work. The feedback obtained may not be as effec
tive as having a prototype manufactured and tested, but it will certainly
pick up major shortcomings. It should be emphasized that a paper design

www.manaraa.com

302 Kenneth J. Waldron and Manjula B. Waldron

project without adequate feedback to the students is of little instructional
value.

All ofthis requires instructors with significant design experience. Unfortu
nately, for reasons discussed in the introductory section, many engineering
faculty are not equipped to be effective design project instructors, and many
are not willing to put in the necessary effort to work with the students
effectively. Some schools solve this problem by hiring experienced designers
who have retired from industry, or who work on a part-time basis as instruc
tors for design projects.

Project work is also essential to provide students with project management
and team-working experience. Ideally, each project should be conducted by
a team with members from a variety of relevant academic backgrounds. This
might include students from outside the engineering college, such as students
from business, communication, or industrial design, as well as students from
several engineering disciplines if the project is broad enough. After many
years of being discouraged from collaborative work, students often have
difficulty adapting to the team situation.

Use of project management tools, such as a statement of work, a Gantt
chart, or other time scheduling tools, and, of course, a budget should be
required (Ulrich and Eppinger, 1995). Students should learn about profes
sional conduct and division of work in team-working situations.

Students need to be aware that a design can be viewed as a hierarchy of
decisions. When making a design decision, the designer sets a dimension, or
selects a material or component. There is a second set of decisions, which are
decisions which direct the design process. These are decisions about what to
do next, or about how far to pursue analysis or experiment. They are man
agement decisions.

Students also need to understand that an important feature of design is
that the available time, and resources, become constraints on the design
process. Often, complete analysis cannot be performed within these con
straints. The designer must then make design decisions with only partially
quantitative information. There is an important set of decisions in any design
project which trade-off the quality of information that can be obtained by
further analysis against the time and resources required to obtain that infor
mation. A finite element analysis of a part requires considerable expense in
personnel time to generate the model, and computer time to analyze it and
present the results. It may also take several days to yield results. If computa
tions using simple strength of materials models indicate that the factor of
safety is large there is no point wasting those resources on the finite element
analysis. Even if the strength of the part appears to be marginal, if time and
money is short, cruder but less expensive alternatives to further analysis will
be used. For example, the cross-section might be simply increased to a size
judged to be safe, or a higher strength material might be selected.

A consequence is that designers must often make decisions on the basis of
incomplete information or, more accurately, on the basis of incomplete in-

www.manaraa.com

14. Design Education 303

formation from analysis combined with the knowledge base generated by
their integrated experience. Such decisions can be very difficult, particularly
when the success or failure of the project hangs on them. Nevertheless, they
must be made. Making these judgment decisions is a new and important
experience for students who are accustomed to "black-and-white" situations
in which there is only one right answer, and analysis is pursued until that
answer is manifest.

An increasing number of schools are using projects from industry (Bailey,
1995), and are expecting the sponsoring company to contribute to the costs
of prototyping the design and operating the course (Beach, 1993; Roeder,
1994). This strategy eliminates the objection to manufacturing prototypes on
grounds of cost. It can also make proper levels of course staffing more
palatable to administrators. Most important, it ensures that the problems
used are real problems, and are perceived as such by the students. This
practice also provides an important interaction with the industry sponsor,
and provides a real customer to which the group must present their work.

3. A Design Methodology

Although the primary means of learning design is by practice, students
and experienced designers need structure to enable them to find their way
through the process. This is the function of design methodology. There has
been a lot of attention paid to design methodology in recent years. Such
concepts as Quality Function Deployment (QFD) (Clausing, 1994) and Con
current Engineering are design methodologies (Ullman 1992; Wesner et al.,
1994). Unfortunately, the presentations in many traditional textbooks are
grossly oversimplified and misleading. This is, in fact, an extensive and
complex subject.

Although the prescriptive presentation found in most older books (Pahl &
Beitz, 1984) is incomplete and therefore misleading, it is a useful starting
point for presentation of design methodology. Figure 14.1 has been used by
the first author for some years when introducing the subject. This figure
shows a generic flow-chart of the design process. The portion of the chart to
the left of the heavy dotted line deals with the activities of the human design
team. The items to the right of that line are computer-based tools that can be
used in the appropriate portions of the process.

The three blocks in the top left-hand comer deal with the identification of
the problem by "the customer," and the interactions between the design
team and the customer, or sponsor. The process begins with a perceived
need. It is useful for the students to be able to negotiate the specifications
upon which the design is to be based with a real sponsor, as occurs in
professional design work. The original specification from the sponsor will
often contain data in forms that are not directly useful for design purposes.
Students need experience in identifying the data they need to drive the design

www.manaraa.com

304 Kenneth J. Waldron and Manjula B. Waldron

FIGURE 14.1. The design process. The central stem represents the major activities of
the design team. The three blocks in the top left-hand comer represent the interac
tions with the sponsor of the project that result in the specifications which drive the
design process. The blocks to the right of the heavy dotted line represent computer
based design tools which might be used in the design process.

process, and extracting that information from the sponsor's requests. QFD
techniques are useful for this transformation (Fleischmann, 1994) and com
puter tools such as ITI's Quality Capture™ are now available for students to
create their house of quality (Hale, 1995).

The central stem of Figure 14.1 indicates activities which are primarily
carried out by the design team. In particular, the three blocks indicated by
the heavier lines might be regarded as forming the "core" of the design
activity.

The conceptual design block represents the part of the process that encom
passes the formulation of the concept upon which the design will be based
and the approximate determination of major dimensions, and selection of

www.manaraa.com

14. Design Education 305

major components. The analytical design block represents the phase in
which the design concept has been identified, and the major features have
been sized, at least approximately. This is the process of refining the sizes of
major elements and setting all important dimensions. This is done by means
of intensive analysis of the system being designed and its component parts.
The detail design block represents the part of the process in which fully
dimensioned working drawings are produced of all parts to be manufac
tured. Minor components, such as bolts and other fasteners, may also be
specified, and most tolerances will be specified during this stage.

Attention needs to be drawn to the characteristic of the design process that
design decisions made earlier in the process provide constraints on later
decisions. For this reason, the further the design progresses, the more tightly
constrained it becomes. The conceptual designer operates with very few
constraints. This can be a problem for students and junior engineers, since at
this stage there is no "reference frame" in which to operate. Once the concept
has been set and the major features designed, all later design decisions must
be compatible with those made earlier. The nature of the design decisions
which must be made therefore becomes increasingly specific.

This presentation is misleading because the design process is presented
here as being sequential, with clear boundaries between the different stages.
This is far from being the case in practice. It will be seen, on Figure 14.1, that
there are arrows in both directions along the design stem. This is meant to
indicate the frequent situation in which as the design of a component, or
subsystem, is pursued in greater detail, it becomes apparent that it cannot be
built in the form postulated at earlier stages of the process. It is then neces
sary to go back to those stages of the process and change the design, requir
ing, in tum, rework of other parts of the system design. Students should
learn that this kind of backtracking can greatly increase the duration and
cost of the design process, and is to be avoided whenever possible. The point
should be made that early correction of a problem is almost always less
expensive in the long run. The real solution to this problem is to develop a
number of alternative concepts in parallel. When problems arise it is then
usually possible to solve them by switching to one of the alternative con
cepts, reducing rework. One of the important points of working in a team is
that different team members can develop alternative concepts in parallel.

The most grievous problem with the presentation of Figure 14.1 is the
presentation of the process as being a serial process with each stage com·
pleted before the next is initiated. This is counter to the most important
feature of concurrent engineering, which is the extensive use of parallelism in
the design process (Ward 1994). It is tempting to operate in a one-task-at-a·
time mode, but the pressure from the marketplace for shorter and shorter
product cycle times requires that each stage of the process be initiated long
before its predecessor is complete. Again, different members of the team can
be pursuing different stages of the design process in parallel. For example,
the design of manufacturing tooling may be proceeding at the same time as

www.manaraa.com

306 Kenneth J. Waldron and Manjula B. Waldron

analysis of the design itself. The key to making this work is excellent commu
nication among all members of the team. Students need to be taught the
importance of communication both within the team, and with other con
cerned parties such as sponsors and management. The point needs to be
made that this cannot be left to chance, and that formal protocols and
formal reviews are important communication tools.

It is worthwhile to also introduce some of the more advanced design
methodologies, such as Quality Function Deployment. There is a great deal
of terminology from Design for Value, Quality Circles, and other such con
cepts that is freely used in industry. An overview that provides some intro
duction to these concepts will be helpful to new graduates in making the
transition to the world of industry.

It is also very important that students are required to estimate the cost per
unit of producing their design, and that this be done on a realistic and
comprehensive basis. The relationships between price and volume for differ
ent manufacturing processes, and the costs of specifying unnecessarily tight
tolerances are fundamental to effective functioning as a design engineer in
industry. Students must also appreciate the real costs of the design and
development process itself in order to develop the discipline to be able to
make good project management decisions. There is never enough time and
money to pursue analysis to completion. An essential part of the design
process is deciding how far it is necessary to analyze each function before
making the necessary design decisions.

4. Social Issues

Design projects provide a convenient place in the curriculum to introduce
instruction on social issues. These range from regulation and liability mat
ters, through intellectual property issues to professional ethics.

Regulations and standards are, of course, an integral part of the design
process. It is not possible to provide even an introduction to all of the
bewildering array of regulatory agencies that govern different industries, and
to the volumes of regulations that they have generated, without specialized
courses. However, students must be made aware of the need for designers to
be knowledgeable about regulations and standards applicable to their indus
try. They should also be made aware of the importance of maintaining
proper documentation of their work for the purpose of satisfying the certifi
cation requirements of the regulating agency or agencies. A good tool for
this purpose is the traditional designer's notebook. The discipline of putting
all work into a suitable notebook, of signing and dating each page as it is
completed, and indexing the work, carries a message on the importance of all
of the designer's work, and it's potential value to the employer. It also brings
home the importance of being able to establish the time at which each part
of the work was done.

www.manaraa.com

14. Design Education 307

Of course, this type of documentation is equally important for establishing
precedence and rights in patent proceedings. Students do need to understand
what rights a patent establishes, and the general features of the procedure for
obtaining a patent. The same is true for copyrights.

There are many misconceptions in the engineering community regarding
product liability. Students should receive instruction on their responsibilities
as professionals, and on those of the companies that may employ them. They
should understand that a good faith commitment to designing quality and
safety into a product is usually the best defense against product liability
actions. It is certainly true that there are horror stories in which even com
panies that have fully complied with applicable regulations at the time of
manufacture, and have used the best available technology, are still vulnera
ble to product liability judgments. See, for example, Yodice (1992) and Wolk
(1993). The apparent enormity of these rather rare cases obscures the fact
that they are aberrations and that companies that use good practices do have
fewer claims and judgments made against them. Students should be made
aware that a constructive approach to avoiding liability by early and fre
quent communication between the design team and the legal department is
also important.

Finally, ethics and professionalism covers the areas outside of formal
regulations that are essential to productive interactions with sponsors,
clients, and other professionals. In our highly competitive industrial environ
ment, the use of another's ideas without attribution has become a rather
common practice. The maintenance of the respect and trust that is essential
for all professional interactions is seriously damaged by this and other prac
tices that are commonly justified by competition and proprietary interests.
Students need to be aware of the negative effects of unethical or deceptive
conduct, even when that conduct is perfectly legal. They also need to be
aware of the responsibilities they assume as professionals, and the special
status attained by certification as a professional engineer. They should be
made aware that they are members of a professional community that has
common interests, and that that community may be of assistance to them in
advancing their careers. They also have a responsibility to that community
to uphold its professional standards.

5. Innovative Curricula

Recently many design education programs across the country have incor
porated some of the above features in their capstone design courses (In
novations, 1993). There are courses developed using concurrent engineering
practices. Communication, group interaction, and group decision making
become important. Developing trust, respect, and understanding of knowl
edge and methods used by people from different disciplines becomes crucial.
Support systems and methods that can facilitate these interactions become

www.manaraa.com

308 Kenneth J. Waldron and Manjula B. Waldron

important. In Chapter 8 Thurston discusses group decision making and a
failure modes and effects analysis scheme for information flow. In Chapter
16 Ramanathan presents a knowledge-based software system that can facili
tate access to timely information and knowledge by different group members
of the concurrent design team so that better and informed decisions can be
made. In Chapter 15 Ishii discusses structured methods for life-cycle design
and design reviews. In this section we present a few selected case studies
that present different ways in which educators have addressed the issues
mentioned above.

Gabrielle (1994) reports using reverse engineering to teach design. That is,
conducting an in-depth analysis to try to recreate the original design process.
This is then followed by a re-engineering phase where students create new
designs. For their projects they selected commonly used household products
with which the students were familiar such as a hair dryer. They formed a
team of five to six students to explore the different disciplines involved. At
the end of the reverse engineering phase they found that the students had a
real appreciation for the engineering involved in the design of even these
simple products.

Fleischmann (1994) reports teaching environmentally responsible design
to undergraduate students by integrating this theme into their curriculum.
They used an integrated design approach in response to the industry de
mands that all engineering graduates understand how the engineering pro
fession affects the environment. In order to cope with the amount of infor
mation students need in their curriculum, they integrated QFD and LCA
tools into the environmentally motivated designs that students were carrying
out. They developed educational materials that their faculty and students
could use. These include a project manual that contains information on
value and ethics, materials and recycling, and case studies, project manage
ment, planning, QFD, LCA, etc. The key to the success of their curriculum
was to ensure that there was a balance between the complexity which inclu
sion of legal, ethical and regulatory framework provide and the students'
ability to integrate this material into their projects.

We used product dissection in teaching life-cycle design issues to create
world-class products. The premise was that most designs are evolutionary
rather than revolutionary. As Brown shows in Chapter 9, there is creativity
even in routine designs. Re-engineering certainly needs more creativity than
routine design. The students were assigned to teams so that the team mem·
bers were from as many different backgrounds as possible. This included
industrial design and mechanical, electrical, and biomedical engineering.
Each team had four members and had a product and a process coach who
guided them through the process and product design issues, based on the
information from the weekly homework exercises and internet communica
tion on an as-needed basis.

In the course students learnt both the process issues and the structured
product methods. Through a series of appropriately designed homework

www.manaraa.com

14. Design Education 309

assignments the students applied these methods to their own products and
teams. They carried out structured brainstorming for functional and value
analysis of their product by creating a why and a how diagram (Ishii et al.,
1994).

The students also did team-building exercises focusing on trust and respect
by identifying what special knowledge and talent each team member pos
sessed. Students were introduced to quality principles. Wesner, Hiatt, and
Trimble's book, Winning with Quality (1994), was a required text for the
students. Students used the Internet, group meetings, and class discussions
for communication amongst themselves and with the product and the process
coaches.

Students first took apart the product they selected and identified the func
tional and structural relationships. They learnt to transform customer re
quirements through QFD methods by creating a house of quality. They
carried out value analysis, design for assembly, serviceability, design for
recyclability, failure modes and effects analysis, and learnt about design
trade-offs. They benchmarked their products and re-engineered their prod
uct along one of the life-cycle issues most suitable for their product. They
learnt group decision making and their decision was arrived at through team
consensus based on data from their DFX analyses.

The students reported that they developed an appreciation for obtaining
and integrating information, learning to work with others, and applying the
knowledge they had gained in their engineering training. One group chose to
redesign along the user issues identified by QFD analysis. Another group
chose to pursue safety issues through examination of regulations and user
requirements, and the third focused on the recyclability issues after carrying
out a serviceability analysis.

Bailey (1995) reports the results of a three-quarter capstone design course
that takes industry-defined "real-life" design projects from product defini
tion to prototype construction and testing. The customers of the student
teams were the industry personnel who provided them with the projects. The
student groups developed the design specifications using the QFD method,
scheduling via critical path techniques, systematic generation of alternative
designs, selection of criteria for optimal designs, and the construction and
testing of the prototype. The students used the Internet for communication
and collaboration and learnt about the relationship of the design process to
technology transfer. Students worked in groups of three to four. They visited
their industrial clients and developed their designs with a complete knowl
edge of the industrial setting. The results were impressive. One of the groups
redesigned the tools and operation of molded packaging in such a manner
that the net productivity doubled for the client. Both industrial engineering
and mechanical engineering knowledge was used in the solution.

Beach (1993) describes his two-quarter integrated design, manufacturing,
and marketability (IDMM) course. Cross-functional teams of four students
from design, manufacturing, and marketing worked on projects provided by

www.manaraa.com

310 Kenneth J. Waldron and Manjula B. Waldron

industry clients. The design was driven by the customer and constrained by
finances. Team evaluation was based on the firm's profitability. Students ob
tained significant manufacturing hands-on experience and they were coached
by practicing engineers. The students enjoyed learning different cultures and
vocabulary and walking through the product realization process.

All students gained substantial experience in materials and manufacturing
tools and made manufacturing decisions in the context of market-driven
information. The students learnt shop practices and, through this experience,
acquired respect for each others' abilities and learnt a common vocabulary.
Each team had a volunteer coach from industry who was a practicing de
signer. They learnt about guarding proprietary information. Through the
Process of Change laboratory the students learnt to combine the "soft"
issues with the "hard" engineering design issues. By the end of the first
quarter the students had learnt about conjoint analysis and marketing issues,
shop practices and had their design mapped out and marketing analysis
completed. In the second quarter they learnt topics such as QFD, process
design, and product realization. They worked on the prototype development
and completed the market simulation. The students made their presentations
and received feedback from their industrial clients.

6. Summary

In this chapter we discuss a design education philosophy based on over 25
years of personal industrial and academic design experience and on the
design theory and methodology research results of the last decade. The
importance of project work is established and a design methodology based
model for design education is presented. The importance of making students
socially responsible for their design is emphasized. Several design education
courses taught in different institutions are presented as case studies as models
to provide guidance.

References

Bailey, R. E. (1995). Cooperative Industry/University Design Projects and the Edu
cation of Mechanical Engineering Seniors at The Ohio State University. Working
Paper.

Beach, D. (1993). Integrated design, manufacturing and marketability. In Innovations
in Engineering Design Education, Resource Guide. New York, NY: American Soci
ety of Mechanical Engineers, pp. 263-266.

Clausing, D. (1994). Total Quality Development. New York: NY. American Society
of Mechanical Engineers Press.

Dixon, J. R. (1988). On research methodology toward a scientific theory of engi
neering design. Artificial Intelligence for Engineering Design, Analysis and Manu
facturing (A/EDAM), 1(3).

www.manaraa.com

14. Design Education 311

Engineering Accreditation Commission Accreditation Board for Engineering and
Technology, Inc. (1994). Criteria for Accrediting Programs in Engineering in the
United States, New York.

Fleischmann, S. T. (1994). Design for recycling-Teaching environmentally respon
sible design. In Innovations in ME Curricula for the 1990's. New York, NY: Ameri
can Society of Mechanical Engineers, pp. 15-18.

Gabrielle, G. A. (1994). The use of reverse engineering projects in a mechanical
engineering senior design course. In Innovations in ME Curricula for the 1990's.
New York, NY: American Society of Mechanical Engineers, pp. 1-6.

Hale, R. (1995). Quality function deployment and quality capture software. Presenta
tion in the seminar on design and development in global market series, at the Ohio
State University Aprill995.

Hoover, C. W., and Jones, J. B. (1991). Improving Engineering Design: Designing for
Competitive Advantage. Washington, DC: National Academy Press.

Innovations in Engineering Design Education (1993). Resource Guide. New York,
NY: American Society of Mechanical Engineers.

Issii, K., Eubanks, F., and Beiter, K. (1994). ME 883 Life-Cycle Design Course notes.
Mechanical Engineering Department, The Ohio State University. Columbus, Ohio.

Koen, B. V. (1994). Toward a strategy for teaching engineering design. J. Engineering
Education, 83(3), 193-202.

Roeder, C. L. (1994). Teaching engineering and business in parallel. In Innovations in
ME Curricula for the 1990's. New York, NY: American Society of Mechanical
Engineers, pp. 11-13.

Ullman, D. G. (1992). The Mechanical Design Process. New York: McGraw-Hill.
Ulrich, K. T., and Eppinger, S. D. (1995). Product Design and Development. New

York: McGraw-Hill.
Waldron, K. J. (1992). Secret confessions of a designer. Mechanical Engineering,

114(11), 60-62.
Ward, A. C. (1994). The second Toyota paradox. Proceedings of ASME Design

Theory and Methodology Conference, DE-68 American Society of Mechanical
Engineers, New York, pp. 79-90.

Wesner, J. W., Hiatt, J. M., and Trimble, D. C. (1994). Winning with Quality, Read
ing, MA: Addison Wesley.

Wilson, C. C., and Speckhart, F. H. (1994). Superior engineering design program. In
Innovations in ME Curricula for the 1990's. New York, NY: American Society of
Mechanical Engineers, pp. 27-29.

Wolk, A. A. (1993). Product liability: A plaintiffs' lawyer responds. AOPA Pilot,
June, pp. 117-119.

Yodice, J. S. (1992). Product liability: A case study. AOPA Pilot, December,
pp. 127-128.

www.manaraa.com

15
Life-cycle Design

K. ISHII

Abstract. This chapter addresses life-cycle design and describes a model of
simultaneous design reviews using design compatibility analysis (DCA). Early
stages of design affect various issues that comprise the life-cycle cost of
products as well as reliability and serviceability. Our research uses the con
cept of DCA to model the life-cycle cost and customer value of mechanical
systems. DCA focuses on good and bad examples of designs and gives an
overall evaluation of designs in a normalized scale. This chapter summarizes
the methodologies and computer tools developed based on this model. Spe
cifically, the chapter describes computer programs that evaluate layout de
signs and give suggestions for improvement.

1. Introduction

Life-cycle design is a practice of incorporating various values of a product in
the early stages of design. These values include not only functionality but
also manufacturability, serviceability, recyclability, etc. Figure 15.1 shows
these values in the life-cycle of a product. It is essential that these issues be
addressed at this time since life-cycle values and costs are "locked-in" once
preliminary design is complete.

Life-cycle design is largely an organizational and managerial challenge.
However, the rapidly advancing field of computer-aided design provides an
opportunity to use computers to promote life-cycle engineering more effec
tively. Design for assembly (DFA) is perhaps the most mature of these
disciplines. Boothroyd and Dewhurst (1983) and many others have proven
that DF A using computers can provide significant cost savings. There are
other computer programs that assist other aspects of life-cycle designs (Poli
et al., 1988; Desa et al., 1989; Cutkosky et al., 1988; Duffy and Dixon, 1988;
Turner and Anderson, 1988; Simmons and Dixon, 1985).

In order to promote life-cycle design, we need to model the practice to
identify the essential elements: parties involved and the necessary informa
tion flow. This understanding will lead to not only organizational innovation

312

www.manaraa.com

15. Life-cycle Design 313

Product Life-cycle

FIGURE 15.1. Life-cycle of products.

but also effective computer aids for life-cycle design. The main goal of our
research is to develop a framework for computer programs that help de
signers to evaluate a candidate design with respect to various life-cycle
values. Design compatibility analysis (DCA), has shown its utility in design
for injection molding (DFIM), design for forging, design for serviceability
(DFS), and process selection.

DCA is a model of design reviews in which experts with different responsi
bilities judge the candidate design from various angles. The concept has led
to many computer programs. The framework is effective for designer train
ing as well as a preliminary screen for manufacturability and trade analysis
of several candidate designs. The object-oriented nature of this approach
accelerates the modeling of the product values and allows us to implement
"expert's" knowledge at critical stages of design.

2. Compatibility Methodology

2.1. Model of Design Reviews
In the past several years, we have been developing a flexible methodology
that supports life-cycle evaluation of designs. While we do not claim that our
framework covers every aspect of life-cycle design, it has proven to be both
versatile and adaptable. We have applied our compatibility approach to
design for assembly (Adler and Ishii, 1989), design for injection molding
(Beiter and Ishii, 1990; Ishii et al., 1989b), forging process design (Maloney
et al. , 1989), design for serviceability (Gershenson and Ishii, 1991) and pro
cess selection (Ishii et al., 1990). This section gives a brief description of our
general approach.

The central idea of our model is to evaluate simultaneously a candidate
design from multiple viewpoints (Ishii et al., 1988, 1989a). That is, we seek to
model " round table" design reviews in which the various experts evaluate the
proposed design and suggest improvements (Figure 15.2). These suggestions
primarily focus on modification of the candidate design, but may also be
directed to respecification of the process (use of an alternative molding
machine, etc.) or even renegotiating the user requirements.

www.manaraa.com

314 K. Ishii

Process Engineer Tooling Engineer

FIGURE 15.2. The model of design review. The compatibility approach models a
design review in which multiple reviewers with various expertise study a candidate
design. Each gives his/her own comment about the compatibility between the design
and the life-cycle value for which he/she is responsible. Note that the compatibility
comment includes "in between" cases such as "poor."

Note that in Figure 15.2, each expert describes his/her view of the compat
ibility between the candidate design and his/her field of expertise using an
adjective qualifier: excellent, very good, good, poor, bad, and very bad. They
do not have to be adjectives since the qualifiers are eventually mapped into a
[0, I] measure. The key here is that some compatibility issues are absolute
design rules, i.e., definitely not permitted, or absolutely good, while some
others are not so extreme. The qualifier "poor" indicates that the compatibil
ity is undesirable, but if other constraints dominate the final decision, then
the expert will accept the design.

Our approach views the experts' design knowledge as compatibility com
ments and compiles them as C-data. A C-data contains an ID number, the
associated design components/features, compatibility descriptor such as
"very good" and "poor," reasons and suggestions, and, most importantly,
the conditions for the data to be true. Some C-data also looks at com
patibility problems within the candidate design and inconsistency in the
specifications.

C-data: ID = mbasel

elements = plate, ribs

descriptor = poor

www.manaraa.com

15. Life-cycle Design 315

reason = with wall thickness of Th and edge gating, the
maximum flow length for the melt is too long and
may require very high packing pressure.

suggestion = l. use a center sprue gate
2. consider multiple gating
3. increase thickness

conditions = gate location = edge of the plate.
plate-thickeness (Th),
attribute (maximum flow-path)= FP,
attribute (suggested flow-path) = MFP
FP > MFP (15.1)

A collection of C-data comprises the compatibility knowledge-base (CKB).

CKB = {c-datalc-data c G x X x P x [0,11}

where:

G: Universe of discourse of the user requirements
X: Universe of discourse of the candidate design

(15.2)

P: Universe of discourse of the decisions related manufacturing and other
life-cycle process

[0, 1]: Normalized measure between 0 and 1.

That is, CKB is a set of relations between the specification space G, design
solution space X, the life-cycle process space P, and a rating between 0 and
1. Figure 15.3 is an example of a poor compatibility for the design of injec
tion molded parts.

Our model further looks at how the design team combines everybody's
comments, makes compromises, and arrives at a total "consensus" evalua
tion. Figure 15.3 shows the concept of DCA, which models the evaluation
process. DCA is a knowledge-based technique for calculating the total nor
malized measure of compatibility. At any time in the development process,
designers can check their candidate design by comparing the proposed de
sign with CKB. The compatibility model also utilizes the attribute rules
(qualitative or quantitative) which reason about the characteristics of the
candidate design and the detailed implications of the specifications. An at
tribute rule may involve the use of design formulae (e.g., stress equations)
frequently used by designers and process engineers.

2.2. Decomposing Candidate Designs to Elements

In order to develop a computer program that utilizes the compatibility
knowledge, we must describe the data in a form the program can recognize.
More specifically, the preconditions of C-data must be represented with a
standardized set of parameters. This section introduces the notion of "design

www.manaraa.com

316 K. Ishii

10: ler 145

ELE.,.ENTS: I [E,ctreuler _rl b...ljrld)

DESCRIPTOR: 0 exceJie•t

0 , .. r
0 ••••
0 ver1 bed

EXPLANATION: "The spec:ln<j bet'Ween the rlb3 should beet lent t~o~lce the nominal
bese 'Well thttkness . lnereue the speei ng In· ,E; from • ,s:· in. to
,Xs," in. ·

DRIS IECode : ~;n~~~~~~~~~~~~~~i}~;n~

:-

~ Q

For grids of ribs, the space bet'Ween r1bs
should be more th1n t'Wiee the nominal
'Will thlekness :
1) to 11lo'W for proper shri nklge
2) for tooltn<j consideration
Anything nerro'Wer Is BAD.

FIGURE 15.3. Representative C-data. Each compatibility information element is con
tained within an individual data card. This card contains the type of element in
question, the conditions for it to be true, and a rating if this condition is true.

elements" to allow uniform representation of C-data. Such representation is
essential if computers are to relate a candidate design to the compatibility
knowledge base.

Each expert "breaks up" the part design into different building blocks or
design elements. Since these design elements are associated with design rules,
it is important to identify the decomposition process of each expert. These
elements serve as one of the data organization keys in our compatibility
knowledge base. Using the injection molding example, we define the ele
ments of a proposed plastic design so that we can organize the compatibility
information by discrete elements:

A design element (si) is the smallest physical unit in a design that is of any interest to
an expert who is evaluating the design.

Naturally, the element decomposition of a candidate design will be differ
ent among groups of experts. We have adopted the designer's language in
collecting and organizing design rules and guidelines. Hence, the compatibil
ity data will also be represented in terms of the design elements derived from
the designer's perspective. In injection molding, an example of such a design
element is Boss 1 shown in Figure 15.4.

www.manaraa.com

15. Life-cycle Design 317

II ! \~,__/ ----f.l,__/ -mJ~lS II

Sl ~ S2

Bossi

~
rl@ Boss2

BossJ

R

FIGURE 15.4. Model for a computer plastic cover. This sketch environment allows
the user to define individual elements of the proposed design as well as interactions
between elements. Each element (boss, rib, snap, etc.) is further defined by answering
questions regarding their size, thickness, and overall dimensions.

The tooling engineer or process engineer views the candidate design from
different perspectives, which typically involves several design elements. For
example, a tooling engineer may identify a design rule associated with how
closely a rib can be incorporated in a mold. This rule will involve not just one
rib but two, e.g., Rl and R2 in Figure 15.4. Hence, two rib elements will fill
the (elements) slot in the corresponding C-data.

In short, the (element) slot in the C-data is a mapping for cross
referencing the interest of the designers, tooling engineers, and molders. As
the next section explains, DCA checks the candidate design for compatibility
of each element with respect to other elements.

2.3. Computation of the Compatibility Index
For any individual expert or combinations of experts, the model computes a
match index (MI), a measure of compatibility between the expert's rules and
the design. Figure 15.5 shows the flow of DCA.

Given a description of the proposed design and the design specifications,
DCA analyzes the individual elements relative to the specifications. Then,
for each element that makes up the design, DCA selects from the compatibil
ity knowledge base the data that applies to it as matching compatibility data
(MCD). The applicability criteria of the C-data is twofold: (1) the element

www.manaraa.com

318 K. Ishii

(Candidate
Design

Compatibility KB Attribute KB

~~~ - Design Formula 

G X p - Cost estimate 

Inference 

MCD Matching Compatibility Data. 

<1!JP' 4);> ~ excellent 
d 

~ 
poor <!ffP' 

bad verybad 

Mapping MC 

Rating lor each element 
Reasons 
Suooestions 

Weighted Average ~ over' the elements 

( Match Index ) 
FIGURE 15.5. Flow of DCA. 

Repeat 
for 
every 
element 
selected 
for 
evaluation 

must be referred to by the C-data, and (2) the design must satisfy the condi
tions in the C-data. 

Then, the program rates the compatibility of each design element with 
respect to applicable C-data and computes the match coefficient index. This 
computation utilizes the function MC which maps MCD into a number 
between 0 and l. The function MC operates as follows. Each C-data in 
MCD includes an adjective descriptor that takes the value {excellent, very 
good, good, fair, bad, very bad}. The program maps these descriptors into a 
numerical code {1.0, 0.8, 0.6, 0.4, 0.2, 0.0}, respectively. Hence, then adjec
tives are mapped to n set of numbers between 0 and 1. We then use the 
function bestinfo to total this set of numbers into a single match coefficient, 
M(s) E [0, I]. In our application, the function bestinfo takes the rating of the 
worst C-data if there is at least one "negative" comment (ratings less than 
0.5) about the design; otherwise, bestinfo takes the best C-data. If MCD is 



www.manaraa.com

15. Life-cycle Design 319 

empty, i.e., there is no reason to believe the design is bad nor good, the match 
coefficient is assigned 0.5. Note that the function MC is user definable, i.e., 
one may adopt other mapping such as taking the mean. 

The total evaluation for the entire set of elements is the match index: 

where: 

Ml = I:Ku(s) · M(s) 

MI = the match index 

K = the set of design elements 

u(s) = the weight of evaluation of elements [I:Ku(s) = 1.0] 

M(s) = value of individual C-data 

(15.3) 

Hence, design compatibility analysis gives a normalized rating for a candi
date design. 

DCA: G X X X p X CKB -+ [0, 1] (15.4) 

Note that the match index is only an averaged measure of compatibility 
and does not reflect situations where most design elements are compatible 
but some minor elements are not. This element may seriously jeopardize the 
entire design. Hence, a good design has a high match index and a narrow 
range of the match coefficients over the set of design elements. 

Note that each design element has an associated weight of evaluation, u(s). 
As described previously, a design element is related to the functional decom
position of the design. Hence, we can interpret u(s) as the weight of impor
tance of the associated function of the element. A designer can assign the 
weights according to his/her needs. As a default, each element will have 
equal weight. The match index, then, is the measure of how well the design 
satisfies the requirement and how compatible this function is with other 
elements. 

3. Applications of DCA 

DAISIE (Designers Aid for Simultaneous Engineering: Adler and Ishii, 
1989) utilizes an object-oriented programming environment devoted to aid 
life-cycle design using DCA. The underlying languages are Prolog and 
HyperCard. DAISIE has served as a platform for several life-cycle design 
aids: 

1. Design for serviceability (Gershenson et al., 1990) 
2. Material and process selection (Ishii et al., 1990) 
3. Design for injection molding (Ishii et al., 1989b) 



www.manaraa.com

320 K. Ishii 

In addition, a research group at Stanford University applied DAISIE to 
design for assembly (Ishii, Adler, and Barkan, 1988). DCA has also been 
successfully applied to the tribological design of machine elements (Ishii, 
Klinger, and Hamrock, 1990). 

Various design interfaces are available depending on the application. For 
the injection molding system DAISIE/DFIM, designers can describe their 
proposed design in a "shorthand sketch" (MacDraw-like sketching environ
ment, Figure 15.6). DAISIE asks the user questions regarding the require
ments and process constraints through HyperCard. The system uses DCA to 
evaluate the compatibility and suggests remedies/improvements through tex
tual and pictorial information. 

3.1. Design for Serviceability and Reliability 
A current trend in industry is to produce designs that are as simple as 
possible to assemble (design for assembly [DFA]). Very often, but not 
always, DF A leads to more reliable designs due primarily to the reduced 
number of parts. Unfortunately, DFA may sometimes lead to designs that 
are very difficult to service. 

Some systems designed for assembly may be impossible or very difficult to 
replace in the field. The lack of tunability or adjustability of some DFA 
designs may degrade the performance of the device after servicing. The 
possible enhanced reliability due to DF A and modular designs, i.e., reduced 
service frequency, could be offset by an increased cost of each repair. Hence, 
manufacturable designs without thorough consideration for serviceability 
and reliability could lead to unexpected increases in servicing and warranty 
costs. In addition, the intangible effects on customer satisfaction could be 
quite significant. 

Many companies have compiled comprehensive guidelines for serviceabil
ity design. The guidelines address, for various service modes, (I) provisions 
to detect servicing needs, (2) design features to enhance the ease of servicing, 
and (3) estimated life-cycle service cost. However, the strong push for manu
facturability (assembly, modularity) sometimes compromises serviceability 
and reliability considerations beyond a justified level. We are developing 
applications for some major automotive industries to help designers to ac
cess their proposed designs with respect to serviceability. 

Recently, we have developed a computer aid to analyze the life-cycle 
service cost of automotive systems and provide suggestions that improves the 
serviceability of candidate designs (Gershenson and Ishii, 1991). The system, 
based on DCA, allows the user to describe the layout/configuration of pre
liminary designs using icons and links (Figure 15.6). The system further 
performs what we call "phenomena-based serviceability analysis." This 
method identifies cost driving service modes, analyzes the life-cycle service 
cost based on these phenomena (service modes), and maps the costs to the 



www.manaraa.com

15. Life-cycle Design 321 

t.le)or Assembly 

FIGURE 15.6. Design description using icons. This pallet allows the user to define the 
method of assembly/disassembly of the individual components or modules within a 
car door. 

actual construction of the candidate design (Figure 15. 7). Figure 15.8 shows 
the design suggestions. 

This method, service mode analysis (SMA) has been applied to door 
hardware systems at General Motors, to power train systems at Ford, and to 
appliances at General Electric. We are currently extending the methodology 
to accommodate advanced planning for product retirement and recycling of 
recovered materials. 

3.2. Material and Process Selection 
Most people agree that the cost and quality of a product are " locked" into 
the layout design. Many companies are actively pursuing means to integrate 
the life-cycle values of the product early in its development. In particular, 
design for manufacturability (DFM) has provided engineers a systematic 
methodology to reduce development time, cut production cost, and reduce 
defects. DFM typically focuses on the particular manufacturing process, 
e.g., machining, stamping, injection molding, assembly, etc., and seeks to 
incorporate into the early product design features that can prevent manufac
turing problems and significantly simplify the production process. 



www.manaraa.com

322 K. Ishii 

l lll :~:lll l~lllll l:l~::::::::::::::·:~~: :::~::li:~~:~~: : :.: : :·::: . :::·~ ::.::.:::~:::::::: . 
. ·.·.·.·.·.·.·.·.·.·.·.·. ·.·.· .· ·.·.·i~:::·: j ·~fi~;~;. ;t~ ::.:: :.: ::::: ::: : : ::::: : : : : : ::::::: : : : :::::::: .: ::: : :: .: :::::::::: 

IIUI ::Q ic...-.t (::j PtequnCJ U Totll Costs r:n 
remgye daar trira panel 

fCIIIOW pwr wdo/door IW I 

lnetell pwr wdo/dODr ew 
Install door blm panel 

aupport window gl .. , ....... . 

attac:fl window gin• any 1-llli•ill 
conned door lock 

Replace door loci< 

FIGURE 15.7. Labor operations. From this output it can be determined graphically 
how different "phenomena" or conditions will affect serviceability cost. 

file [dit Navigation Help 
·.·.·-·.·-·-·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· . ···· ···· ·········· ······· ···.·-·.·.·.·.·.·.·.·.·.·.··.·.·.· ·.· ·····················.·-::::::: 

The Audl door trim panel .... 

:-:-:-:-:-:.:-: -:.:- :. L.:-:,..,..,..,...,..,..c.,..l,...lcl<,..,....,o...,n...,".,...,..Po_o_r O,..,....,c-sl..:g_n_" _to,..,....,se_e..,...,.wh.,...,..•t,...n,_,o,_,t...,to..,...,.d.,..o.,... ,...,.,,...,...,..! : : : : : : : : : : 
-:.:-:-:-:.:-:-:-:-:-:.:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-.-.·.·.·.-:·:·:-:-:-:- :-:-:-:-:-:-:-:-:·:· ·.·.<·.·.·.·.·.·.·.·.·.·.·.·. ·.·.·.·.·.·.·.·.·.·.·.·.·.·.· 1·.·.·.·.· .·.·.·.·.·. ·.·.·.·.·.·.·.[· )·.·.·.·.·.·.·.·.·.·.·.·.· 
)))))))( Poor Design }}})))(/( ~ )))))): 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::·:·:·:·:::·:·:·:·:·:·:·:·:·: ·:·:·:·:·:·:::.:·:::-: ... 

FIGURE 15.8. Design suggestions. Suggestions are provided with visual examples of 
both good and bad design. 



www.manaraa.com

15. Life-cycle Design 323 

While this type of activity certainly enhances product competitiveness, it 
usually applies to a specific process. What precedes DFM is a very important 
decision; selection of the material and manufacturing process. 

Frequently encountered process selection targets include (1) electronics 
housing: sheet metal forming or injection molding; and (2) automotive parts: 
machining or die casting or investment casting. These decisions not only 
affect the DFM methods that follow, but also the product's overall market 
competitiveness. 

A variety of factors influence this decision, many of which cannot be 
estimated accurately, e.g., volume of sales. While there are many handbooks 
for qualitative guidance in selecting a process, they do not provide a quanti
tative means to compare the suitability of each process to a given part. 
Today, most engineers select a process based on their experience and intu
ition in addition to "guesstimation" (estimation based on educated guesses) 
of many of the influencing factors. Engineers can greatly benefit from a 
design tool that allows them to compare different processes in a more 
rational, systematic manner, utilizing as much quantitative information as 
possible. 

RouJXl. 

Bar 

Section 

Tube 

Flat 

4 
Cloul 
ouuA 

5 
Cloul 

htl>.t:Us 

FIGURE 15.9. Geometric specifications. This card is asking the user for information 
regarding general shape. The total enclosed volume of the product is also specified. 



www.manaraa.com

324 K. Ishii 

RLPRO 

Process DCA Cost 
Forging • 

D Die Casting 0 .51 

D Perm Mold Casting 0 .... 

0 Sand Casting 0 

0 Sheet Forming D 

D Emusion 0 

( Anal p ·bTt ) o.oo 1 .25 o.5o o.75 1.oo 
'[Z-8 easl 1 1 Y • Pll"t Cast Is Ollly calculated for checked processes. March twx -

( Estimate Part Cost ) • Click on DCA nlinr. to see breakd<M\ !or process. Cost Fa:tor D 
. . • Click on Pll"t Cost to see breakd<M\ !or lhat process. 

FIGURE 15.10. Ranking of candidate processes. The program uses DCA to rank the 
compatibility of candidate processes to the product specifications. 

The application HyperQ/Process is used to determine the most appropri
ate and cost-effective manufacturing process for a proposed design. Again, 
it uses DCA to evaluate the compatibility of a given specification with 
various candidate manufacturing processes. The program receives the prod
uct specifications in three modules: (l) geometry, (2) production, and (3) 
material and mechanical strength (Figure 15.9). Then DCA ranks the com
patibility of commonly used manufacturing processes (Figure 15.10). If the 
user requires further analysis, DCA illustrates the details of its compatibility 
studies (Figure 15.11). The program is undergoing field testing in several 
companies. 

3.3. Design for Injection Molding 
This application, which we now call Hyper Design/Plastics, evaluates proposed 
product designs for their compatibility with the injection molding process. 

The user sketches a design then selects icons from a floating pallet and 
places them upon the drawing (Figure 15.12). The application then asks 
questions regarding each feature, such as, rib height, wall thickness etc. Once 
all the feature data and interaction information is entered the application 
evaluates the design with respect to its built inC-data. A rating from 0 to 100 



www.manaraa.com

15. Life-cycle Design 325 

Criteria Relative Rating DCA 

GEOMETRY 
Ill&)• Is luoll. poll) II 
Voia'k Is tlCollul 

V.U Tllobus Is ••tllllll 
Tolmact is pol 
RooahMss is .,.,,n .. .t 

1.1 1..2 1 .4 l . i 

~ 
m 
~ 0 

Subjective Rating 
MATERIALS 

u nAils aotcul fQ 

~ 
• Clidt <1.\ l'llie 10 L~ help Info ~t radnL aiterh. 

0 .1 1.1 

PRODUCTION 
Lu.lTill.o is •••llnl 
Prolvtl.oa Vohao Is pot 

Q 

0 
( RULE EDITOR ) 

FIGURE ·15.11 . Process-specific output. This card shows a specified process rated in 
the areas of material, production, and geometry. The card also shows which C-data 
applied to this example, and leads the user to improvement ideas. 

is returned along with reasons for the rating and suggestions to improve the 
design (Figure 15.13). 

4. Conclusion and Future Work 

This chapter addressed the methodologies and computer programs that help 
designers incorporate various life-cycle values into early designs of a product 
with appropriate balance. The proposed method of design compatibility 
analysis captures the design guidelines and cost models in a compatibility 
format. DCA uses the object-oriented compatibility data to (1) compute an 
overall "goodness" of designs, (2) give reasons, and (3) provide suggestions 
for improvement. 

The previous applications have proven useful as training tools for inexpe
rienced designers. Our current effort addresses the on-line use of the previous 
applications as well as the integration of multiple life-cycle values. Through 
these efforts, we hope to enhance the concept of design compatibility analysis 
to encompass not only qualitative guidelines but also quantitative cost 
models. More specifically, our future research will address: 



www.manaraa.com

326 K. Ishii 

DAIS IE 2.0(&111 l:!ll 

My Design 

~ 
0~ 

~CD .., .. . 
~ 

s:njf l 

~~ 
~ffi 
~ 
~ ~ ~m ~ ~ mi[l en o· W'<~~111 

mm ~~te • 
b4U1 

en I Support ~ AtteU ,., 1 

~ ~ 
0Jn.ao2 sn•p 4 CIJ 

FIGURE 1 5.12. Hyper Design/Plastics: Sketcher. Users input their design by sketching 
it in a MacDraw like environment and then identifying design elements by placing 
appropriate icons on the sketch. Future versions will import feature information 
directly from a CAD application. 

0 Ulsuols(o 11) 

dlim1009 bod bO>l_l 
d!imiOII bod boss_! 
d!iml026 poor boss_! 
d!imiOIO poor bo>S_I 
dfim1008 poor boss_! 
d!iml012 bod holt_! 

E!l! 

U•• ••r1e• of•h'lr...,.,"""'---------=rr-__. 
·rib lhicknt.!ls 3hou&d M: no mort Uw160• of 
1be nominal v.n thicl<ne>S 

·.3pKinc: btrvt:en n"'bs o! at lt:u• N'ict W 

FIGURE 15.13. Evaluation and suggestion card. After the application has evaluated 
the proposed design, the program displays suggestions for improvement (visual rep
resentations of the C-data). 



www.manaraa.com

15. Life-cycle Design 327 

1. Systematic identification of user's life-cycle requirements 
2. Methods to represent and store design alternatives 
3. Comprehensive measure of "goodness" of design 

In addition to these fundamental goals, our group is now addressing 
recyclability. The natural extension ofmanufacturability and serviceability is 
the impact of product designs on the utilization of the components and 
materials after the product's useful life. The question of recyclability is criti
cal as we deplete the earth's limited resources and quickly fill our environ
ment with hazardous waste. Our research efforts focus on design constructs 
that are compatible with easy disassembly, separation, and identification of 
source materials, and their reprocessing. 

Acknowledgments 

This paper is a result of several projects on life-cycle engineering. Sponsors 
of these projects include NSF/DDM, NSF/ERC at Ohio State, US Army 
Material Command, Alcoa, Apple Computer, BFGoodrich, Hewlett Pack
ard, NCR, General Electric, General Motors, Ford, Nissan, and Rockwell. 
We deeply appreciate their support. The author expresses his sincere appreci
ation for the industrial liaisons and students who have contributed to this 
work. Special thanks to John Gershenson and Kurt Beiter who contributed 
the serviceability and injection molding examples, and to Steven Krizan and 
C. Fritz Eubanks who helped in the preparation of the manuscript. 

References 

Adler, R. E., and Ishii, K. (1989). DAISIE: Designer's aid for simultaneous engi
neering. ASME Computers in Engineering 1989, Anaheim, California, July, 1989. 

Barkan, P. (1988). Simultaneous Engineering: AI helps balance production and bot
tom lines. Design News, March 1988. 

Beiter, K., Ishii, K., and Hornberger, L. (1991). Geometry-based index for predicting 
sink mark in plastic parts. Proc. of the ASME Design Theory and Methodology 
Conference, September, 1991, Miami FL. 

Boothroyd, G., and Dewhurst, P. (1983). Design for assembly: A designer's hand
book. Wakerfield, RI: Boothroyd Dewhurst Inc. 

Cutkosky, M. R., Tanenbaum, J. M., and Muller, D. (1988). Features in process
based design. ASME Computers in Engineering 1988, 1, 551-562. 

Desa, S., et. al. (1989). The application of a design for producibility methodology 
to complex stamped products. Proc. of the 1989 ASME Winter Annual Meeting: 
Concurrent Product and Process Design. Dec. 1989, San Francisco, CA. 

Duffey, M. R., and Dixon, J. R. (1988). Automating the design of extrusions: a case 
study in geometric and topological reasoning for mechanical design. ASME Com
puters in Engineering 1988, 1, 505-511. 

Gershenson, J., a.nd Ishii, K. (1991). Life-cycle serviceability design. Proc. of the 
ASME Design Theory and Methodology Conference, September, 1991, Miami FL. 



www.manaraa.com

328 K. Ishii 

Ishii, K., and Barkan, P. (1987). Design compatibility analysis: a framework for 
expert systems in mechanical system design. ASME Computers in Engineering 
1987. 1' 95-102. 

Ishii, K., Adler, R., and Barkan, P. (1988). Application of Design Compatibility 
Analysis to Simultaneous Engineering. Artificial Intelligence for Engineering De
sign, Analysis and Manufacturing (AI EDAM), 2(1), 53-65. 

Ishii, K., and Goel, A. (1989a). A model of simultaneous engineering. In J. Gero 
(Ed.), Artificial Intelligence in Engineering: Design. Computational Mechanics 
Institute. Transaction of the 4th International Conference on AI Applications in 
Engineering, July 1989, Cambridge UK. (AI ENG 89), pp. 484-501. 

Ishii, K., Hornberger, L., and Liou, M. (1989b). Compatibility-based design for 
injection molding. Proc. of the 1989 ASME Winter Annual Meeting: Concurrent 
Product and Process Design. Dec. 1989, San Francisco, CA. 

Ishii, K., Klinger, J., and Hamrock, B. (1990). Compatibility-based design for con
tact stress. Proc. of the ASME Design Automation Conference, September, 1990, 
Chicago, IL. Vol. DE-Vol. 23-1. pp. 323-330. 

Ishii, K., Lee, C. H., and Miller, R. A. (1990). Methods for process selection in 
design. Proc. of the ASME Design Theory and Methodology Conference, Septem
ber, 1990, Chicago, IL. Vol. DE-27. pp. 105-112. 

Ishii, K., Krizan, S., Miller, R. A., and Lee, C. (1991). HyperQ/Process: An expert 
system for manufacturing process selection. In G. Rzevski, (Ed.), Applications of 
Artificial Intelligence in Engineering VI. Oxford, UK: Computational Mechanics 
Publications, pp. 405-422. 

Makino, A., Barkan, P., Reynolds, L., and Pfaff, E. (1989). Design for serviceability 
expert system. Proc. of the 1989 ASME Winter Annual Meeting: Concurrent Prod
uct and Process Design. Dec. 1989, San Francisco, CA. 

Maloney, L., Ishii, K., and Miller, R. A. (1989). Compatibility-based selection of 
forging machines and processes. Proc. of the 1989 ASME Winter Annual Meeting: 
Concurrent Product and Process Design. Dec. 1989, San Francisco, CA. 

Pinilla, J. M., Finger, S., and Prinz, F. B. (1989). Shape feature description and 
recognition using an augmented topology graph grammar. Proceedings of the 1989 
NSF Engineering Design Research Conference. 

Poli, C., and Fernandez, R. (1988). How part design affects injection molding tool 
costs. Machine Design, November, 24. pp. 101-104. 

Simmons, M. K., and Dixon, J. R. (1985). Expert systems in a CAD environment: 
injection molding part design as an example. ASME Computers in Engineering 
1985. 

Spies, K. (1957). Categorizing Closed-Die Forgings. (in German), Werkstuttstechnik 
u. Masch.-Bau, Vol. 47, pp. 201-205. 

Turner, G. P., and Anderson, D. C. (1988). An object-oriented approach to interac
tive, feature-based design for quick turnaround manufacturing. ASME Computers 
in Engineering 1988, 1, 551-555. 



www.manaraa.com

16 
Support for Workflow Process 
Collaboration 

JAY RAMANATHAN 

Abstract. Global competition has created a tremendous need to streamline 
the total collection of activities (or the workflow process) by which high
quality products are designed, maintained, and serviced. To meet this need, 
companies are embarking on practices like integrated product-process design 
and team-oriented management. These practices attempt to identify and 
address different types of constraints early during design to reduce problems 
and iterations in "downstream" activities. Numerous individuals must then 
apply these practices when developing each product component. Given that 
various disciplines and departments are also involved, the problem of man
aging the workflow process is quite complex. Furthermore, existing applica
tions developed over the years must somehow be leveraged in any solution. 
A fundamental challenge addressed here is to develop process-driven infor
mation systems to actively assist the way in which each worker, within each 
department or job category, performs each one of these activities correctly. 
By ensuring correctness and timeliness within the context of the overall 
workflow process, dramatic cost and cycle-time reductions are achievable 
while producing quality products. 

1. Introduction 

Collaboration required to support enterprise-wide practices often involves 
numerous disciplines and must be structured to ensure value is, in fact, 
incrementally added to the product. While structure is often desirable, some 
processes are more ad-hoc. The term workflow process is used here to refer 
to the collection of activities (structured or ad hoc) that must be performed 
by different types of workers who must collaborate for any professional 
endeavor. (The adjective workflow distinguishes the human work activities 
from processes performed by tools that manipulate materials, and from 
business processes that focus on functional decomposition as opposed to the 
flow of control between activities, as we shall see later.) 

Focusing on workflow process support for concurrent engineering, it is 

329 



www.manaraa.com

330 Jay Ramanathan 

important to note that workers from different departments or job categories 
must collaborate to both identify and address two types of interacting con
straints. One type is process-related and arises out of enterprise-specific 
policies and manufacturing issues (such as properties of existing tools or 
quality criteria). These process constraints, in turn, provide the context for 
the other type, product-related constraints. Based on process constraints, 
product requirements are refined and addressed during conceptual and de
tailed design. Terms like concurrent engineering, integrated product design, 
and life-cycle engineering are often used to describe the identification and 
refinement of the interacting product/process constraints and to differentiate 
this design methodology from detailed product design performed in isolation. 

Networked hardware and software systems are required for the cost
effective support for collaborative work. But, "integration" must go beyond 
the mechanics of transmitting, exchanging, and sharing data in a networked 
environment. The hardware/software system must actively "know and as
sist" the collaborative workflow process. An enterprise may follow a specific 
discipline or workflow methodology in its use of existing software. This 
knowledge must be represented in a machine-readable form and used to 
actively guide engineers through a collaborative workflow process that ex
ploits investment in software. Here, we will refer to an integrated software 
system that supports a workflow as an assistant. 

Considerable work has been done in groupware (ACM, 1991; Ishii, 1991) 
and a variety of products (like mail and calendar systems) are now available 
commercially. The focus of these efforts has been in facilitating unstructured 
collaborative interaction between users at different workstations. An exam
ple is the collaborative editing of documents or drawings. In this case, one 
user performs the editing and other users at other workstations can see the 
results and make contributions by editing the same drawing. In addition, 
artificial intelligence research has concentrated on the problem-solving na
ture of detailed design conducted by individuals. More recent research in 
design emphasizes the process-oriented nature of large-scale design (Wal
dron, 1988; Waldron and Waldron, 1988). Issues of making the project plan 
and team decisions visible to the concurrent engineering team have been 
studied by efforts reported i~ Kyung (1991) and Klein (1993). Process model
ing and project managem~nt within software engineering have been ad
dressed by Krasner (1992). The design of knowledge-based information sys
tems has been reported in ~shok (1987); Chandrasekaran and Johnsonson 
(1992); Fisksel (1989); Gup}. and Madnick (1987); Kannapan (1993); Rama
nathan and Sarkar (1988); arkar (1989); and Williams (1990). 

The cost-effective develo ment of information systems for design, manu
facturing, and logistics has also been the concern of a spectrum of national 
and international efforts, like the United States Air Force's IISS (Integrated 
Information Support System) (Althoff, 1990; WRDC, 1990), ElF (Enter
prise Integration Framework) (ElF, 1990), liCE (Information Integration 
for Concurrent Engineering) (Mayer, 1993), DARPA's DICE (Defense 
Advanced Research Projects Agency Initiative in Concurrent Engineering) 



www.manaraa.com

16. Support for Workflow Process Collaboration 331 

(Ramana, 1993), CALS Industry Steering Group (CALS, 1991), KIDS 
(Knowledge Integrated Design System) (KIDS, 1990), and European Com
monwealth's ESPIRIT (AMICE, 1989). These efforts are being conducted 
to define standards-based information architectures to support the require
ments of concurrent engineering, manufacturing, and logistics. While all 
these efforts emphasize that building cost-effective information systems is 
an interdisciplinary effort involving organizational and behavioral theories, 
networking, database, artificial intelligence, and software engineering tech
niques, they each also emphasize the need for process management. Some 
efforts go beyond stating the need and outline a strategy. A good example is 
the draft standard (U.S. Department of Commerce, 1993) for Functional 
Process Improvement within the Department of Defense. 

The disciplined, process-model-based approach to collaboration presented 
here has evolved out of the OBID (Object-Based Integrated Design) project 
-an Air Force SBIR grant to commercialize technology relevant to concur
rent engineering-and related research programs and conducted over the 
past 12 years (Alroy, 1991; Blattner, 1979; Ramanathan, 1993; Ramanathan, 
1987). Driven by the process management requirements of organizations, the 
focus is on modeling different roles that must enact the discipline represented 
in a workflow process model. When the model is negotiated, created, and 
agreed upon by the collaborators, it is used by a process model-driven 
software assistant to govern the collaborative enactment of workers on 
the actual projects. Thus, the assistant supports design as a collaborative 
problem-solving activity involving steps (and decisions) that transform 
product information from one form to another. Many different types of 
problem-solving agents, such as workers (engineers), analysis software, expert 
systems, and a variety of database applications, are also managed by the 
assistant in order to transform and develop the product information. Fur
ther, support is for long-term collaboration requiring the global state of 
the problem-solving and the manipulated information entities to be saved 
in a database. Man~gement visibility is provided by metrics such as queue 
times of activities, delays, and other attributes of the global state. Process 
management as a technology is also positioned here in the context of the 
information system architectures. 

Thus, this chapter reflects an interdisciplinary perspective in developing 
assistants for workflow process support and management. It also discusses 
and assesses their tremendous commercial impact and viability. The chapter 
also includes future process management technology issues that need to be 
addressed both from an engineering and an information systems perspective. 

2. Problems Due to Lack of Process Assistance 

In this chapter, problem scenarios arising from lack of support for different 
types of workflow processes are examined. Though the workflow problems 
examined here are related to design and manufacturing, similar problems 



www.manaraa.com

332 Jay Ramanathan 

exist due to lack of process support in many professional endeavors. Assis
tants, which have been developed and utilized in commercial pilots by aero
space industry vendors to support the users and address the problems in each 
of these scenarios, will be presented later along with measured and signifi
cant productivity improvements. 

Existing Problems in Interdisciplinary Design and 
Manufacturing 

The first user scenario considered here presents the difficulties encountered 
when engineers attempt to design blades for multistage jet engine compres
sors. Currently, design is done collectively by aerodynamics, stress, dynam
ics, and mechanical engineering specialists using mainframe application pro
grams that have been developed over the years to analyze different design 
parameters. Typically, each type of engineer must make key design decisions 
(e.g., blade thickness, T/C ratio, attachment design, tilt and lean, etc.) that 
determine how other engineers use those decisions to set up the parameters 
and invoke analysis applications. Based on each application function in
voked, other key decisions are made or earlier decisions are rejected and 
design must iterate between the disciplines. Today the design process is 
hindered by many factors: 

• Manually allocating work to engineers and keeping track of the status of 
each blade design rapidly approaches exponential complexity because of 
the need to keep track of the decisions associated with each department, 
each application, each blade number, each compressor stage, and each 
design iteration. 

• Difficult for engineers of one specialization to anticipate downstream 
problems that their design decisions might create for engineers of another 
specialization. Selecting design alternatives that reconcile downstream 
problems is especially difficult for a novice engineer. 

• Considerable effort is expended in setting up the correct application invo
cation calls, based on earlier project-specific decisions, and getting into 
and out of applications. 

• Difficult to maintain design histories to gain insight that would help refine 
the design process. Because of this, key process decisions leading to pro
cess improvement are typically lost. 

• Lack of knowledge regarding the precise status of design, despite the use 
of project management tools. While project management tools are used, 
they often reflect an inaccurate status because they are updated off-line 
based on information that does not reflect all the exceptions, problems, 
and the variations from the planned project. These inaccuracies soon lead 
to major perturbations of the plan. 

Due to the problems presented above, the design of a compressor tradition
ally takes many months. 



www.manaraa.com

16. Support for Workflow Process Collaboration 333 

The next example has to do with assembling a product and occurs further 
downstream. Most companies find themselves with critical product informa
tion missing, misplaced or in some engineer's "private" database. Because a 
way to improve quality is to assemble a complete set of product information 
for manufacturing, it is necessary to assemble a complete product informa
tion packet (which may, in turn, be stored in a product data management 
system). This packet can then be provided to manufacturing. The problems 
in assembling the packet are numerous: 

• Time consuming to interact with multiple applications and databases
manufacturing database for open orders, bill-of-materials database for 
the drawings and process plan, and other databases where specific product 
information may reside (if it does not reside in the product data manage
ment system yet). 

• Time consuming to track the exact status for each open order (e.g., which 
drawings and process plans have been completed for this order). The 
production planner often needs to make numerous phone calls to deter
mine which order can, in fact, be released based on a complete informa
tion packet. 

• Time consuming to contact appropriate engineering departments to de
velop pieces of the information (i.e., CAD drawings, process plans, etc.) 
and have the information appropriately reviewed. 

• Lack of precise status makes it impossible to provide accurate feedback to 
customer on planned availability of the product. 

Even after information is provided to manufacturing, further problems 
remain: 

• It is difficult to track problems with an assembly as they are being 
addressed by the planning, engineering, and purchasing departments. 

While the two sets of problems, discussed above, that typically occur 
during design and manufacturing are not complete, they do indicate the 
fundamental lack of assistance for collaborative work. The problems pre
sented above are further magnified when an attempt is made to practice 
integrated product/process design. Tremendous knowledge is required by 
each type of engineer to collaborate and complete every activity so that all 
the relevant product/process constraints are addressed to minimize errors in 
all downstream activities performed by other engineers. 

Productivity via Assistance: Case Study Results 

Productivity improvements achievable via knowledge-based assistance dur
ing a complex design process have been demonstrated by an aerospace ven
dor and are documented below. The automated workflow combined the 
existing application software and the turbine blade design process into a 
blade design assistant. 



www.manaraa.com

334 Jay Ramanathan 

The overall goal of the blade design assistant workflow was to shorten the 
cycle time. None of the existing applications was altered. The blade design 
assistant builds the appropriate input parameter file and commands to in
voke each of these applications. The engineers do not need to be concerned 
with the format of this file, only the content (values of the parameters). 
Where possible, design activities are performed for blade design and to 
decrease the routine effort expended by the design engineers. This workflow 
assists the engineers in the design of a blade and its associated attachments. 

The four major engineering departments that collaborate are aerodynam
ics, stress analysis, dynamics, and mechanical design. Within each depart
ment, design activities are supported to include component design, data 
entry, coordination with other engineers, and use of software applications. 
In addition, dependent activities are prevented from being executed until all 
requisite information and approvals are available (in order to ensure that 
engineers are not expending effort on inappropriate activities). This was 
accomplished using the coordination features of the assistant. 

Process flowcharts (models) developed by the expert engineers were con
verted to a workflow process assistant using the KI Shell described in detail 
in the next section. The KI Shell development environment contains the tools 
used to represent this workflow. KI Shell rules were also developed to imple
ment analytical code to analyze application output and apply design con
straints; to prepare input, submit, monitor status, and retrieve output of 
application on heterogeneous computers; and to suspend/initiate the work
flow process for different specialists based on the design process model. An 
overview of the workflow between the different engineering departments is 
shown in Figure 16.1. 

The pilot results were documented. The benefits of the blade design work
flow were: 

MECHANICAL 
DESIGN 
(lnnial 

Requirements) 

WORKFLOW PROCESS 

FINAL 
...... t---1 

BLADE 
PARAMETERS & 
DRAWINGS 

PASS 

FIGURE 16.1. Overview of the workflow process control flow and interactions be
tween the disciplines (roles) as supported by the Blade Design Assistant. 



www.manaraa.com

16. Support for Workflow Process Collaboration 335 

• Improved design labor hours from 5 to 1. 
• Improved design time from 13 to 1. 
• Captured process knowledge of experienced engineers. 
• Dramatically reduced training for new users. 
• Remembered and interpreted design rules consistently each time. 
• Engineer-developed flowcharts converted into process management 

software. 
• Standardized design process and reduced mistakes. 
• Standardized configuration of the resulting product component. 

The engineering features of the workflow process mentioned by the engineers 
were: 

• Interface between various disciplines. 
• Suspended and resumed workflow activities. 
• Tied together current design applications. 
• Captured design rules. 
• Captured expert process knowledge. 
• Interface with applications without any modifications required. 
• Operated applications on existing mainframe platforms from workstations. 

What Did the Workflow Process Assistant Do? 

More generally, the above process benefits arose from supporting the follow
ing key features of the workflow process assistant: 

• Structuring (or modeling) of the activities of the process that must be 
presented to each discipline and presenting the users with only those 
activities ready to be worked on. 

• Actively guiding users by dynamically controlling creation of new activ
ities and determining when activities must be performed by different 
groups of people for each project, each component, and each design 
iteration. 

• Prohibiting activities from being performed, if indeed this is the policy of 
the company, until information/decisions generated at earlier activities are 
correctly completed and reviewed. 

• Allowing the easy exchange of decisions made in earlier activities (possibly 
by other disciplines) and ensuring that these decisions are correctly made 
so that each subsequent activity can also be correctly performed. 

• Automating the setting up of data and invocation of the application 
function as required by the policy of the company. Also, automating 
dispersal of application output to specified destinations-other applica
tions, users, or processes. 

• Providing decision support (based on expert knowledge) for completing 
the activity correctly. 

• Providing status information on activities queued, completed, being 
worked on, and waiting on an event. 



www.manaraa.com

336 Jay Ramanathan 

3. Workflow Assistance Requirements and Concepts 

Based on the design and manufacturing user scenarios such as the ones 
discussed in Chapter 2, this chapter abstracts the requirements of an infor
mation system to support fundamentally collaborative approaches like con
current engineering. These requirements are reviewed both from the perspec
tive of the user and the implementor of the information system. 

User Questions 

Without collaborative process management software, the user must rely on 
experience and judgment to resolve the following types of questions broadly 
classified into three categories: 

Collaboration Related: 

• What is the most critical task within the process for me to work on? What 
choices do I have at this point? 

• What process/product constraints must I satisfy at this point to reduce 
downstream iterations? 

• What/when/how do I coordinate with other project members/ 
departments? 

• What decisions made previously affect my work? 
• How do I document and archive my product and process decisions to 

enable process improvements in the future? 

Information Related: 

• What application function(s) should I use and how do I use them 
effectively? 

• How do I transform data to run an application? 
• What are the useful and relevant views of data at this step? 

Management Related: 

• What is the overall status of the projects? 
• What process decisions can be improved in the future? 

Collaboration Issues 

The collaborative questions above arise due to the interdisciplinary na
ture and enterprise-orientation of the required problem-solving. Individual 
problem-solving must take place in the context of disciplined group problem
solving. This makes it important for the assistant to monitor the status of 
activities of different types of users and to enforce the policies and protocols 
of the enterprise while actively guiding the collaborators through the disci
pline reflected in the workflow process model. Thus, collaboration requires 
that "responsibility" for specific activities must be "ascribed to" and "en
acted by" individuals in specific departments. The concept of roles is required 



www.manaraa.com

16. Support for Workflow Process Collaboration 337 

to group the activities that are the responsibility of a given type ofworker. A 
variety of different protocols might be needed to support interactions be
tween different departments. Examples of protocols between roles include 
reviewing, circulation, waiting for completion of activities done by other 
roles, and providing deliverables to "customer" roles. 

Because of the detailed nature of the collaboration support required, 
the workflow discipline must be modeled precisely enough to be negotiated 
among the different types of participating engineers. Thus, a simple yet 
complete notation is necessary to acquire the knowledge. The notation 
allows a specific approach-or workflow-to be recorded and negotiated 
up front by all the participating roles. This is when group problem-solving 
takes place. From a workflow modeling and enaction point of view, the col
laborative process knowledge characterized above consists of 

• Knowledge of roles that participate in the process and the protocols 
between roles. 

• Knowledge of the process (structured collection of activities) enacted by 
each role in an organization. This includes when and under what condi
tions one role creates activities for another role to enact. 

• Knowledge of how to perform each activity correctly so that downstream 
activities can "count on" it. This includes the correct use of data, previous 
decisions, and applications to perform the activity. 

Thus, the objective of the modeling approach presented here is to support 
the acquisition of these types of knowledge. 

Information Issues 

Information, necessary to address the above questions, is large in volume, 
broad in scope, evolving continuously, and must usually be obtained from 
different existing sources (Figure 16.2). As a consequence, the assistant must 
exploit existing systems as shown in Figure 16.3. 

Depending on the evolution of knowledge pertaining to a particular phase 
of problem-solving, the problem-solving may be distributed among the assis
tant, analytic, and database applications; expert systems; and the user in 
various ways. The varying role of the end user makes it important for the 
assistant to have the explanation capability in a system-dominated problem
solving activity, plus a good, precise understanding of the nature of the user's 
problem-solving if the system's role is one of decision support. The in
volvement of numerous existing applications brings in user-interface and 
intelligent-application-support issues such as the invocability of applications 
from the interface, hiding application-dependent invocation details such as 
providing the right data, and reasoning about the success and failure of 
activities based on the applications output. 

The assistant software must also work with existing applications via 
clearly defined interfaces. Conceptually, these interfaces-called PAs or Pro-



www.manaraa.com

338 Jay Ramanathan 

• AUTOMATED FUNCTIONS 
• ISLANDS OF AUTOMATION 

FIGURE 16.2. Today: Information systems view of the problem. Information systems 
consist of monolithic applications (with embedded process support) and databases 
that are not integrated to provide decision support for the collaborative process 
involving people, applications, and data. 

ENTERPRISE 
PROCESS 

COMMUNICATIONS 

PROCESS 
INTEGRATION 
Organization & 
Activities 

APPLICATION 
INTEGRATION 
Applications & 
Data 

PHYSICAL 
INTEGRATION 
Standard Network 
Applications & 
Data Exchange 
Standards 

FIGURE 16.3. Future (compare with Figure 16.2): Enterprise process management to 
provide decision support and reduce level of required training, effective use of appli
cations and data, and coordinate between roles in the organization. 



www.manaraa.com

16. Support for W orldlow Process Collaboration 339 

grammed Adaptors-define how the application is invoked using its API 
(application program interface), and how the application's functions are 
used within the process input and output. Furthermore, the PA should be 
invokable from the process management software. Existing and new applica
tions can then be "wrapped" in process management software, as illustrated 
in Figure 16.3. Not only are benefits of improved information flow derived 
from this "wrapping," but also facilitation of orderly and cost-effective migra
tions from existing application programs to new re-architected applications. 

Workflow Process Management Issues 

To facilitate process management and process improvement, the exact status 
of the process as well as the decisions made during a process must be visible 
to management. Considerable research must be done in this area and the 
issues are discussed in the concluding section. 

Assistant Architecture Issues 

The long-term nature of collaborative problem-solving creates the need for a 
persistent process database for storing the state of the problem-solving and 
its byproducts along with the relationships between the objects involved. In a 
collaborative environment, shared information can become obsolete very 
soon, if not continually updated in the common process server. Also, assis
tance often involves shallow inferencing on large amounts of inhomogeneous 
information that is continually updated. The volume of information entailed 
and the collaborative nature of problem-solving requires problem-solving to 
be intertwined with browsing and use of already-created process and product 
information. This requires the assistant to have an open architecture to 
interface with existing applications at any point during the enaction. 

4. Modeling and Enacting a Concurrent Engineering 
Workflow Process 

The KI Shell™ is a workflow process "shell" that has two components as 
shown in Figure 16.4. One component being the development Kl Shell, which 
is used to edit a workflow model. The other component is the runtime KI 
Shell which is designed to assist the users to enact the modeled workflow. 

Within the development KI Shell, there are different integrated model 
editors (like the Workflow and the Frames Editor in Figure 16.4) which allow 
workflow objects (see Figure 16.6) to be edited and stored in an SQL da
tabase. The use of the database as the process server provides concurrency 
control and persistence. The graphical workflow editor allows the roles to be 
created and the overall activity structure to be determined. The Frames 
Editor allows rules (triggers associated with the objects) and attributes to be 
associated with the activities. Another tool, RuleWriter (Figure 16.8), allows 



www.manaraa.com

340 Jay Ramanathan 

DEVELOPMENT 
OF 

ASSISTANT 
WORKFLOW 
DESIGNER 

FIGURE 16.4. KI Shell components for worldlow process modeling and enaction. 

rules to be expanded to C procedures that invoke applications and use SIL 
(System Integration Library) calls. The SIL is a comprehensive library of 
reusable operations-including create, delete, update, etc.-on the work
flow objects. 

The runtime KI Shell is a collection of generic utilities designed to display 
and interpret workflow objects and, thus, enact a workflow representation or 
model created by the KI Shell development environment. The workflow 
model with its interfaces to applications and KI Shell runtime utilities is 
called an assistant. 

An assistant, when enacted by the user, presents the subprocess instances 
awaiting execution for each role, maintains the state of execution for each 
subprocess, controls the use of multiple applications, and provides decision 
support for completing the activities of the process. Thus, an assistant pro
vides active workflow process support and uses applications consistent with 
the information system's perspective in Figure 16.3. 

In order to enforce process discipline during enaction, the KI Shell run
time monitor has detailed control over the activities of the users as they 
invoke applications, perform activities, and modify data objects. (Note, 
however, that no control must be exerted for interactive applications.) The 
detailed control is achieved by building the monitor as an intermediary 
program between the user, the applications, and the KI Shell's own object
based database. By having this control, the assistant can enforce a discipline 
by utilizing the knowledge represented in the workflow. This is illustrated in 



www.manaraa.com

16. Support for Workflow Process Collaboration 341 

Kl SHELL Monitors And Mediates 
Between: 

- User And Application 
- Application And Application 
- User/Application 

And Database 
- No Performance Penalty At 

Execution Time 

Traditional: 
- User Invokes 

E111ch Application 

No Process Support 

',•'~ 

J 

0<272 

FIGURE 16.5. KI Shell's runtime architecture is designed for workflow process 
management. 

Figure 16.5 by comparing the workflow process support to the traditional 
approach of interacting with the operating system. 

Finally, the KI Shell runtime monitors the status of activities and does not 
have an inference engine typical of expert system "shells." This unique run
time characteristic of the integration-oriented KI Shell sets it apart from 
other expert system shells. 

Mode ling and Implementation 

Two basic steps-acquiring process knowledge and implementing the assis
tant-are involved when using the KI Shell Development Environment. The 
final step is enacting the assistant, which is the workflow model interpreted 
by the KI Shell runtime. Each of these three steps is described in detail 
below using a specific application example that reflects concurrent engi
neering concepts. 

Step 1-Acquire Expert Process Knowledge 

The objective of this step is to develop the streamlined workflow process 
model (Figure 16.6). This requires significant participation from the eventual 
users of the assistant. 



www.manaraa.com

342 Jay Ramanathan 

WORKFLOW OBJECTS 

Workflow 

' Role ... "4 .. - ..... .-~users 
~esponslbllity) (Who) 

Root Frame Frame 
(Abstractio~ Aggregationt 

LEGEND 

One toone 

Activity/Slot 
(W!!at) 

One to many ___.. 

Manytomany ... 

Link 
(Interactions/Refinement) 

Event 
(When) 

Procedure 
(How) 

Attribute 

~ 
Completion Other 

{When) (Process Decision) 

FIGURE 16.6. Workflow process object classes. 

M402 

The real issue at this point is to negotiate between the interdisciplinary 
users of the system and develop a good workflow process model based on a 
knowledge of how experts perform their activities and collaborate with each 
other. 

Mode ling Concepts 

Many modeling approaches exist (Curtis, 1992; Hars and Scheer, 1992; 
Mayer, 1989; Ross, 1977; Scheer, 1992). Since IDEF (Buffum, 1981) is used 
extensively within the DOD design and manufacturing efforts, it is also used 
as a starting point for discussion here. IDEF consists of several complemen
tary notations for creating models. Of relevance here is IDEFO, which is 
designed to identify activities in an enterprise. This modeling notation helps 
create both an activity decomposition and, for each activity, the input
constraint-output-mechanisms (as in Figure 16.7a). The other notation
IDEFlX-uses the data requirements, identified by an IDEFO model, to 
create an entity-relationship model for the enterprise data model. Figure 
16.7b, when compared with Figure 16.7a, illustrates the concept of enaction. 

Activity decomposition identifies the functions and the external view of 
data used within the activities and is a valuable starting point for workflow. 
Activity decomposition does not explicitly model the flow of control between 
activities and the organizational aspect of responsibility based on "who" 
enacts "which" specific activity and in "what order." The modeling nota-



www.manaraa.com

INPUTS 

16. Support for Workflow Process Collaboration 343 

OUTPUTS 

MECHANISM 
(Resources To Perform The 
Function (Tools, People)) 

FIGURE 16.7a. Notation for single IDEF activity identifying INPUT, CONTROLS, 
OUTPUT, and MECHANISM. Note that the controls (data from previous activities) 
implement concurrent engineering philosophy of performing the activity in the cor
rect context. 

tions underlying the KI Shell include both the activity decomposition and 
control flow views. These complementary views are presented graphically in 
Figures 16. 7c, d, e, and f for the example selected for discussion here. 

Before examining the different views of a workflow, it is first necessary to 
discuss the underlying workflow model. Figure 16.6 presents an overview of 
the KI Shell workflow objects that must be created to represent process 
knowledge. These objects constitute the conical (or composite) form, based 
on which several different graphical views (or perspectives) of the standard 
form can be projected and used to model different perspectives of the work
flow, as illustrated in the application discussed below. The notation details 
of some of the graphical views are in Tables 16.2-16.4 provided in the 
Appendix. 

At the heart of every interdisciplinary workflow effort are the fundamental 
concepts of role and activities. Each role enacts activities related by the role's 
perspective of the flow of work. The activities within a role are further 
organized into a hierarchy of frames. Each frame aggregates conceptually 
related activities that hide details at the lower levels. Both activities and 
frames also have associated semantics reflected in the rules (methods), attrib
utes, and links. In KI Shell, a use of frames is to control the discipline (the 
"when") by which activities are performed. 

Each activity can have attributes, links, and rules that provide a way of 



www.manaraa.com

344 Jay Ramanathan 

<ACTIVITY NAME> 
-1 

PERFORM C PROCEDURE I 

INPUTS: 
M407 Input Based On Existing Corporate 

Databases 

CONTROLS: 
Examine Previous Process Decisions to 
Determine Effect on Current Activity 

OUTPUTS: 
Data & Process Decisions 

MECHANISMS: PROGRAMMED 
ADAPTOR 

Invoke Application 
Functions Provided • Set up Session 
Locally Or • T ransrnit Data, Invoke 
Remotely, Update Application Functions 
Resources • Examine Output 

COMPLETION CRITERIA: 
Is the activity correctly completed? 

FIGURE 16. 7b. Enaction of an activity (initiated by clicking on the Perform button of 
a displayed activity object) actually causes a C procedure containing the "how" logic 
to execute. Typical logic programmed with this procedure is illustrated. 

implementing the support when the activity is enacted (i.e., when the "per
form" button is clicked). Conceptually, each activity must meet certain ob
jectives and satisfy the completion criteria for the activity, so that the next 
activity enacted can assume the correct completion of previous activities. 

The rules (triggers or methods), in tum, consist of an event+ procedure 
(in the C programming language). The typical events monitored by the KI 
Shell runtime are related to the process. Examples of events are enacting an 
activity or entering and exiting a frame. The procedure specifies "how" an 
activity is enacted when the event occurs within the context of the workflow 
structure. The links declaratively specify different relationships between 
workflow objects. "Completion" is an example of a system-maintained at
tribute that allows the KI Shell runtime to track completed activities. 

Enaction ensures that a modeled activity is correctly completed. The in
put-constraint-output-mechanism defined in a model is actually manipulated 
by the C procedure. 



www.manaraa.com

16. Support for Workflow Process Collaboration 345 

I XTRUDER™ 

FIGURE 16. 7c. Example of an activity model for die design using the IDEFO Notation 
summarized in Table 16.2. CDM stands for Corporate Data Management, and 
MME, Shear, Stream, and ALPID are applications developed by the Air Force for 
materials modeling and simulation. 

Application of Mode ling Concepts 

As an example to illustrate the application of the modeling and enaction 
concepts, this section uses the die design process. This application was de
veloped under an SBIR grant supported by the Air Force Manufacturing 
Science Program. 

In a traditional extrusion plant environment, the interactions between 
different roles are done on an "over the wall" basis. With the die design 
assistant-XTRUDER-the Production Planner is able to specify and 
schedule Tooling and Equipment in the context of Die Design and Process 
Metallurgy decisions (constraints) made by the die designer and the 
metallurgist. 

An overview of the related models resulting from the modeling step for die 
design is illustrated in Figures l6.7c, d, e, and f. While the fundamental 
concepts of roles and activities that are illustrated here have been introduced 
before, these figures also illustrate how the more detailed notation in Tables 
16.2-16.4 have been applied to create the different views of a die design 
workflow process model. These graphical notations incorporate the use of 
activities (rectangular boxes) and relationships (represented by different 



www.manaraa.com

346 Jay Ramanathan 

:0 c: 
c: .. a: 
c: 
0 

i3 
:::s ..., 
2 
ll. 

FIGURE 16.7d. Example of an activity model for die design with activities grouped by 
the role name (e.g. Production Planner) reflecting the discipline that is responsible for 
completing the activities. 

links). As indicated in these tables, different relationships are the focus of the 
different views or perspective of the composite or conical view of workflow 
objects presented in Figure 16.6. 

The first model (Figure 16.7c) consists of activities, input (use of corporate 
data), controls (previous data that constrains the current activity), output 
(data created during the activity), and mechanisms (use of applications and 
resources) similar to IDEFO. 

In this view of the workflow model two concurrent engineering principles 
are embodied: 

• Do not over-constrain the implementation during design. 
• Address all necessary process constraints early on to reduce iterations. 

For example, the simulation activity occurs only after the press selection is 
made, thus ensuring that the correct parameters are used in the simulation 
and no iterations will be necessary. Throughout the workflow, detailed de
sign decisions are made based on the available components and tooling. 

The next model (Figure 16.7d) illustrates the perspective of the different 



www.manaraa.com

16. Support for Workflow Process Collaboration 347 

Extrusoon Production Planner (EPP) 

PM.Processing Variable Solectioo 

00.300isp ol Die 
Do c Ocsogncr (00) 

1-'roccss rt1 Ct .JIIurgiS1 (Pr.1) 

OO.Oio Type SoloG1ioo 

OO.Dio Gocmotrv 

PM.Prooes.sing Parameteoo PP .Sol act L..Oricant 

PM.Processrng Paramete~ 

00.30 

liB : Role 

: Activity 

T Jtgel : <Aolo • Adiviy> 

J... : Synchronization 
-{) symbol for send. 

--
: Synchronization 

symbol for wa~ . 

: Next Activity 

FIGURE l6.7e. Control flow, role, and synchronization view depicting the flow of 
work between the departments, using notation in Table 16.4. 

disciplines (or roles performing the activities). This can also be obtained by 
identifying the mechanisms for each activity in an IDEFO model. However, 
in this notation, the flow of control during collaboration is not explicitly 
visible. 

As depicted in the model in Figure 16.7e, each role consists of many 
activities sequenced appropriately. Given an activity is a fundamental primi
tive of any workflow, it is imperative that each activity in a workflow be 
enacted to add value (i.e., meet the completion criteria) to ensure that the 
overall workflow-the sum of activities-eliminates unnecessary iterations. 
Further, by identifying the "AS-IS" and "TO-BE" times with each activity, 
one can estimate the actual "cycle" time. 

The final view is the activity decomposition illustrated in Figure 16.7f. In 
this view, the framing concept is used to group activities at the same level of 
abstraction. 

In summary, the two concurrent engineering principles are modeled by the 
controlling arrows of the model in Figure 16. 7c, the collaboration protocols 
between roles as modeled in Figure 16.7e, and the user's view of the activity 
network in Figure 16. 7f. These different views are all important for defining 
the structure of the workflow. 



www.manaraa.com

348 Jay Ramanathan 

Container Selection 
Geometry Specification 

Lubricant Selection 
Application Specification 

Final Microstructure Selection 
Press Selection 

Design Summary Report 

FIGURE l6.7f. Activity hierarchy with an activity refined to subactivities: The activ
ities in a frame are typically grouped to reflect a discipline and similar level of 
abstraction. Subactivity link allows detailed refinement of an activity. This view is 
developed using the notation in Table 16.3 (see Appendix). 

Creating the Model Using the KI Shell 
KI Shell Development tools create a machine readable version of the work
flow objects (Figure 16.6) based on the models created in Step 1. The work
flow editor component of the KI Shell is used by the workflow designer to 
define the structure of an arbitrarily complex process. The title bar of the 
editor (see Figure 16.8) allows the user to select/create roles (a collection of 
related frames) and frames (or group of related activities), and edit these 
objects. The workflow designer can then edit the activities that belong in that 
frame. Figure 16.8 also illustrates the editing of a sequential frame called 
"Process Metallurgist" composed of activities called "Processing Variable 
Selection" and "Processing Variation." Attributes associated with the activ
ity "Processing Variable Selection" are "Temperature" and "Strain Rate." 
These attributes hold the decisions made during the enaction of the workflow 
for a specific project. By linking frames, the editor creates the subprocess for 
a role. 

The editor also provides the ability to express sequential, choice, condi
tional and repetitive execution of the activities in a frame, based on the state 
of the process. In the workstation environment, multithreaded options for 
executing activities are available. This allows the user to follow more than 
one path through a subprocess. With each activity, the editor allows the user 
to associate rules that assist the user in performing the activity. The rules 
(event/procedure pairs) can be triggered based on user interaction (pressing 



www.manaraa.com

I PERFORM I 

16. Support for Workflow Process Collaboration 349 

Use SlL to get previous decisions, made at earli er 
activities, providing selected alloy name and required 
product microstructure, 

Access an external database application (using the API) 
containing properties of the selected material, 

Set up the inputs (material property data) and invoke the 
API for a material modeling application and pass control 
to the application , and 

When control comes back to the application, take the 
user-selected temperature and stram rate values retun1ed 
by the application and use SIL to store it in attributes as 
decis ions associated with the Process Variable Selection 
activity. 

FIGURE 16.8. User interface of the Development Environment illustrating the 
Frames Editor and the Rule Writer. 

a function key or mouse click) or by the modification of the attributes by 
other rules. A variety of suitable events (such as "perform," "pre-modify," 
"post-modify," "enter frame," etc.) are also supported. 

Step 2-Process Model Enaction 

The implementation of enaction is illustrated Figure 16.9. When the user 
clicks on the "perform button," the logic in the box-programmed in a 
procedural programming language like C-is executed. Thus, the activity 
model provides the "what" context within which the procedural code-the 
"how" -executes. 

Once a workflow structure has been defined, the procedures (e.g., the 



www.manaraa.com

350 Jay Ramanathan 

I PERFORM 

FIGURE 16.9. Enaction facilitates the correct use of information system components 
and their standard interfaces in the context of the activity and the role. 

perform procedure) associated with the rules of each activity can be pro
grammed using the RuleWriter component of the KI Shell. As illustrated 
in Figure 16.8, the RuleWriter title bar allows the programmer to edit the 
file containing the source code for the C procedures of rules. The declara
tions (for include files, etc.) are automatically inserted by the RuleWriter. 
C language templates are provided by the RuleWriter to eliminate syntax 
errors. 

The Rule Writer component of the KI Shell also uses menus to assist the 
user in developing procedures using "SIL" for programming productivity. 
The KI Shell System Integration Library ("SIL" in the title bar of Figure 
16.8) is a collection offunctions provided for use within the rules. Within the 
rules/procedures, a variety of associations can also be made. Based on deci
sions made in earlier activities, appropriate data can be set up for user or 
application use. Applications can also be invoked automatically. Upon com
pleting the execution, data generated by the application invocation can be 
distributed as specified. 

An example is "Perform+ Create_Efliciency_Stability_Map" associated 
with "Processing Variable Selection" activity in Figure 16.8. In this step, 
Create_Efliciency_Stability_Map is programmed inC to: 

• use SIL to get previous decisions made at earlier activities, which provide 
selected alloy name· and required product microstructure, 



www.manaraa.com

16. Support for Workflow Process Collaboration 351 

• access an external database application (using the API) containing prop
erties of the selected material, 

• set up the inputs (material property data) and invoke the API for a 
material modeling application and pass control to the application, and 

• when control comes back to the application, take the user-selected tem
perature and strain rate values returned by the application, and use SIL to 
store them in attributes as decisions associated with the Processing Vari
able Selection activity. 

A more general overview of the C procedure is given in Figure 16.9. KI 
Shell provides the ability to use standard interfaces to information systems 
correctly from the perspective of an activity and the role within a process. 

Thus, in this step the procedures, as specified by the modeler in Step I, for 
each rule are programmed using the extensive SIL library provided by the KI 
Shell. Often an activity has to wait on a decision by an activity of another 
role before proceeding. This is implemented by one of the SIL functions 
("wait for signal") invoked in the perform procedure of the current activity. 
The "send signal" SIL function has to be executed by the appropriate activ
ity of another role before a waiting activity can proceed. At this point, a 
workflow is completely implemented. 

Step 3-Enacting a KI Shell Assistant 

This requires linking the KI Shell Runtime with the workflow rules and 
Programmed Adaptor calls (PAs) to form an assistant that can be enacted by 
the user. In the following, the users' view of enaction for the specific example 
is discussed. 

Users' View of Enaction 
The XTRUDER assistant coordinates the functions of three roles: 

• Extrusion Production Planner, 
• Die Designer, and 
• Process Metallurgist. 

The XTRUDER assistant actively presents the work instances that enable 
the correct sequence of activities and role interactions to be enacted. The 
KI Shell runtime interprets the XTRUDER workflow to present the 
XTRUDER roles on the screen as in Figure 16.10. 

When a role and a role instance are selected, the user is presented the 
frame last executed. Figure 16.10 illustrates the Die Designer frame with the 
completed activities and the next executable activity. 

Collectively, the three roles complete the activities in the process as fol
lows. The first activity is "Product Specification." When executed by the 
Production Planner, it provides the geometry, application, and microstruc-



www.manaraa.com

352 Jay Ramanathan 

FIGURE 16.10. When authorized performers of different roles log on, they see the 
work queues associated with their roles. For the Die Designer, the user interface of 
the assistant when performing the Processing Variable Selection action is shown. 
Users can interact with the invoked application in another window. Perform rule 
name and hidden attributes are not displayed. The assistant presents activities and 
visible attributes as illustrated in the first activity of this frame. Activities are colored 
to reflect their status. When this subprocess completes control goes to the next role 
and process as specified. 

ture values for constraining decisions made at later activities by the other 
roles. For example, the geometry constrains the candidate billets selected 
from a manufacturing database during the "Billet Selection" activity. The 
actual geometry of the billet selected by the engineer becomes the decision 
value of the attribute associated with "Billet Selection." This value, in turn, 
constrains the next activity and so on. "Die Design" is an example of an 
activity performed by the Die Designer role that invokes an application for 
rough design prior to detailed finite element simulation during the "Perform 
Extrusion Simulation" activity. This activity in turn is performed with the 
assurance that the appropriate press guaranteeing the appropriate pro
cessing conditions is available. 



www.manaraa.com

16. Support for Workflow Process Collaboration 353 

By using the assistant, engineers are able to complete complex designs 
correctly the first time, and at a fraction of the cost. Thus, XTRUDER 
integrates Die Design application programs, a Materials Behavior database, 
and Process simulation applications that quantify the manufacturing re
quirements for the Production Planner. 

The KI Shell also provides automatic status tracking and inter-role depen
dencies of work in progress, and provides graphical presentation of status as 
in Figure 16.10. Performance metrics are also captured automatically for KI 
Shell developed Assistants, providing queue time, span time, and wait time 
for each role/role function. 

A variety of different metrics can be obtained during enaction. For exam
ple, the time taken for executing each activity on an execution path can 
actually be measured. When the workflow manager enacts a model, it can 
obtain the following kinds of data: 

Queue time: The length of time a subprocess waits before a worker selects 
it for execution. 

Span time: The length of time it took to execute actual activities in a 
role. 

I METRIC I 

I SPAN: I 
lauEUE: I 

I PERFORM : I 
IWAIT: I 

I IDLE : I 

I ACCUMULATED TIME I 

10:6:241 

lo:o:ss' 

I!!I!J 
lo:4:16 1 

FIGURE 16.11. Process enaction provides a unique leverage-Process Metrics: When 
an activity is enacted, time stamps can be automatically obtained to measure span 
time, queue time, and wait time. These metrics, along with others, can provide a 
measure of the performance of the process. 



www.manaraa.com

354 Jay Ramanathan 

Rejections: 
Resource: 

The number of times a design was rejected. 
Type of resource used and actual amount. 

Figure 16.11 illustrates the time metrics for the Die Designer process while 
producing the 14-gauge wire. The overall status of the different process 
instances producing-14-gauge wire, Wl2 x 124 1-beam, Wl2 x 87 1-beam, 
24 x 36 slotted plate, text 1-beam-is readily visible to a manager by looking 
at the queues (Figure 16.10), color coded to reflect status such as "awaiting 
processing," "completed," "waiting for another role to complete," etc. 

5. Workflow Process-Based Information System 
Architecture 

Before proceeding to a discussion of future research issues, the process man
agement technology is first positioned in the context of information system 
architectures. The three-schema architecture is widely accepted as a starting 
point for separating the concerns of 

• the users of the information systems, 
• international standard activities, and 
• implementors of products that work with the standards. 

Thus, the positioning begins with this architecture. 

Three-Schema Architecture 
Building upon the early three-schema architecture piloted by the IISS 
project (WRDC, 1990), most efforts-like CIMOSA (Computer Integrated 
Manufacturing-Open Systems Architecture)-propose the use of the "Three 
Schema Architecture" (AMICE, 1989; Althoff, 1990) to separate the external 
(the specific enterprise's view), conceptual (the standard view across enter
prises), and internal (implementation view) of functions, information, re
source, and organization. The external views of these four elements are com
bined and used by the collection of activities structured to support the roles 
and the organization of the enterprise. This is illustrated in Figure 16.9. 

Within the context of the standards-based information architecture, an 
information system for assisting disciplined concurrent engineering can now 
be developed as follows: 

• Analyst: The expert responsible for specifying the "TO-BE" models of the 
workflow and creating initial logical prototypes using standards (concep
tual models of function, information, resource, and organization). 

• Deployment Engineer: Responsible for installing the logical "TO-BE" 
workflows, customizing the logical assistants to access enterprise-specific 



www.manaraa.com

16. Support for Workflow Process Collaboration 355 

data using the three-schema architecture, and augmenting the "TO-BE" 
worldlows with enterprise-specific policies. This will create a deployed 
assistant. 

• Manufacturing Engineer: Enacts the deployed assistant. 

This chapter has presented an approach where, beginning from a basis of 
standards and modeling notations to describe CIM system behavior (the 
generic constructs), useful models can be created for industry segments. 
These models describe the specific "TO-BE" CIM system behavior. Once 
developed, these models can be deployed into an industry using a software 
platform or "shell" for model enaction and integration. This reduces the cost 
of developing information systems by: 

• Providing the ability to generalize and standardize CIM process support 
provided to an industry segment, and reduce custom software developed. 

• Permitting the cost of development of a "TO-BE" model to be amortized 
over the industry segment. 

• Associating with model enaction benefits that are clearly identified and 
can be provided for entire industry segments. 

Why is the above scenario for CIM system development made possible by 
process management? To understand this, w~ must consider the historical 
perspective. Since the beginning of the information systems age, application 
systems tied together three elements: 

Data: Includes data definition and management. 
Application Functions: Operate on data and automate certain activities. 
Workflow Process: Steps by which users are guided to perform work activ
ities and decisions. 

Problems arose as a result of the duplication of data definition and man
agement logic within each application. Consequently, data modeling (Chen, 
1976; Codd, 1979; Navathe, 1992) and management systems were developed 
during the eighties to eliminate duplication of data, avoid describing the 
same data in different ways, and provide common reusable data manage
ment software to all applications. Thus, data modeling and management 
technology allowed the separation of data handling logic from applications. 
This, in turn, allowed the independent management and evolution of data 
and applications. It has also facilitated the development of draft standards 
(IRDS, 1991). 

Figure 16.2 illustrates the separation of data and applications in current 
information systems. Because the application functions are so isolated, they 
still do not support the actual process of doing work. Therefore, the users 
continue to face process-related questions, which today they must either 
address manually or by applications that incorporate a workflow that often 
does not meet their workflow requirements. 



www.manaraa.com

356 Jay Ramanathan 

Workflow management represents a technology development of the nine
ties (Ramanathan, 1992). Its development is analogous to the development 
and transitioning of databases into common practice. During the past few 
years, the commercial significance of process management, independent of 
product data management, has been widely recognized (Seybold, 1992). 

By clearly separating the workflow processes from applications (as illus
trated in Figure 16.3), workflow technology provides fundamental technical 
advantages. A workflow process "bridges" across the islands of automation 
by supporting the end-users with knowledge-based integration. To reiterate, 
an architecture where there is separation of the process knowledge and its 
management has several advantages: 

• Enterprise workflow process models modified/maintained independent of 
application and data objects. 

• Process used to control when/how applications are used. 
• Different process logic can be applied to same data objects/applications

based on the roles and responsibilities. The same applications can be used 
by different processes (e.g., a finite element analysis application can be 
used differently for a forging die design process than for an extrusion die 
design). 

• Time-variant logic separated from time-invariant enabling separate evolu
tion of process objects. Process decisions made during activities executed 
for specific projects (e.g., 1-beam vs. wire) vary, but data objects (e.g., 
billet, process) do not vary. 

• Process used to maintain global state. 
• Separation makes it easier to associate and maintain use of process-related 

data. 
• Process decisions made during a project can be stored and managed 

separately from applications. This provides a history of the process for 
analysis and improvement. 

• Process metrics data (e.g., when an activity begins and terminates, how 
long it took for a subprocess to execute, how often did a subprocess get 
executed, etc.) can be obtained and presented for process management 
and process improvement. 

6. Future Research Issues 

At least two significant research issues arise from the ability to clearly sepa
rate the process layer: 

• In what way should an integrated tool-set for process improvement be 
implemented to provide feedback and control during enaction, and 

• What are the suitable mechanisms for process reuse? 



www.manaraa.com

16. Support for Workflow Process Collaboration 357 

TABLE 16.1. Types of features to be provided by process technologies. 

Process Modeling 
• Provide the ability to create different views or perspectives that are all consistent with respect 

to an underlying canonical model based on activities. Some views are: 
• Activity decomposition view-this relationship is commonly modeled in several business 

process modeling tools. 
• Input and Output data created by each activity-also provided by several business process 

and information engineering modeling tools. 
• Resources necessary for each activity-this is also provided for in tools that support IDEF 

modeling. 
• Control ftow between activities over time-this is similar to the petri net model used by 

simulation tools but not typically provided for worldlow enaction. 
• Roles that define the view of the activities that must be enacted by a type of personnel and is 

the responsibility of each member of that group. 
• Protocols (supplier/customer, reviews, routing, coordination-send and receive-among 

others) that must be modeled as other relationships between activities of roles. 

Process Simulation 
• Ability to examine consumption of resources and rate at which queued tasks are processed 

based on different routings. 
• Ability to study other cause and effect relationships. 

Process Enaction 
• Enforces process enaction discipline between roles in compliance with company policies and 

practices. 
• Delivers necessary information to perform the activity correctly and controls the steps to 

complete an activity. 
• Simplifies determination of which activity to perform next. 
• Provides data for decision support and for activity execution. 
• Automates required data setup and invokes the application process. 
• Disperses application output to specified destinations. 
• Accumulates actual process execution data. 

Process Management 
• View enaction status-the actual time taken to execute a task versus allocated time and the 

actual versus planned consumption of resources. 
• Obtain metrics to answer questions like how often was a process for rejected parts enacted 

and for which part. 
• Process decisions made during enaction provides a history. 

Project Management 
• Plan consisting of tasks, allocated time and resources. 
• Critical path analysis. 
• Manufacturing and Resource Planning. 
• Comprehensive support for planning and scheduling of resources to meet demand. 
• Process reuse. 



www.manaraa.com

358 Jay Ramanathan 

: Role Name 

• xxxxx : Activity 

~ : Signal to execute 
an activity ol another 
role 

FIGURE 16.12a. Activity and roles: Generic process for collecting product 
information. 

DUCTION PLANNER ASSIST : 
Prj'Sciiiu:"T:o An Information Packet For Assembly 

FIGURE 16.12b. Production Planner Assist: Process to collect an information packet 
for assembly. 



www.manaraa.com

16. Support for Workflow Process Collaboration 359 

Continuous Process Improvement via Process Metrics, 
Feedback, and Control 

Today, process simulation is a way to understand system behavior, and 
enaction provides accurate process metrics for each project. While aspects of 
manufacturing and factory-floor, characterized by repetitive processing of 
tasks that are very similar in nature, can be simulated, many enterprise 
processes (e.g., conceptual design) cannot be accurately simulated. Thus, 
actual enaction metrics could play a significant role in identifying areas 
for improvement. However, the type of process data that might be collected 
and synthesized for presenting process performance results is not well 
known. 

Table 16.1 lists the features that are provided by isolated process technol
ogies today. 

To facilitate rapid process improvement, the first step is to integrate 
process-related tools (STARS, 1991). Several advantages result from an inte
grated set of process tools. With data integration-all process tools working 
on the same consistent database-it is possible to provide tools to enable a 
greater degree of process control: 

AIR LOGISTICS COMMAND: 
'-'~fiPem .. ioll Advocacy Process 

TIME 

FIGURE l6.l2c. Air Logistics Command: Competition advocacy process. 



www.manaraa.com

360 Jay Ramanathan 

• Simulation can use actual process enaction data preserved in the enaction 
database. Therefore, simulation provides more accurate visualization of 
the actual process characteristics providing a way for dynamic replanning. 
For example, a process manager could animate (instead of simulate) the 
manner in which the activity queues change over time; thus, identifying 
bottlenecks. This facilitates process improvement. 

• Process management is based on actual resource usage. As costs are in
curred, project management tools provide exact status by providing early 
information about cost over-runs. 

• Global awareness of exact process status allows resources to be redirected 
to problem areas before the problem compounds to more unmanageable 
ones. 

• By enacting a modeled process and capturing precise model-based metrics 
in the database, areas for real process improvement are easier to identify. 

However, such an integrated toolset does not exist. If it is proto typed, it will 
facilitate research in the type of enaction data to be collected and synthesized 
for process improvement. 

Process Reuse 

Patterns rapidly emerge when examining process models. Figures 16.12a, b, 
and c illustrate variations of the same process designed to accumulate the 
components of an information packet. Figure 16.12a is a generic, site
independent version. Figures 16.12b and 16.12c illustrate variations for dif
ferent industries. Over time, a library of logical workflows, like the one 
illustrated in Figure 16.12a, must be developed to provide a rapid, cost
effective way to provide custom software solutions like the ones in Figures 
16.12b and 16.12c to the industry. While it is clear object-oriented technol
ogy must be exploited for such reuse, the actual design of objects for reuse is 
a difficult task (Monarchi, 1992) and must be researched. 

Appendix: Modeling Notations 

The three tables in this appendix provide notational systems for defining 
different views of a workflow model. 



www.manaraa.com

16. Support for Workflow Process Collaboration 361 

TABLE 16.2. Modeling notation for use of applications, data, and resources within an 
activity. 

Activity I <name> ' 

~:::::1 
Application -= 
Use -= 

I f'>PJi!i cauon>n 

Information 
Use 

Information Use 

•• 1Jrf.P •• 4 <ll"""'> : 
<oame(s)> 

Process 
Decisions 

Rules 

<aUribule> ------. 
l<llarne~ : 

<name> : 

<AIU I> <AUr2> ... 
<Rulei><Rule2> ... 

A basic unit of work in tenns of "what" and "how." An activity is a 
named group of attributes, subobjects, and rules. It also bas an 
associated completion state. The "how" is implemented in a Rule or 
Procedure with SIL (KI Shell System Integration Library) calls . 

Placeholder for values generated when executing an activity. These 
attributes can hold process decisions that impact which of the later 
activities are performed and bow they are performed. An attribute 
can also hold names of information objects necessary to perform an 
activity or bookkeeping data. 

External applications (analysis, databases, etc.) invoked to automate 
aspects of an activity. Applications 'APis' are used to invoke, 
retrieve data, or store data. 

Information frames that describe external information . resources , 
costs. and metrics. 

Product data (information objects) used or created when performing 
activities . 

Previous process decisions (i.e., attributes of earlier activities) that 
control bow the current activity is completed. 

Rules can also be associated with an activity. The rule contains the 
logic of how an activity is executed. 

M399 

TABLE 16.3. Modeling notation for the activity hierarchy/information hierarchy. 

Subactlvity Un~ 

Frame 

Information 
Frame 

<aUribuleS> 

Bi-directional links between an activity and a frame. 

Aggregation of activities strucrur.e~ ~y a control construct wbicb 
determines the sequencing of activities. The order of actlvttles can be 
"sequential ," "cbo1ce." "if-then." "while." etc. 

Aggregation of attributes that bold information. 

M399 



www.manaraa.com

362 Jay Ramanathan 

TABLE 16.4. Notation for the time view. 

Activity I <name> : 

Decision r-· 
Activity{ 
Next Activity 
Link 

Synchronization 
Activity 0 

UV<;If.Target : <Role • Activity> 

SendiWait -•· 
Link 

Walzl.Jn)( ••• 

Source : <Role • 

Next Activity 
Link 

Role 

References 

Activity name. Estimated times- x andy- for activity execution, 
without wortflow support and with wortflow support. respectively, 
are used to execute the activity to provide a basis for cycle-time 
reduction estimates. 

Decision activity is a special type of activity with the next activity 
based on the outcomes "yes" or "no." 

Synchronization activity is a special type of activity used to suspend 
fUrther activities within a role until it receives a signal sent from 
other activities in other roles. 

Links to send a signal or wait for signal. Could have 
<Role.(userid.)Activity> when specific names are chosen. 
<exp> is the expression that specifies which wait links must 
"fi.re" before proceeding with the condition by which the activity 
completes. 

Links an activity to another. Estimated times- x and y- for 
activity execution, without work.tlow support and with workflow 
support. respectively, are used to provide a basis for estimating 
cycle·time reduction. An activity can have many next activities. If 
an activity is already completed, this link indicates the activity is 
redone. 

A collection of activities performed by a prototypical 
department/project member. This is an "entry point" into a 
group of activities in the total activity network. When a worker 
is assigned to a role, the responsibility of the worker is to 
perform the grouped coUection. The <identifier> reflects the 
manner in which role instances are given unique identifiers. 

M399 

(ACM, 1991) Computer supported cooperative work. Communications of The ACM, 
34(12). 

(Almy, 1991) Almy, D., and Ramanathan, J. "Enterprise Workflow Management: 
Implementation and Observations." IDEF Users Group Conference. 

(Althoff, 1990) Althoff, J. L. CPIM. An implementation of the ANSI/SPARC three
schema architecture. Conference Reading, Society of Manufacturing Engineers. 

(AMICE, 1989) Open system architecture for CIM. ESPRIT Consortium AMICE 
(Eds.). New York: Springer Verlag: Project 688, AMICE, Vol. I. 

(Ashok, 1987) Ashok, V. A knowledge-based software development assistant. 
DECUS Symposium, 1987. 

(Blattner and Ramanathan, 1979) Blattner, M., and Ramanathan, J. Attributed meta
forms for high level design and analysis of algorithms. Proceedings of the Confer
ence on Information Sciences and Systems, April. 

(Buffum, 1981) Buffum, H. E. Air force computer-aided manufacturing (AFCAM) 



www.manaraa.com

16. Support for Workflow Process Collaboration 363 

master plan. Volume III Analytic Tools, AFML-TR-74-104, AFWAL/MLT, 
WPAFB, OH 45433, 1981. 

(CALS, 1991) A framework for concurrent engineering. CALS Technical Report 003, 
CALS Industry Steering Group, Suite 300, 1025 Connecticut Avenue, NW Wash
ington DC 20036, Tel. (202) 775-1440, Report of the CE Framework Task Group 
of the CALS/CE Industry Steering Group, CALS TR 003 March 13, 1991. 

(Chandrasekaran and Johnsouson, 1992) Chandrasekaran, B., and T. R. Johnsonson. 
Communications of the Association for Computing Machinery, 35(9), 124-136. 

(Chen, 1976) Chen, P. P. S. The entity-relationship model: Towards a unified view of 
data. ACM Transactions, Database Systems, 1(1), 9-36. 

(Codd, 1979) Codd, E. F. Extending the database relational model to capture more 
meaning. ACM Transactions, Database Systems, 4(4), 395-434. 

(Curtis, 1992( Curtis, B. Process modeling. Communications of the ACM, 35(9). 
(ElF, 1990( Enterprise integration framework workshop briefing. IBM Federal Sector 

Division, Route 17C, Owego, NYB827-1298, 1990. 
(Fiskse1, 1989) Fisksel, J., and Kayes-Roth, F. Knowledge systems for planning 

support. Cimftex Teknowledge Corporation, IEEE Expert, Fall, 1989. 
(Gupta and Madnick, 1987) Gupta, A., and Madnick, S. Knowledge-based integrated 

information systems development methodologies plan. Massachusetts Institute 
of Technology, Knowledge-based Integrated Information Systems Engineering 
(KBIISE) Report, Vol. 2, 1987. 

(Hars and Scheer, 1992) Hars, A., and Scheer, A.-W. Extending data modeling to 
cover the whole enterprise. Communications of the ACM, 35(9). 

PRDS, 1991( Information Resource Dictionary System. ANSI X3H4, Working 
Draft, ATIS, October, 1991. 

(lsbii, 1991( Ishii, H. Toward an open-shared workspace: Computer and video fusion 
approach of team workstation. Communications of the ACM, 34(12). 

(Kannapan, 1993) Kannapan, S. M. Structuring and coordinating information in 
product development. 

(KIDS, 1990) Knowledge integrated design system, WRDC, Contract No. F33615-
89-C-5619, 1990. 

(Klein, 1993) Klein, M. Capturing design rationale in concurrent engineering terms. 
Computer, 226(1), 39-47. 

(Krasner, 1992) Krasner, H. Lessons learned from a software process modeling sys
tem. Communications of the ACM, 35(9). 

(Kyung, 1991) Kyung, M. Designing for cooperation. Communications of the Associa
tion for Computing Machinery, 34(12), 65-73. 

(Mayer, 1989) Mayer, R. J. Ed. Analysis of methods. Knowledge-based Systems 
Laboratory, Department of Industrial Engineering, Texas A&M University, Col
lege Station, Texas, 77843, 1989. 

(Mayer, 1993) Mayer, R. J. Information integration for concurrent engineering 
(liCE). IDEF3 Process Description Capture Method Report, AL-TR-1992-0057, 
Knowledge-based Systems Incorporated, 2726 Longmire, College Station, Texas 
77845, 1993. 

(Monarchi, 1992) Monarchi. A research typology for object-oriented analysis and 
design. Communications of the ACM, 35(9), September, 1992. 

(Navathe, 1992( Navathe, S. B. The evolution of data modeling for databases. Com
munications of the ACM, 35(9), 112-123. 



www.manaraa.com

364 Jay Ramanathan 

(Ramana, 1993) Ramana, Y. V. Reddy, Srinivas, K., Jagannathan, V., and Karinthi, 
R. Computer support for concurrent engineering. Computer, 26(1). 

(Ramanathan, 1987) Ramanathan, J. Knowledge-based assistance for design-in-the
large. Second International Symposium on Knowledge Engineering, Spain, 1987. 

(Ramanathan, 1992) Ramanathan, J. Process versus data management technologies. 
Conference Proceedings, Autofact, Society of Manufacturing Engineers, P.O. Box 
930,I>earbom,MI,48121, 1992. 

(Ramanathan, 1993) Ramanathan, J. Object-based integrated design workstation. 
Final Technical Report, 1993. 

(Ramanathan and Sarkar, 1988) Ramanathan, J., and Sarkar, S. Providing custo
mized assistance for life-cycle approaches. IEEE Transactions on Software Engi
neering, SE 14(6), 749-758. 

(Ross, 1977) Ross, I>. T. Structured analysis (SA): A language for communicating 
ideas. IEEE Transactions on Software Engineering. 

(Sarkar, 1989) Sarkar, S. The design of a software environment architecture based on 
executable process descriptions. The Ohio State University, Computer and Infor
mation Sciences I>epartment, 2036 Neil Avenue Mall, Columbus, Ohio 43210, 
1989. 

(Seybold, 1991) Seybold, P. B. Office Computing Group Report, Vol. 15, No.9, 1992. 
(STARS, 1991) Software Technology for Adaptable, Reliable Systems (STARS) Pro

gram, Software Process Tools and Techniques Evaluation Report, Version 1.0, 
Contract No. F19628-88-I>-0032, ESI>/AVS, Electronic Systems I>ivision, Air 
Force Systems Command, Hanscom Air Force Base, MA 01731-5000, 1991. 

(U.S. Department of Commerce, 1993) Functional Process Improvement, OOI> 
8020.1-M, Office of the Assistant Secretary of I>efense, Washington, I>C 20301-
3040. U.S. I>epartment of Commerce, National Technical Information Service, 
5285 Port Royal Road, Springfield, VA 22161, Commercial Telephone: 1-703-487-
4650, 1993. 

[Waldron, 1988) Waldron, M. B. Modeling of the design process. In Yoshikawwa and 
Gossard (Eds.), Proceedings of IFIP Working Group 5.2 Workshop on Intelligent 
CAD. North Holland, 1988. 

[Waldron and Waldron, 1988) Waldron, M. B., and Waldron, K. J. A time sequence 
study of complex mechanical system design. Design Studies, 0 142-694X 188102095-
12, Butterworth & Company (Publishers) Ltd., Vol. 9, No.2, April, 1988. 

[Williams, 1990) Williams, T. J. The purdue reference model for computer integrated 
manufacturing from the viewpoint of industrial automation. SME Conference 
Proceedings, 1990 Update Standards in Industrial Automation Status and Future, 
May 14-16, 1990. 

(WRDC, 1990)I>APro project integrated information support system (IISS) enter
prise integration framework. Technical Report Prepared by Control I>ata Corpo
ration for Manufacturing Technology I>irectorate, WRI>C, Air Force Systems 
Command, WPAFB, I>ayton, Ohio, Vol. V, Part 50, September 30, 1990. 



www.manaraa.com

17 
Improved Total Development 
Process: Overcoming the 
Ten Cash Drains 

DoN CLAUSING 

The Ten Cash Drains 

The existing development process of a product in the United States delivers 
products that are only average in quality and cost, and are delivered to the 
market late. (Japan is the benchmark.) This is the result of the Ten Cash 
Drains: 

1. Technology Push, but Where's the Pull? 
2. Disregard for Voice of the Customer 
3. Eureka Concept 
4. Pretend Designs 
5. Pampered Product 
6. Hardware Swamps 
7. Here's the Product; Where's the Factory? 
8. We've Always Made It This Way 
9. Inspection 

10. Give Me My Targets; Let Me Do My Thing. 

The total cash drain is easily 10 percent of corporate revenues; often much 
more when the full costs are accounted 

Total Development Process 

The improved Total Development Process plugs the Ten Cash Drains, 
greatly improving the financial positions of the corporation. Good products 
are brought to market in a timely fashion. By continuously bringing better 
products to market, the improved Total Development Process provides dy
namic rejuvenation. This chapter describes the improved Total Development 
Process actions in overcoming the Ten Cash Drains. 

A zero-level block diagram is shown in Figure 17.1. Product and process 
technologies are generated and incorporated into specific product develop
ments, which are then placed into production. This is shown in more detail 

365 



www.manaraa.com

366 Don Clausing 

TECHNOLOGY .. PRODUCT PRODUCTION 
GENERATION ... DEVB.OPMENT 

FIGURE 17 .1. 

,~~~~············~ . . . r----..,....,---=~~~~=-:---~···········--·--
DEVELOP QUALITY . . 

. . . . . 

. . . . 
TECHNOLOGY ; . 
GENERATION 

4. ROBUSTNESS MISTAKE 
SELECT ELIMINATION , 

PRODUCT 1. DESIGN I I 
CO~E~ ~--------~ 

2. DEVELOP PRODUCTION 
CAPABILITY 

3. DEVELOP LOGISTICAL 
CAPABILITY . . . 

PRODUCTION 

AND 

FIELD 

SUPPORT 

'················~ L-----'----------~".,. ............ ,. .. .,. ...... . 
FIGURE 17.2. Concurrent development with multifunctional team: 1. production de
sign of product; 2. production capability; 3. logistics capability; 4. robustness. 

in Figure 17.2, which displays the fundamental concept of concurrent engi
neering. The product design, production capability, and logistical (field sup
port) capability are developed concurrently to have robust quality. The im
proved Total Development Process is shown in operational detail in Figure 
17 .3, with the first 14 months shown in still more detail in Figure 17 .4. 
Figures 17.3 and 17.4 show 38 months to complete the development of a 
specific product, from the start of system design until the start of production. 
This is the improved, shorter time that will be achieved for complex prod
ucts, such as a car, or a very large, complex copier or printer. Simpler 
products have a scaled-down schedule, approximately 1 year for a VCR for 
example. Large aerospace projects will take longer, perhaps 5 years. The 
schedule of 38 months is to be compared with typical schedules of 60-70 
months in previous practice, slowed by the Ten Cash Drains. 

The general structure of Figures 17.3 and 17.4 is common to all develop
ment activities. In Figure 17.3 the major activities (system design, etc.) have 
been separated for clarity. Of course, in actual practice they are tightly 
integrated together, and performed by one multifunctional product develop
ment team. The most important details are described in the following sec
tions in the context of overcoming each of the Cash Drains. 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 367 

~ 
VITAL 

I FEW 

~ 

" 
I MUNDANI 
0 MN4Y 
N 

SYSTEM 
DESIGN 

OPERAnNG 
SYSTEMS 
PI..ANNING 

~:SYSTENS 
nVAnoN 

• ,. 15 ". 1211 10211U7212&141U12110111117111514131111 1011 7. 5. 'I, , z' MONTHS 

GEN 

GO-NO GO 
REVIEW 

GO.NOGO 
REVIEW 

~----[ ________ [ ______ _ 
~-~~E~- --~N_ _____ _!1'!~--J 

STAAT OF P\mUCnoN 

I PROCESS PO I 

LAUNCH 

FIGURE 17.3. Improved Total Development Process. N =needs; C =concepts; H = 
hardware; GEN = generic. Here it refers to SN optimization of generic technological 
concepts, which precedes optimization of specific product embodiments of the tech
nology; Process PD = process parameter design (SN optimization of production 
processes); PIT= problem identification test; PI, P2, BO, Bl = Four successive itera
tions of prototype; PSP = problem-solving process; LRDT = launch readiness dem
onstration test; DD&B = detail design and builds; SN = signal-to-noise ratio. The 
signal is the performance that we want. The noise is undesirable deviations from the 
intended performance; SA&V =system adjustment and verification; Des.Corr. = 
correction of design mistake; T &A = tool and assembly; QC = quality control. 



www.manaraa.com

368 Don Clausing 

_sTYL_ING _____ --~..11-----'-~-2 ____ _.13(FREEZES) 

ASSEMBLY LINE CONCEPT AND DESIGN 

TOOL CONCEPT AND DESIGN 

MACHINE TOOL COICEPT AM> DESIGN 

FIGURE 17 .4. First 14 months of Figure 17.3 in more detail (for system design and 
optimization). 

Overcoming Cash Drain 1: "Technology Push, but 
Where's the Pull?" 

Technology Push, but Where's the Pull? 

The United States is very strong in technology generation. However, even in 
this area of strength, there are three significant problems: (1) new technologi
cal concepts are developed and often major resources are spent, but no 
discernable customer need can be identified; (2) there are strong customer 
needs for which technology generation activities are lacking; (3) good con
cepts are developed for which there are clear customer needs, but the techno
logical concepts are inadequately transferred into the development of a 
specific product. 

Technology push results in many "one but" concepts. These concepts are 
fantastic, but ... they fail to meet a major customer requirement. Often the 
cleverness of the concept or its attractiveness in meeting other customer 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 369 

requirements results in much money being drained into its development 
before it is totally recognized that the concept has no potential because it is 
inherently incapable of satisfying an outstanding customer requirement. At 
the other extreme, there are often major customer requirements and needs 
for product or process improvements for which there is no ongoing technol
ogy generation activity. This often leads to creation of a significant new 
concept during the system design. Usually, this leads to disaster. Such con
cepts are too immature to be developed on a product development schedule 
during system design. It should be a strong operating principle that signifi
cantly different new concepts are not selected during system design unless 
sufficient prior technology generation activity has occurred to develop the 
concept to a sufficient level of maturity. 

Often, good new concepts are generated that have the potential to meet 
customer needs but they are only poorly transferred into the system design 
activity. These concepts often go down a technology drain and never make it 
to the market. This usually leads to prolonged blame-giving between the 
technology generation organization and the system design organization. 

In summary, the United States is very strong at technology generation, but 
much of this strength is dissipated by excessive technology push and inade
quate focus on the strategic needs of the corporation and its customers. 

Technology Generation 
Technology generation is strong in the United States, based on many people 
with a deep understanding of natural phenomena and an independent drive 
for creativity. There is great opportunity to build upon this base to achieve 
a more complete technology generation activity. The Needs Phase (see Fig
ure 17.3) identifies the technologically strategic needs ofthe particular indus
try and market segment. The Concepts Phase generates new concepts that 
are responsive to the needs and selects the best concepts for further develop
ment. The Hardware Phase is a continuation of the invention activity in the 
laboratory. At the completion of technology generation, the concept has 
been demonstrated to work very well at one operating condition, and to be 
strongly attractive in meeting customer needs. 

The coherent technology strategy, which identifies major customer needs 
that require new technological thrusts, is the prime activity to assure that 
there is sufficient technology generation activity addressing all major strate
gic customer needs. This strategy will also go far toward helping to quickly 
identify the "one but" concept that should not receive further investment. Of 
course, the invention of new technology requires creativity. Volumes have 
been written on the subject, with uncertain conclusions. The author believes 
that the major requirements for creativity are (1) deep involvement in iden
tifying the needs, (2) strong understanding of physical phenomena, and (3) 
creative environment (rewarding, not bureaucratic). 

The only way to achieve successful technology transfer is to form inte-



www.manaraa.com

370 Don Clausing 

grated teams to do the initial steps in the system design. The integrated teams 
have people from both the technology generation activity and the systems 
design activity. This integration leads to successful transfer of the new con
cept into the system design activity so that it is enabled to go downstream 
starting from a strong system design base. All attempts at a formal hand-off 
procedure without team integration have failed. 

At the conclusion of technology generation, the concept has been shown 
to work very well at one operating point and to be very attractive at meeting 
customer needs. The remaining tasks are then to integrate the concept into a 
specific system design and to optimize the concept for low cost and high 
quality, so that it will work well when subjected to a wide range of operating 
conditions (robust design). The initial work on robust design (good perfor
mance throughout a wide range of operating conditions) is the important 
transitional link between technology generation and the development of a 
specific product. Before a new technology is finally selected for a specific 
product there should be a clear demonstration of the potential for robustness. 

The term technology generation is too restrictive to describe the ongoing 
activities to provide the corporation with increased capabilities. These activ
ities can best be thought of as "generic improvement," with technology 
generation as a very important element. Other generic improvements can be 
achieved by a thorough attention to technical detail, coupled with close 
attention to the needs of the customers. This can be started by preparing a 
House of Quality (introduced in the next section). An example of this evolu
tionary type of generic improvement is the rust-prevention improvements 
that were made at Toyota Auto Body in the late 1970s. 

Summary 
Strong technology strategy and technology transfer assure attractive new 
technological concepts to meet major customer needs. 

Overcoming Cash Drain 2: "Disregard for Voice of the 
Customer" 

Disregard for Voice of the Customer 

The first step in system design is the determination of the needs of the 
customer. Often, in the United States, the product is doomed to mediocrity 
by the date of a completion of this Needs Phase (see Figures 17.3 and 17 .4). 
The biggest culprit in this cash drain is deployment of the voices of corporate 
specialists rather than the voice of the customer. This further aggravates the 
technology push problem that is Cash Drain 1. Frequently, the criteria that 
are used during the ensuing Concept Phase have already lost or distorted 
much of the voice of the customer. 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 371 

House of Quality 

The House of Quality (Hauser and Clausing, 1988) and the procedure for 
developing it, which have evolved in Japan since 1971, provide an excellent 
method for deploying the voice of the customer. The House of Quality is a 
planning table that shows explicitly the deployment from the voice of the 
customer to product planning characteristics. Also shown are competitive 
benchmark evaluations for existing products. 

The House of Quality must be prepared during the Needs development 
(see Figures 17.3 and 17 .4) by an integrated team consisting of people knowl
edgeable about marketing, market research, product planning, product 
design, process engineering, service, and perhaps other functions. This inte
grated team brings together all of the best information on customer needs 
for the market segment for which the new product is intended. They work 
together to achieve consensus on the required product planning characteris
tics and quantitative target values that are fully responsive to the needs of the 
customer and will lead to a superior product relative to competitive bench
marks. This systematic process, which is guided by the format of the House 
of Quality, leads to understanding by all of the major functions of the 
corporation as to the required product characteristics. This consensus and 
understanding leads to commitment by all functions and, therefore, eventu
ally by all of the involved people within the corporation. Gaining the full 
understanding and commitment of all people to the deployed voice of the 
customer is critical to successful development of commercially viable new 
products. The result is a major improvement over what usually happens in 
the United States today. The House of Quality deployment is the beginning 
of several steps of systematic Quality Function Deployment. Quality Func
tion Deployment assures that the voice of the customer guides work in all 
functions of the Total Development Process, and manages the information 
so that all of it is utilized in producing the actual product. 

Summary 
The House of Quality and the subsequent steps of Quality Function De
ployment assure that the voice of the customer is deployed and all activities 
are guided by and are responsive to the needs of the customer. 

Overcoming Cash Drain 3: "The Eureka Concept" 

The Eureka Concept 

Often the selected product concept is the result of someone shouting "Eu
reka, I have this great new concept." It becomes the only concept that is 



www.manaraa.com

372 Don Clausing 

given serious consideration. All too often it does not stand the test of time. 
It does not even stand the test of time to bring the product to the market, 
much less the time of its actual production. Many concepts look good in the 
initial flush of creation. However, when such concepts are quickly accepted 
and a strong run is begun heading for the marketplace, they are usually 
found to be vulnerable to an intrinsically superior concept. It is a tremen
dous cash drain to waste nearly all of the Total Development Process upon 
a concept that has been recognized as highly vulnerable by the time the 
product actually reaches the market. 

Pugh's Concept Selection Process 

The search for the invulnerable product concept can be greatly improved by 
the use of the concept selection process that has been developed by Stuart 
Pugh (Pugh, 1981) and his colleagues in Great Britain. In this process, we 
carefully avoid a hasty running away with a singular concept. It is required 
that a large number of concepts that are in real contention and have a chance 
of being selected are available before selection is started. A large number is 
at least 10 and preferably 20-30. These concepts are then carefully evaluated 
with respect to each other by using the criteria that have been developed 
during the Needs Phase. This process is thus strongly focused on the voice of 
the customer, and it avoids the excessive and premature quantification that 
is a glaring weakness in many selection processes now used in the United 
States. This process is a team activity and is designed and facilitated to keep 
everyone thinking about the concepts and the criteria. This process leads to 
great clarification of both the concepts and the criteria that are being used 
for their selection. New concepts and new criteria emerge and some existing 
criteria are found to be not relevant. This process often employs four to 
six iterations of the formal matrix that is used for concept selection. At 
intermediate stages of the process, the total number of concepts may grow or 
shrink, but eventually the team converges on an invulnerable concept. This 
process may take It-3 months. At the end of this time, the team is confident 
that they have picked a winning concept and they are committed to its 
success. 

Summary 

Use of the Pugh Concept Selection Process leads to a selected concept that is 
invulnerable to being quickly surpassed in the marketplace, and achieves 
team commitment that is crucial to the success of the remainder of the Total 
Development Process. 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 373 

Overcoming Cash Drain 4: "Pretend Design" 

Pretend Designs 

Pretend Designs are not production intent,* are often simply new but not 
better, and become focused on the creation of experimental hardware. This 
initial design comes to have as its objective the building of the first prototype 
(PI), rather than the achievement of the best possible design of the final 
product in the product marketplace. These designs are usually motivated 
by a strong desire to be new and different, but all too often the result is 
demonstrably inferior to a design already in the field. A lack of production 
intent leads to the attitude, "Oh well, this is just the first design-I'll fix this 
all up later." This is a sure road to disaster. 

Design 

To avoid pretend designs, it is critical to separate the initial design into two 
phases. The first phase is the design study (see Figure 17.3), which is aimed 
at achieving the best possible design. At the completion of this design study, 
there is a "go-no go" review, and if the resulting design does not meet 
criteria for a successful product, the Pl prototype will not be built. This is a 
sure way to avoid concentration on experimental Pl hardware, and to free 
everybody's creativity to achieve the best possible production-intent design. 
The second phase, after review has been successfully completed, is the 
completion of the detailed dimensioning, and the building of the first (PI) 
production-intent prototypes. 

The design must start with a concentrated activity of design competitive 
benchmarking by the engineers who are on the design study team. The 
competitive benchmark products are disassembled by the design study team 
down to the individual piece parts. The function of each part in the total 
competitive product is analyzed, the cost of each part is carefully estimated, 
and a best evaluation is made of the probable production processes that were 
used to make each p3:rt. The parts are arranged on piece-part boards with the 
estimated cost next to each part. This design competitive benchmarking must 
be done by the engineers on the design study team. It cannot be done by 
anyone else to achieve the full beneficial effect upon the eventual product 
design. Furthermore, each engineer is challenged to beat the competitive 
benchmark design or use it. This has a tremendously beneficial effect. It 
assures that no designs will be used simply because they are new. This avoids 
the common problem of designs that are new, but clearly inferior to existing 
designs already in the field. With the challenge of beating the competitive 

• Engineering term that means that the design is not intended for production. 



www.manaraa.com

374 Don Clausing 

benchmark design or using it, each engineer becomes strongly concentrated 
upon achieving a better design. Sometimes the initial reaction is one of awe 
and respect for a competitive design. For a few weeks, the competitive design 
may be carried as the selected design concept at the detailed level for the new 
product. However, engineers are never happy to use someone else's design 
and, in this situation, are strongly motivated to come up with a superior 
design. Inevitably, they do so. As a result, every functional area of the prod
uct is superior in its design concept. 

The design team is strongly trained in the methods of design for assembly, 
design for piece-part producibility, and value analysis/value engineering 
(V A/VE). They apply this training in carrying out the design activity to 
achieve the best possible design, very producible and serviceable. The process 
is done in a continuous style, avoiding the setting apart of small time periods 
to do specific activities such as V A/VE. Instead of setting aside 2 weeks to do 
V A/VE and then feeling that that chore has been completed, this improved 
process emphasizes the continuous application of V AfVE throughout the 
entire design process. 

The design activity itself is divided into two phases (33-28 months in 
Figure 17.4). Halfway through the design study, the subsystem concepts are 
selected and frozen so that nothing on the subsystem concept drawings can 
be significantly changed for the remainder of the Total Development Pro
cess. At this time, there is a small internal review to assure that everyone 
understands the concepts that have been selected and how they integrate 
together to create the superior total product. 

Next, attention is concentrated upon creating best possible piece-part de
signs and the selection of the right components. 

In doing the design work the skills in "partial design" that have been 
learned in school and by experience are fully utilized. Such skills as design of 
machine elements and circuit design are employed, with emphasis upon 
engineering fundamentals. When physics and design are in conflict, physics 
always wins. Here we are concentrating on "total development," in which 
"partial design" is embedded. 

As soon as attention is focused on piece-part design, potential suppliers 
are brought in and, to the fullest possible extent, utilized as full participating 
members of the design study. It is important to fully engage the technical 
expertise of the suppliers at this early stage. If necessary, key suppliers with 
special expertise should be given design consultation contracts to assure their 
full participation and the utilization of their technical knowledge. (In some 
products, entire subsystems may be designed by a supplier. Of course, in this 
case, the supplier would have been involved from the beginning of the design 
study.) 

In the design activity, it is always necessary to have a drawing of the 
complete product, often referred to as the "big picture." It is extremely 
important that this big picture drawing be continuously updated, at least 
daily, in the most efficient way. This can easily be done with modern com-



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 375 

puter-aided design systems. The design files of the team members can be 
readily transferred to the big picture to assure that integration of all aspects 
of the design is occurring. 

At the completion of the design study (after month 28 in Figure 17.4), 
there exists detailed layout drawings of each subsystem, and drawings of 
almost every piece part. However, the piece-part drawings may be dimen
sioned only with respect to critical parameters. Also, at this time, a detailed 
cost estimate has been prepared, functional analyses including failure modes 
and effects analysis (FMEA) have been completed, initial processing deci
sions have been made, and a styling model is ready. All of this information 
is incorporated into a design plan to assure that all design activities during 
the remainder of the Total Development Process are strongly guided by the 
crucial work that has already been completed. This information is presented 
at a crucial "go-no go" review. This review determines that the design is 
inherently superior to competitive benchmarks and meets all aspects of the 
business strategy, or the development is stopped and returned to the begin
ning of the process to redefine the required characteristics. 

Summary 

The design activity focuses everyone's attention on creating the best possible 
design for the actual production product, and thus avoids the cash drain of 
the "Pretend Design." 

Overcoming Cash Drain 5: "Pampered Product" 

Pampered Product 

Most products work well at one operating condition. The old-fashioned 
approach in the United States pampered the product concept to enable it to 
look good, especially in demonstrations for vice presidents. The product was 
not seriously challenged, but rather, was pampered by special tuning and 
tinkering so that it would put on a very good demonstration. The pampered 
product approach has been improved upon by a rigorous application of 
reliability growth and problem-solving methodology. However, the reliabil
ity growth and problem-solving-process methodology is not an adequate 
approach to the optimization of the vital few design parameters in order to 
achieve robust performance. This misapplication of reliability growth and 
problem-solving process is inspection of the design. It has all the faults of 
inspection during production (see Cash Drain 9). It results in countermea
sures being brought to bear too late when they are very expensive and often 
do not catch all of the problems before the product is in the hands of the 
customer. In this approach of problem identification and problem solving to 
grow the reliability, purposeful improvements are not made until the product 



www.manaraa.com

376 Don Clausing 

has been detected as being defective. This approach is very ineffective in 
optimizing the vital few design parameters that are the most unique aspects 
of the new design and control its most important performance characteris
tics. The problem with the problem-solving process approach to optimiza
tion of the vital few design parameters is that it is incapable of detecting 
situations that are very close to being a problem but are not actually a 
problem on the specific hardware being tested at the specific operating point 
of the problem-identification test. Therefore, situations that are just about to 
go over the cliff will not be detected. However, if further improvement is not 
made, such a design will perform poorly in the field where new conditions of 
use following realistic production conditions will cause a product to go over 
the cliff and have serious problems. Therefore, it is very important to have a 
problem prevention approach in the optimization of the vital few design 
parameters that will assure that the design is not only performing well in 
some limited test, but is actually very far away from any problem-causing 
cliff and, therefore, under realistic conditions, will remain on safe operating 
ground and not fall off the cliff. 

The problem-solving process is very satisfactory for correcting simple 
mistakes in the design. However, a systematic optimization process is re
quired to achieve robust performance by finding the best values for the 
critical design parameters. 

Optimization of Quality 
Quality has two aspects: 

1. Elimination of mistakes 
2. Robust performance. 

Robust designs keep performance close to the ideal customer satisfaction 
value, even when the design is subjected to the actual conditions of customer 
use. The two aspects of quality are associated with the two styles of decision 
making: 

1. Experience is sufficient 
2. Decisions must be optimized, experience is not sufficient (some ignorance 

remains). 

When experience is sufficient, the only problem is simple mistakes (human 
error). A complex system may have 107 design decisions, many of them 
mundane. An error rate of 0.01 %, which seems very good, will still create 
1000 mistakes. These then must be found and eliminated. The common 
process of problem-identification tests, problem-solving process, and design 
correction, guided by historical reliability-growth curves, is successful. Here 
we will concentrate on the second aspect of quality, robust design. Robust 
performance is controlled by the critical (vital few) design variables. Here it 
is not a question of correcting mistakes. These parameters are sufficiently 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 377 

unique to the present design that is being developed, so that it is not possible 
for even the best engineers to get it right the first time. Therefore, a system
atic decision-making process is needed to select the best numerical values for 
the vital few design parameters that are critical to the success of the product. 
(Although the word 

The optimization process (see Figures 17.3 and 17.4) for the vital few 
design parameters must have two characteristics. First, it must be capable 
of systematically and rapidly making the right numerical choice for the 
values of each critical parameter, even though total understanding of the 
phenomena that control the function of the system is not available. Waiting 
for total understanding will inevitably take much too long for the completion 
of the total development process and the product will reach the market too 
late for its unique characteristics to be especially attractive to customers. 
Secondly, the optimization process for the vital few design parameters must 
be capable of preventing problems by recognizing that although the system 
may actually be working satisfactorily, it is very close to a problem and will 
fall off the cliff under actual customer conditions. The outstanding optimiza
tion method for rapidly and economically achieving problem prevention by 
a systematic process of decision-making that utilizes all available under
standing, but does not wait for the time-delaying arrival of new understand
ing, has been developed by Taguchi (Taguchi and Clausing, 1990). 

The most important single improvement in the Total Development Pro
cess is the optimization of the signal-to-noise ratios. The signal-to-noise 
ratios have been developed by Taguchi as a measure of robustness (the 
proximity of potential problems). As the systematic optimization process 
increases the values of the signal-to-noise ratios, the system design moves 
farther and farther away from the occurrence of any potential problems. The 
signal-to-noise (SN) optimization is known as parameter design because the 
nominal values for the vital-few design parameters are optimized by this 
process. 

SN optimization is initially done on the concepts that have shown promise 
during technology generation. During this initial SN optimization these con
cepts are often still generic rather than having been applied to a specific 
system design. The generic SN optimization is very beneficial in readying a 
concept for application in a specific system design. For more complex and 
unique concepts it is a requirement that some generic SN optimization has 
occurred before the concept can be selected for a new system design. 

It would be easy to first do SN optimization of the generic concepts that 
have emerged from the technology sensation activity, then design these con
cepts into a specific system design and build prototype hardware, which 
would then be followed by again performing SN optimization on this proto
type hardware. Although this approach, carried out in a competent manner, 
would be foolproof and result in the best possible system design, it would 
have the glaring shortcoming of taking too long in getting the product to 
market, after the market window had slammed shut. Therefore, in the inter-



www.manaraa.com

378 Don Clausing 

est of efficiency, it is necessary that the SN optimization be done simultane
ously with the critical initial portion of the system design. This is clearly 
shown in Figures I7.3 and I7.4. Although a considerable challenge, this 
simultaneous optimization and system design can be done. Therefore, to 
have a world-class total development process, it must be done. 

The design of the SN rigs begins near the end of the Concept Phase of the 
system design. By that time, the product concept is sufficient to guide the 
design of the SN rig. As much as possible, the SN rig should be based on 
hardware that already exists. This existing hardware will be hardware that 
was developed during technology generation and generic SN optimization, 
and mules (existing production hardware that is modified to accept new 
subassemblies for the purpose of doing the SN optimization). The first SN 
optimization will usually consist of two or three iterations. It is completed 
in time for the information to be easily incorporated into the new product 
design. 

After the completion of the first SN optimization, the SN rigs are often 
upgraded to incorporate important design changes that more closely reflect 
the current system design. The second SN optimization is then completed. 
With close coordination to achieve quick design and hardware implementa
tion of the results of the second optimization, the PI prototype hardware will 
completely capture all of the design decisions that are made during the SN 
optimization. 

The early completion of the SN optimization, so that its results are com
pletely captured in the PI hardware, is a critical and extremely beneficial 
feature of the improved Total Development Process. In the past, failure to 
do adequate SN optimization has led to the presence of many borderline 
problems that greatly plague and complicate the ensuing elimination of 
mistakes. The borderline problems come and go intermittently. When they 
come, they cause major shortfalls in performance to the point where it is 
difficult to work on the mistakes. When these intermittent problems go away 
temporarily, they cause a false sense of security, which is then demolished 
when the problems again return. This constant going and coming of major 
problems has a demoralizing effect upon the entire development activity. By 
eliminating these major intermittent problems very early, the SN optimiza
tion allows subsequent concentration on simply correcting the many mun
dane mistakes. 

After the completion of the SN optimization, the best nominal values have 
been established for each of the vital few critical design parameters. Then 
tolerance design is performed. The most economical level of precision for 
each of the critical production processes is selected. Economy is assured by 
using Taguchi's Quality Loss Function (Phadke, I989) to predict the quality 
loss that will occur in the field as a result of the selected level of precision. 
This is added to the manufacturing cost and the precision level is selected 
that minimizes the total cost. Previously, at this stage of the development 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 379 

process, there has been no ability to put a dollar value on the loss that would 
be incurred because of the selected level of precision. Taguchi's Quality Loss 
Function has enabled this rational tolerance-design process to replace what 
had previously been an emotional and trying negotiation between product 
designers and process engineers. After the best level of precision for each 
critical production process has been selected, then production tolerances are 
placed on the drawing. However, in the improved Total Development Pro
cess, the production tolerances on the drawings are almost superfluous for 
many products. 

After the PI prototypes are available, system adjustment and verification 
is performed. Some of the PI prototypes are devoted to this activity. (The 
other PI prototypes will be used to correct the mistakes.) The SN optimiza
tion has minimized the critical variances in the outputs of the subsystems of 
the product. However, the nominal or "mean values" for these subsystem 
outputs that were chosen in the system design may not be optimal. System 
adjustment is the adjustment of the mean values of the critical subsystem 
output performance characteristics to assure that the total system has the 
best possible performance. This system adjustment is easy to do. After the 
system adjustment is completed, then a system verification test (SVT) is 
performed. In the system verification test, the PI prototypes are tested in 
a head-on showdown with the competitive benchmark product(s). In this 
head-on competitive benchmark system verification test, the critical SN ra
tios are compared between the new product and the competitive benchmark 
product. The new product should show improvement in the critical SN 
values. The amount of improvement that is required to have a world-class 
product when the new product appears in the market can be easily estimated. 
At the completion of the system verification test, a "go-no go" review is 
held. If the product fails this head-on comparison of SN ratios with the 
competitive benchmark, it means that the product is inherently incapable of 
being a major success in the marketplace. If this should happen, this specific 
product development activity should be terminated. A return should be 
made to the beginning of the system design to redefine the system concept 
that will be superior for the new market entry date. Based on the experience 
that has just been attained, a better system design should be achieved. This 
is very preferable to throwing good money after bad. Of course, by using the 
improved Total Development Process, the specific product development ac
tivity will almost never have to be cancelled. After this review, there should 
never again be any serious consideration given to the possibility that the 
specific product development activity will be cancelled. Instead, all effort 
should be concentrated in getting the best possible product to the market at 
the scheduled date, or earlier. 

Simultaneously with the system adjustment and verification activity, other 
PI prototype machines will be devoted to problem identification testing and 
the problem-solving process. In this activity, the mundane mistakes will be 



www.manaraa.com

380 Don Clausing 

weeded out to achieve reliability growth. This is then repeated on the P2, BO, 
and B 1 hardware.* All product design changes should be completed at the 
end of the P2 problem-solving process. The BO iteration is to correct mis
takes in the production processes. The B1 iteration is to verify that the 
production processes have been correctly implemented in factory operations. 

At the completion of the optimization, a launch-readiness demonstration 
test (LRDT) is performed on the Bl hardware. In this test, simulated cus
tomer use conditions are utilized. This test should not be regarded as a 
significant step in the development of quality. If the entire process has been 
done well, the LRDT will provide no new significant insights into the new 
product. It is done strictly to convince the management of other major 
corporate functions, and to provide data to guide the fine tuning of the sales 
and service plans. 

Summary 
Taguchi's methods of optimization challenge the new product instead of 
pampering it, and ensure that the design is as far away as possible from all 
potential critical problems. 

Overcoming Cash Drain 6: "Hardware Swamps" 

Hardware Swamps 
Hardware swamps occur when the prototype iterations are so numerous 
and so overlapping that the entire team becomes swamped by the chores 
of debugging and maintaining the experimental hardware. The hardware 
swamp can become so severe that no time remains to improve the design. 
The prototype hardware has become an end unto itself, rather than its being 
used to improve the design. A hardware swamp can be recognized by la
boratories packed full of experimental equipment and an inability to com
plete any organized experiments because of the voracious appetite of the 
hardware to be debugged and maintained. 

Prototypes Enable Optimization 
Only enough prototypes are built to enable the successful completion of the 
optimization process. Only four iterations of the prototypes are needed (see 
Figure 17 .3) to achieve successful optimization, two design iterations, and 

• Four major iterations of prototypes is the most that should be required. Many 
products only require two. Of course, if the production volume is small, in the limit 
only one, then prototypes may not be appropriate. In this case there may be many 
minor iterations (changes to parts and subsystems) on the few units of production, the 
objective being to eliminate mistakes and achieve some final improvement in robustness. 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 381 

two production iterations. (For products that. are significantly simpler than 
cars, copiers, and computers, only two iterations are required.) The early 
optimization of robustness (before prototypes are built) enables the mistakes 
to be eliminated in a few iterations of prototypes. There is sufficient time 
between each iteration of prototypes to enable the data from the previous 
prototype to be incorporated in the build of the next prototype. This is 
essential for an efficient process. 

Prototypes are built only to enable the development of quality. Building 
prototypes for the sake of building prototypes or to achieve some ideological 
number of iterations is rigorously avoided. Some of the Pl prototypes are 
used to verify robustness. The remaining Pl prototypes and the P2 proto
types are used to eliminate mistakes from the product design. The BO and B l 
prototypes are used to eliminate mistakes from the production equipment 
and processes. There should be continuous efforts to reduce the number of 
iterations that are required. 

Summary 

Early optimization of robustness enables the number of prototypes to be 
greatly reduced. 

Overcoming Cash Drain 7: "Here's the Product. 
Where's the Factory?" 

Here's the Product. Where's the Factory? 

Past practices have all too often developed a product to an almost final stage 
before looking at how it might produced. This is a sure road to failure. The 
production capability must be developed along with the product design. It is 
not a design if we don't know how to make it. In doing the design study, 
design for assembly and design for piece-part producibility must be empha
sized. Here we are describing the need to simultaneously develop the produc
tion capability in close coordination with the product design. If the design of 
the production capability starts only a few months before actual production, 
many severe problems are guaranteed to occur. There is a similar require
ment for field operations, particularly service. 

Development of Production Capability 

In parallel with the product system design, the capability must be developed 
(see Figure 17.3) to produce piece parts, assemble the product, and have the 
operating systems that are necessary for factory and field operations. The 
development of the piece-part production and assembly capability can be 
best thought of as a part of the system design. The result is a total product
and-process system. 



www.manaraa.com

382 Don Clausing 

Piece-part production capability has three degrees of required develop
ment, depending on the portion of the process and eqW.pment that is new: 

1. The piece-part production process is a new, unique, clean-sheet (starting 
with a clean sheet of paper) process. In this case, the development process 
for the clean-sheet production process is the Total Development Process 
itself. The clean-sheet production process must go through all of the steps 
of the Total Development Process, including system design and optimiza
tion. (Instead ofP2 prototypes, the actual production equipment is built). 

2. Dedicated capability. In this case, the design of the machine tools them
selves must be tailored to the specific product system design. However, 
the function of these machine tools is conventional and requires little or 
no development. 

3. The machine tools are standard and in place in the factory, and only 
fixtures must be designed and built for the specific product. 

The lead time becomes progressively shorter. A clean-sheet production 
process must go through the Total Development Process. The dedicated 
processes can start a bit later, but still must go through a long development 
activity. The third case, where only the tools and fixtures must be designed 
and built, can have very short lead times. This is the advantage of flexible 
manufacturing. Of course, most piece-part production has for a long time 
been somewhat flexible in the sense that one machine tool could make parts 
for many different products. The shorter development time for tool design 
and build that is displayed in Figures 17.3 and 17.4 reflects the advantage of 
conventional flexible manufacturing. An increased emphasis upon flexible 
manufacturing can greatly reduce the time that is shown in Figure 17.3 and 
17.4. However, one must be aware of the longer production cycle times that 
frequently accompany increased flexibility. Therefore, the shorter develop
ment time and the ability to more smoothly and rapidly enter production 
must be balanced against increased cycle times. 

The piece-part production tools and the assembly equipment must go 
through a system design activity and correction of mistakes that is quite 
similar to the system design and problem-solving process that has already 
been shown for the product and clean-sheet processes in Figures 17.3 and 
17 .4. It is important that all of these production capability development 
activities be started well before the PI build so that they can influence the 
style of the PI build, and so that much information can be attained from the 
Pl build to guide the design and development of the piece-part production 
tools and production assembly line. 

Many operating systems are necessary for factory and field operation. 
Although such systems have long been in use, there is continuous opportu
nity to improve them, and many developments are now producing major 
improvements. Examples of such operating systems are configuration man
agement, change management, prototype build, problem management, ser
vice documentation and training, spares management, unit manufacturing 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 383 

cost (UMC) tracking, process sheets, CNC, production routing and schedul
ing, ordering, the manufacturing quality system, and distribution. These 
operating systems are usually in the curriculum and area of expertise of 
business schools in the United States. There is a need for closer involvement 
and participation of business school graduates and engineers in the develop
ment and implementation of these operating systems. In many companies, 
these operating systems have taken on a life of their own and have become 
excessively complex, and too difficult and time-consuming for the average 
design and process engineer. The design and process engineers must load the 
operating systems with the design data for the specific product design, acti
vate the systems, and initially operate them for prototype builds, and, most 
importantly, pilot production (BO build). There is much opportunity to im
prove the flexibility of operating systems through the use of computers. The 
design database is created during System Design. Then it must be very easy 
to load, activate, and operate the operating systems. 

Summary 
Development of production capability and logistical (field) capability in 
parallel with product development assures smooth and efficient transition 
into factory operations and field operations. 

Overcoming Cash Drain 8: "We've Always Made It This 
Way" 

We've Always Made It This Way 
The process operating points (speeds, depth of cut, feed rates, pressures, 
temperatures, etc.) are specified on process sheets or NC programs. The 
values for the process parameters have often been fixed for a long time, and 
even originally were the result of little development, if any. "We've always 
made it this way and it works." Yes, but has the process been optimized to 
achieve minimum cycle time and maximum quality? 

Process Parameter Design 

Taguchi's methods of parameter design have proven to be very successful in 
the optimization of production processes. This action is completely analo
gous to the SN optimization of the product. Here the parameter design 
improves the precision of the process, while holding or reducing the cycle 
time. This greatly improves product quality and reduces production costs. 

Process parameter design is done shortly before start of production (see 
Process PD in Figure 17 .3). This enables production tooling to be used. (For 
clean-sheet production processes, the process is SN optimized much earlier, 
at the same time as the product.) 



www.manaraa.com

384 Don Clausing 

Process parameter design can be successful and very beneficial even after 
start of production. Ford Motor Company and the American Supplier Insti
tute have demonstrated this type of success. 

Summary 

Taguchi's method of process parameter design greatly improves production 
processes. 

Overcoming Cash Drain 9: "Inspection" 

Inspection 

Inspection in the factory means sorting the good from the bad after produc
tion has been completed. This is now widely recognized to be a poor process 
for most products, largely through the efforts of Deming (Deming, 1986). 

On-Line QC 

On-line quality control (QC) (see Figure 17.3) eliminates the waste of inspec
tion. This was first recognized by Walter Shewhart during the 1920s, when he 
created his famous control chart. Japanese companies used the control chart 
with great benefit from 1950 until recently. During the 1980s, the control 
chart has been increasingly employed in the United States. However, Taguchi 
has developed a method of on-line QC that is more active in improving 
quality than the control chart, and which is now widely used in Japan. This 
is a method of optimal checking and adjusting. The machine operator mea
sures every nth part, and if it deviates from the target by more than a 
predetermined adjustment limit, the process is adjusted back to the target. 
The checking interval, n, and the adjustment limit are set at values that 
minimize total cost (quality loss in the field plus factory cost). Taguchi's 
Quality Loss Function is used to estimate the quality loss in the field. 

The method of optimal checking and adjusting greatly reduces many dif
ferent cash drains: cost of inspection, cost of scrap, cost of rework, cost of 
adjustment, and quality loss in the field. It is a simple process to perform, 
integrating cost-reduction discipline with the machine operator's natural 
tendency to check and adjust. 

Summary 

Taguchi's method of optimal checking and adjusting minimizes the direct 
and indirect costs of inspection. 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 385 

Overcoming Cash Drain 10: "Give Me My Targets, 
Let Me Do My Thing" 

Give Me My Targets, Let Me Do My Thing 

Targets seem good. However, Deming points out that they can tend to 
restrain improvement. Also, the early allocation of targets down to a detailed 
level tends to destroy teamwork. The writing of contracts so that each person 
can then work in isolation seems to have a fatal fascination for the American 
psyche. It leads to subsystems that cannot be integrated, products that can
not be produced, production capacity that cannot produce modem products, 
operating systems that attempt to enslave their users, managers who cannot 
lead, and employees who wait to be told what to do. 

Integrative, Participative Management 

Employee involvement has made significant progress in the United States 
since 1980. Integrated, multifunctional teams that have authority commen
surate with their responsibility are a key success factor. Managers who lead 
the process instead of reacting to problems are essential. Holding targets at 
the highest feasible organizational level produces emotional stress in the 
American psyche, but it promotes teamwork. 

Product development teams should be responsible for development, prod
uct, and processes. Once development is complete, the products and processes 
go through a transition into production operations and field operations. 

Summary 
Teamwork and competitive benchmarking win over contracts and targets. 
Management must lead the process. 

Strategies 

The improved Total Development Process that has been described is carried 
out in the context of corporate strategies, usually business strategy, product 
strategy, and technology strategy. These three strategies need to be inte
grated. The improved Total Development Process is the means by which the 
implementation ofthe next phase of the strategies is begun. The development 
of a new product is started with the intention of bringing a new product to 
market on a certain date, with quality, costs, and features that appeal to the 
customers in a certain market segment, as planned in the product strategy. 
The new product will implement leadership technologies, as planned in the 
technology strategy. The product will be capable of achieving the financial 
goals that are stated in the business strategy. 



www.manaraa.com

386 Don Clausing 

The improved Total Development Process cannot succeed if the strategies 
are seriously flawed. A beautiful product might be produced for which there 
is little profit potential. More commonly the strategies are sound, but the 
development process is weak. The products come too late, with quality, 
costs, and features that do not excite the potential customers. 

It is important that the development people and the rest of the enterprise 
have a clear consensus about the strategies that are being implemented. This 
consensus needs to be continuously reaffirmed throughout the development 
period. The development people sometimes make sound tradeoffs that are 
not adequately communicated to the sales and service organization. If the 
sales and service people are surprised by the tradeoffs when production is 
about to start, much internal resistance may arise. 

It is essential to success that the improved Total Development Process be 
carried out with a clear consensus about the business strategy, product strat
egy, and technology strategy that are being implemented. 

Root Causes 

The ten cash drains are the major problems in the development process in the 
United States. This leads to the question of the root causes for these prob
lems. There is certainly not a consensus about the root causes. It seems to the 
author that there are two primary root causes: 

I. Expectations that are not high enough. 
2. Segmentalism; cloistered specialists looking inward within their specialty. 

Segmentalism is especially pernicious. Americans have produced elegant 
solutions to problem definitions that have become increasingly obsolete. 
Japanese have produced pragmatic solutions to problem definitions that they 
have made increasingly relevant. Segmentalism makes it difficult to do the 
integrative thinking that leads to better objectives. 

Some people believe that the root causes must be overcome before im
provements can be made in the development process. It seems to the author 
that it is better to improve simultaneously the process to overcome the ten 
cash drains and work to mitigate the effects of the root causes. 

Benefits of Improved Total Development Process 

By greatly reducing the Ten Cash Drains, the improved Total Development 
Process will lead to major improvements in quality, cost, and delivery. This 
in tum will lead to greater market share and unit profit margins. There is no 
escape, the technical and managerial details must be mastered, to be fol
lowed by continuous improvement. As Deming has written, "Study and hard 
work will be required." 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 387 

References 

Deming, W. E. (1986). Out of the Crisis. Center for Advanced Engineering Study, 
Cambridge, MA: MIT Press. 

Hauser, J. R., and Clausing, D. P. (1988). The house of quality. Harvard Business 
Review, May-June, pp. 63-73. 

Phadke, M.S. (1989). Quality engineering using robust design. Englewood Cliffs, NJ: 
Prentice Hall. 

Pugh, S. (1981). "Concept selection, a method that works. Proceedings ICED, Rome, 
pp. 497-506. 

Taguchi, G. and Clausing, D.P. (1990). "Robust quality," Harvard Business Review, 
Jan.-Feb., pp. 65-75. 




