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Preface 

This volume, Mechanical Design: Theory and Methodology, has been put 
together over the past four years. Most of the work is ongoing as can be 
ascertained easily from the text. One can argue that this is so for any text or 
monograph. Any such book is only a snapshot in time, giving information 
about the state of knowledge of the authors when the book was compiled. 
The chapters have been updated and are representative of the state of the art 
in the field of design theory and methodology. 

It is barely over a decade that design as an area of study was revived, 
mostly at the behest of industry, government, and academic leaders. Profes
sor Nam Suh, then the head of the Engineering Directorate at the National 
Science Foundation, provided much of the impetus for the needed effort. 
The results of early work of researchers, many of whom have authored 
chapters in this book, were fundamental in conceiving the ideas behind 
Design for X or DFX and concurrent engineering issues. The artificial intelli
gence community had a strong influence in developing the required com
puter tools mainly because the field had a history of interdisciplinary work. 
Psychologists, computer scientists, and engineers worked together to under
stand what support tools will improve the design process. While this influ
ence continues today, there is an increased awareness that a much broader 
community needs to be involved. 

This volume is a small step. It compiles information currently available in 
the field of design theory and methodology. The information provided ad
dresses process and product issues. Most of the authors emerged from, or 
are associated with, mechanical engineering design, hence the title contains 
"mechanical design." This is to accommodate the current discipline-specific 
culture and provides this volume with a disciplinary home. However, the in
formation contained easily extends to any other engineering discipline as well. 

The aim of this book is to provide the reader with both the theory and the 
applications of design methodology. It captures current research results in 
the field and provides a compendium on which design educators can base 
their design teaching philosophies. Chapters from this book were success
fully used in teaching an integrated product design course. 

v 
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vi Preface 

All of the contributors to this volume are active researchers in the area of 
design theory and methodology and have each made significant contribu
tions to this field. Every chapter is self-contained and is readable without 
assistance from any other chapter. The organization of the book requires 
explanation. As with any organization, one can arrange material in many 
different ways. Our organization is somewhat unique for we have included 
both product- and process-related issues. The structure of this volume re
flects these dimensions. The chapters span theory to application, process and 
product tools, and information flow, from specific domain knowledge repre
sentation to more general analogical reasoning, from single concept design 
to life cycle design and quality issues. 

The completion of this volume is largely due to the timely contributions 
and revisions by the authors. We would like to acknowledge the patience of 
the contributors and their willingness to revise their work as they waited for 
the publication of this volume. Thanks are also due to Myrtis Smith, Soo 
Won Kim, and Debbie Wong for their assistance in contacting authors, 
formatting of chapters, and various required tasks which they performed. 
Thanks are also due to our children, Andrew, Lalitha, and Paul, who did not 
complain while we spent long hours in the evenings and on weekends com
pleting this volume rather than spending time with them. 

MANJULA B. wALDRON 
KENNETHJ. WALDRON 
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1 
Introduction 

KENNETH J. WALDRON AND MANJULA B. WALDRON 

The distinction between an engineer and a scientist is often forgotten. The 
difference is that the engineer is occupied with the creation of new artifacts, 
technologies, or systems, while the scientist is focused on understanding the 
physical world. To be sure, that understanding is essential to the creation of 
new technologies, but it is only the foundation upon which the engineer must 
build. 

The creative or synthetic parts of engineering activity are mostly embodied 
in design and manufacture. These activities are inextricably bound together. 
Engineering design can be viewed as planning for manufacture. Manufacture 
is the act of turning that design into an artifact. History has repeatedly 
shown that attempts to isolate these as two separate activities have always 
led to inferior results. Strenuous efforts to improve manufacturing processes 
and manufacturing systems, which can be observed in many industries at 
the present time, will not lead to world-class products without world-class 
design. 

The Challenges of the Design Process in 
Modern Engineering 

The technical and professional environment in which a design engineer must 
operate is very different from that of even a few years ago. Technologies have 
advanced rapidly, and current engineering practice features a high level of 
integration of technologies that were once regarded as separate technical 
domains. This means that the designs of many products require skills and 
knowledge that cannot be encompassed by a single individual, or even a 
small group of individuals. Engineering design has become a team activity. 

Communication has become one of the most important elements of the 
design process. This is ironic because engineering has traditionally been 
regarded as an appropriate career for those who are mathematically gifted 
but who score poorly in communication subjects. Traditionally, design engi
neers communicated their designs to manufacturers graphically by sets of 
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working drawings. Verbal communication was limited to writing specifica
tions and part lists. The complete inadequacy of this mode of operation has 
become abundantly clear. Not only is it essential for engineers from different 
technical domains to communicate freely throughout the design process, but 
it is necessary that communication with the manufacturers be bidirectional 
and take place throughout the design process. Communication with other 
members of the organization, particularly those who will be responsible for 
selling and servicing the product, is equally vital. 

The impact of the social environment is also important. A feeling has 
developed in society that technology must be controlled. Regulations im
posed on industries are society's attempt to achieve control. At the same 
time, tort litigation against manufacturing industries has had a great impact 
on the economics of those industries. This has created an increasingly com
plex legal and regulatory environment within which the design team must 
operate. It mandates effective communication between the designers and the 
legal and regulatory experts. 

At the same time, competitive pressures are impelling companies continu
ally to seek to shorten product cycle times. It is no longer possible to wait 
until one stage of the design process is completed before starting the next. As 
far as possible, design and manufacturing processes must proceed in parallel. 
Considerable ingenuity is involved in designing process plans to accomplish 
projects in a highly parallel fashion when parts of the project are dependent 
on information developed in other parts of the company. Sometimes risks 
are taken and design features and ranges of values of specifications are 
assumed in order to allow progress in other areas before those features have, 
in fact, been developed. 

All of the above impacts the engineering design process and the designers 
who perform the process. Careful planning of the process has become essen
tial. Experience has shown that time spent in planning the process is a very 
good investment, even though that time subtracts from the time available to 
actually execute the design. A much more structured process than in the past 
becomes a necessity because of the time pressure and the large number of 
interactions to be managed. Protocols are needed to ensure that the neces
sary communication with experts in other departments as diverse as mar
keting, warranty service, and legal affairs actually occurs. Modem compu
tational tools can greatly facilitate the process, but they also have their 
limitations and they can be misapplied or misused by those who do not 
thoroughly understand them. 

As teachers and academic researchers in engineering design, we face sub
stantial challenges. These challenges include understanding the changing 
design process as it is practiced in industry and proposing improvements and 
developing tools to enhance its effectiveness. The challenges also include the 
preparation of engineering graduates to operate in this environment. 

It is unrealistic to suppose that a four-year curriculum alone can equip 
anyone to be a professional engineer in today's industrial environment. Ex-
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perience has always been a necessary component of the designer's makeup, 
and is even more necessary in the diverse technical and social environment of 
the global marketplace. While cooperative education or internship experi
ences are to be encouraged to provide some awareness of the industrial 
environment, these experiences fall far short of the level of practice and 
accomplishment needed to produce a fully productive engineering designer. 

In this light, the challenge is to determine how much design experience 
should be in an engineering curriculum, and how should that component 
be structured. There will always be pressure from the engineering science 
courses that compete for curriculum time. What is the relative value of 
time spent on design experiences early in the curriculum as opposed to time 
spent in the senior year when most engineering science courses have been 
completed? To what extent should small design projects be distributed 
throughout engineering science courses as opposed to concentrating syn
thetic activity in a capstone experience? 

In the American Society of Mechanical Engineers Publication Innovations 
in Engineering Design Education, Fisher et al. (1993) have written a white 
paper entitled, "Design Methodologies and New Paradigms for Design." In 
this paper the authors claim that "in our rush to reinstate design as a legiti
mate engineering activity we have often confused the process or methodology 
with its tools." The tools are different from the methodologies. There are 
many common elements in various design methodologies used in practice 
today, such as Quality Function Deployment (QFD), Pugh's Total Design, 
Taguchi's robust design, and Pahl and Beitz's prescriptive design methodol
ogies. It is important that practitioners be familiar with these design 
methodologies. 

Any design methodology is a prescribed sequence of actions, and it is 
important to know in what context a given methodology is applicable and 
for what problem types it is useful. It is important to understand that design 
is more than functional design. It is a part of an overall product realization 
process. 

Book Organization 

In this volume we have collected current contributions from many of the 
leading figures of the academic engineering design field. These contributions 
include discussions of design methodology, design practice, computational 
tools and assistants, and design education. The information contained in the 
chapters that follow will provide the reader with current research results 
relating to both product and process issues. Each chapter is complete and 
self-contained. The reader can choose the material in any sequence desired. 
The information will be useful to educators and practitioners alike in un
derstanding the entire product realization process and the tools that are 
available for creating quality products. 
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This volume is unique for it contains discussion of both "soft," people
oriented issues and "hard" development of the tools and techniques neces
sary for making group decisions. The first five chapters are concerned with 
process study. Chapter 2 provides information on how the designer's level of 
expertise affects the design process and the resulting designs. Chapters 3, 4, 
and 5 discuss the methods used for studying the design process. Several 
process characterization models for single designers and groups of designers 
are discussed. Chapters 6, 7, and 8 then explore the representation of design 
knowledge, decision support systems for catalog designs, and group decision 
making with concern for information flow and its errors. Chapters 9 and 10 
discus routine design and comparative analysis techniques for engineering 
design. Data representation models for group design activity are the topic of 
Chapter 11. In Chapter 12 analogical reasoning is discussed. Chapter 13, on 
entropy measures, is unique as it provides the concept of an energy balance 
principle that can provide a universal measure for efficiency of design solu
tions and methods. The demand that the new knowledge available for design 
methodology places on design education is discussed in Chapter 14. In Chap
ter 15 designing for the entire life cycle of the product from manufacture to 
retirement is discussed. The overall value of the information from several 
persons, as is the case in concurrent design, can be computed through com
patibility measures. In Chapter 16 a workflow management tool that facili
tates timely information management and decision making in the product 
realization process is discussed. In Chapter 17 total quality improvement 
principles applied to product design are discussed. 

Reference 
Fisher, C. A. et al. "Design Methodologies and New Paradigms for Design." In 

Innovations in Engineering Design Education. New York: American Society of 
Mechanical Engineers, 1993. pp. 81-84. 
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2 
The Influence of the Designer's 
Expertise on the Design Process 

MANJULA B. WALDRON AND KENNETH J. WALDRON 

Abstract. Designers bring their prior experience and expertise to the design 
process whenever they read drawings, draw, or design or when they observe. 
It is for this reason that one cannot separate the process from the expertise 
of the designer. What is designed is integrally tied to the designer. The 
question then arises: "Are there notable differences between experienced and 
not-so-experienced designers, and if there are, what form do they take?" In 
this chapter we summarize our previous work on identifying the differences 
between the approaches of designers with different levels of expertise. These 
include the differences in recall of drawings, in reasoning about motion, in 
reasoning about drawings, and in designing. We present the implications of 
this work on the design process. 

Introduction 

There is a widely accepted conjecture that visualization is an important 
component of the conceptual mechanical design process and that humans 
need to visually interpret drawings and blueprints in order to recognize 
features and to evaluate designs for manufacturability (Luby, Dixon, & 
Simmons, 1986). The impact of experience with mechanical design on the 
speed and accuracy of recognizing and identifying appropriate design func
tions, features, and other factors that contribute to the interpretation of the 
drawings has not been studied exhaustively. The papers summarized in this 
chapter examine the manner in which experienced and inexperienced me
chanical designers differ in the utilization, reasoning, and abstraction of 
information about mechanical design. Before we discuss these papers it is 
pertinent to examine the nature of expertise as reported in the literature. 

The differences between experts and novices within a variety of knowledge 
domains have been reported. Experts solve problems in their domains more 
quickly and accurately than novices (Newell & Simon, 1972). The reasons for 
this are that experts have more extensive knowledge, and they have a repre
sentation of the domain in their memory. They construct an abstract and 

5 



www.manaraa.com

6 Manjula B. Waldron and Kenneth J. Waldron 

organized representation of the knowledge domain, which allows them to 
make inferences about component relations. Early studies suggested that 
the information units formed by experts correspond to abstract functional 
relations between items. For example, Chase and Simon (1973), found that 
the information units (i.e., chunks) formed by expert chess players corre
spond to abstract structures, such as attack and defense relations on the 
board. Novices do not exhibit this structure in their recall. By examining 
engineering graphics drawings, Cooper (1983) found that spatial informa
tion representation is sensitive to changes in information processing de
mands and levels of expertise in problem-solving skills. Adelson (1981) con
cludes that experts develop cognitive structures based on abstract functional 
principles of their area of expertise. These structures guide perception and 
recall of material in their domain. One implication of the difference in knowl
edge representation between experts and novices is that experts can process 
information from their domain more efficiently than novices. However, if 
experts perform a task that is incompatible with the underlying structure of 
their memory representation, performance deteriorates. For programmers, 
Adelson (1984) found that expert performance was superior when the ques
tions asked were functional in nature, but novice performance was better 
when the questions focused on the concrete knowledge of the code itself. 

Simulation is important in the development of mechanical designers' abil
ity to engage in visual and spatial reasoning. For human designers, recog
nizing the functioning of a device may involve mental models of the device. 
Hegarty, Just, & Morrison (1988) asked subjects to judge which of two 
pulley systems required more force to lift a weight. In the series of problems, 
the alternative pulleys differed in mechanical advantage along one or more 
dimensions (e.g., number of load-bearing ropes). The researchers collected 
the subjects' verbal protocols and the number of accurate responses during 
task performance. The subjects in this experiment employed different mental 
models to determine the mechanical advantages of the pulley systems. Low
scoring subjects considered all relevant attributes and had no preference 
among the rules for the mechanical device, whereas high-scoring subjects 
used rules for judgment based on the configuration of the device and pre
ferred rules based on determining attributes. While they did not relate their 
studies to the expertise of the subjects, they did establish that the accuracy 
of identifying mechanical device functioning depends on noticing relevant 
features and on the mental model used to simulate the device operation. 
Clearly, one would expect that experience within the domain should facili
tate this process. Formal course work, as well as actual design experience, 
should augment a person's ability to engage in mental simulation of a device. 

This chapter is organized to first present the visual recall differences, and 
differences in reasoning about motion of mechanical devices and mechanical 
engineering drawings, between experts and novices. We also look at the 
differences in their ability to form mental models and to design conceptually. 
Finally, a discussion on the implications for the design process is given. 
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Visual Recall Differences 

The purpose of the research summarized in this section was to look at 
short-term recall differences between expert and novice mechanical designers 
when they were viewing mechanical engineering drawings. These differences 
were studied by tracking the errors they made while copying the drawings 
from memory, and the number of times they needed to reference the draw
ings when engaged in this task. By analyzing their video protocols, as they 
performed the tasks, we were also able to track their recall strategies. Por
tions of the work reported in this section were presented earlier in a confer
ence paper by Waldron et al. (1987). 

Method 

The format of the study was as follows: six mechanical engineering drawings 
were presented to three groups of six subjects in each group. The subjects in 
the first group were engineering professionals considered by their peers to be 
expert mechanical designers. The subjects in the second group were consid
ered to be semiexperts. This group largely consisted of graduate students in 
mechanical design. The third group consisted of engineering students who 
had had a one quarter duration course in engineering graphics. This group 
was considered to be novices in terms of engineering design experience. The 
six drawings that were chosen spanned a range of detail and complexity so as 
to be sufficiently challenging to subjects with different levels of experience. 
The level of complexity of each drawing was judged by an experienced 
mechanical designer. He determined that the drawing number 1 was the 
simplest, drawing numbers 2 and 3 were a level more complex, and drawing 
numbers 4, 5 and 6 were the most complex. 

Subjects were asked to look at a drawing and to reproduce it from memory 
on a sheet of paper. They were also requested to name the part and to think 
aloud while completing the task. The total number of references to the 
drawing, and the average time between references were recorded. Further
more, a detailed study of the first reference to the drawing was made by 
retaining a carbon copy of the work done up to that point. Subjects were not 
allowed to erase. Rather they used a different colored pencil after each 
viewing. The order of the colors was the same for each subject. Thus, a 
record of the number and types of errors made could be recorded. A verbal 
description of the think-aloud work, by each subject, was also recorded. 

Results and Discussions 

Three-way analyses of variance (ANOV A) against group and drawing num
bers were performed on the following measures: total duration of references, 
duration of the drawing period after the first reference, number of errors 
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made, number of references, drawing duration, duration of the longest refer
ence, and duration of the longest drawing period. Significant overall differ
ences among the groups were found. Overall, the expert group displayed the 
best performance as was to be expected. This was also evidenced by their per
formance and by the significant group main effect differences in the analysis. 

The drawing times increased with the assessed complexity. In both the 
most complex and the simplest drawings, the mean number of references of 
the experts was significantly lower than that of the other groups. Further
more, the mean reference time was also lower; that is, they needed signifi
cantly less time for the information to be available to them for recall. The 
mean duration of the drawing time after the first reference showed that .the 
expert designers consistently drew for a longer period before referring to the 
original drawing than the novice designers. There was a continual increase 
from novice to semiexpert to expert for each drawing. This suggests that 
information specification and utilization are directly related to the level of 
expertise of the designers. In both the simplest and the most complicated 
drawings, the ratio of the drawing durations of the experts to those of the 
novices was roughly 2 : I. 

The number of errors made by the subjects was significantly lower for the 
experts than for the novice subjects. The ratio was again I : 2. If one takes 
errors to imply a misutilization or misordering of visual information, then 
this, again, suggests an order in the organization of the visual information 
that is dependent on the experience of the designer; that is, the more experi
enced the designer, the better is his/her organization of the visual informa
tion, leading to fewer errors. The experts made significantly fewer references 
to the original than the novice subjects. The ratio between the number of 
references made by the novice subjects to that of the experts, was once again, 
roughly 2 : I for the simplest and the most complex drawings. This suggests 
a higher level of "chunking" of information during the information pickup and 
maintenance by the experts when compared with the novice designers. 

The names assigned to the parts by the subjects were scored by an expert 
mechanical designer on a 3-point scale: 0 = incorrect, I = partially correct, 
and 2 = totally correct. One-way analyses of variance were performed to test 
for significant differences among groups in accuracy of naming the drawings. 
Significant differences were found between the groups for the mean score for 
all drawings as well as their overall group score. The mean, overall group 
score for novice subjects was 0.2, for semiexperts it was 1.0, and for experts 
it was 1.5. This is shown in Figure 2.1; that is, the experts named the 
drawings significantly more correctly than the other groups. As is to be 
expected, naming of the parts is directly dependent on the domain knowl
edge, which would explain the performance gradient from novice to expert. 
This suggests that the expert designers carry with them a large symbolic
visual associative knowledge that assists them in information pickup, main
tenance, and utilization of this knowledge. 

One of the problems in using the verbal protocol was that the expert 
designers chose to use fewer verbal utterances in their protocols, but drew 
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FIGURE 2.1. Mean correctness rating of names assigned by the subjects of each 
group by drawing number and the overall drawings. 

more than the novice subjects, despite the experimenter's prompting. As one 
expert put it, "It is not easy to draw and talk at the same time, which would 
you prefer we do?" 

The results of this study support the original hypothesis that the efficiency 
of information handling by mechanical designers is dependent on their level 
of expertise in design. Both reference times and drawing durations support 
this. Furthermore, higher-order information is dealt with at a higher sym
bolic level by experts than by novice designers. The latter seem to focus more 
on lines and sizes, whereas experts focus on features, resulting in fewer 
errors, fewer references to the original, and longer drawing duration between 
references. That is, as experience in mechanical engineering design increased, 
the efficiency of copying and naming the drawings also increased. 
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Differences in Reasoning About Motion 

In this experiment, subjects with fo:ur levels of relevant experience attempted 
to judge whether an animated mechanical device corresponds to a static 
presentation of another mechanical device. In each problem, the animated 
and static devices presented either were or were not the same device. Both the 
static and animated devices were presented on the computer screen at the 
same time, using the same scale for representation. One would expect expert 
mechanical engineers to more accurately identify the correspondence be
tween mechanical devices and their operation. That is, compared to novices, 
experts should more frequently indicate that the two devices match when the 
devices are the same, and should more frequently indicate that the two 
devices do not match when the devices are different. In addition, during 
perception they should attend more to functional features of the mechanical 
devices than novices. This section is a summary of an unpublished manu
script by Waldron and Herren (1994). 

Method 
The format of the experiment was as follows: 

Three different types of device representing different principles of opera
tion-rotation, oscillation, and push rods-were presented to each of the 
subjects. There were four devices of each type. Each of the devices differed 
from the others in its direction and/or its speed of motion. Figure 2.2 shows 
a schematic representation of one such device. For example, in rotational 
devices, the output wheel turned in the same direction as the input device, 
but at a slower or faster speed, or in the opposite direction to the input at a 
slower or faster speed. Similarly for oscillating and push rod devices. 

On each trial, an animated device, with its internal mechanisms hidden, 
appeared on the left side of a computer screen. On the right-hand side of the 
screen a static device, with its internal mechanism visible, was shown. The 
subjects had to decide whether or not the two devices were identical. Thus, 
chance level was at 50%. The computer recorded two performance variables 
on each trial: ( 1) the response scored as correct or incorrect and (2) the 
reaction time from the appearance of the problem on the screen to the 
initiation of a choice response. The design was a 4 (subject category) x 2 
(problem set-first versus second set) x 3 (device type-rotating, oscillat
ing, and push rod) x 2 (problem type-match versus nonmatch) x 12 (de
vices, four nested within each device type) mixed factorial. Subjects com
pleted a total of 144 trials during the experiment. 

Forty-four males with four levels of mechanical engineering experience 
participated in the study. Group 0 consisted of 11 undergraduate students 
with no engineering background, Group 1 contained 15 undergraduate engi
neering majors, Group 2 consisted of 9 graduate students in mechanical 
engineering, and Group 3 had 9 expert professional mechanical designers. 
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(A) 

(C) 

FIGURE 2.2. (A) Push-rod device; (B) rotary device; (C) osciliatory device. 

Results and Discussions 

Accuracy 

The regression analysis was performed with the subject percent correct score 
as the dependent variable. An inspection of type III sums of squares revealed 
that all main effects were significant (p < 0.0001). More important, for the 
subject categories, the overall accuracy for all device types increased linearly 
from 56% correct for novice subjects to 76% correct for the experts, as is 
shown in Figure 2.3. This confirms the prediction that as expertise increases 
so does the ability to indicate accurately whether the static device is the same 
as the animated device. Furthermore, it was found that rotating devices were 
easiest (80% correct), oscillating devices were of intermediate difficulty (63% 
correct), and push rods were the most difficult (55% correct). This effect may 

be due to the relative frequency of use of the device types in natural settings 
(i.e., rotating devices are more frequently employed in mechanisms than 

either oscillating members or push-rod devices). Nonmatching problems 

were more difficult (60% correct) than matching problems (73% correct). 

The subject category by device indicated that undergraduate and graduate 
mechanical engineering students performed equally well on oscillating de
vices. However, in the other two device categories, accuracy increased mono

tonically with increasing expertise. 
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FIGURE 2.3. Accuracy by subject category. 

Expert 

Reaction times averaged 16.75 s overall, which is relatively long, indicating 
that the subjects took the task seriously and that the task was reasonably 
difficult. All main effects in the regression analysis were significant. The 
reaction time increased from novices to graduate students, but dropped off 
somewhat for experts. This can be explained by examining the accuracy and 
reaction time in conjunction. Novices responded more quickly, but nearly at 
chance level (56%) indicating that guessing was used. Experts responded 
more quickly (20 s vs. 22 s) and accurately (76% vs. 69%) than graduate 
students, thereby showing a greater engagement in the process. 

Multidimensional Scaling Analyses 

In order to determine the features of the devices to which members of the 
different subject groups attended in making their judgments, matrices repre
senting dissimilarities among the devices within each device type were en
tered into a nonmetric multidimensional scaling. This technique produces a 
spatial solution representing psychological differences as distances between 
points, where the points represent devices. 

Overall, the multidimensional scaling solutions indicated that subjects 
attend to the relative speed (range of oscillation indicating how quickly the 
device oscillates) and direction of motion of the devices in order to make their 
judgments. In the task used in this study these features were most prominent 
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as indicators of the match between the static and animated devices. The 
subjects discriminated more accurately between devices on the basis of phase 
relations. Correct differentiation between devices because of phase difference 
is correlated with expertise in mechanical engineering. Notice that speed and 
direction are functional, rather than spatial, features of the devices, and thus 
experts should be more sensitive to these features in their judgments than 
novices. This was tested by using regression analysis. For both rotating and 
oscillating devices it was found that the accuracy increased with expertise as 
predicted (means of 46.2, 58.3, 66.6, and 76.9 across levels of expertise), 
indicating that for these device types experts attended more to the relative 
speed (hence function) of the input and output components than novices. 
Whereas, when the difference in the appearance of the internal mechanisms 
was the best indication that two devices differed, the novices performed more 
accurately, thus indicating that they were more attentive to the form of the 
device than experts. 

The level of accuracy in the task is positively correlated with the amount 
of experience with the domain. Not only does accuracy increase as expertise 
increases, but it also increases as a function of device type. The more experi
ence one has with the devices the better one performs. Hence all subjects 
performed better with rotating and oscillatory devices than with push-rod 
devices. The results of this study also shed light on the development of 
expertise. Highly accurate performance on this perceptual task is directly 
related to the amount of mechanical design experience. Subjects with little or 
no experience often resort to what appears to be a guessing strategy for task 
performance. Novice undergraduates only perform better than chance on 
rotating devices. Engineering undergraduates and graduate students perform 
more accurately than chance on both rotating and oscillatory devices, but 
not on push-rod devices. Experts perform better than chance on all devices. 
Experience with mechanical design and mechanical drawings has a direct corre
lation to the skills of visualizing and simulating the internal workings of 2D 
drawings. 

The results of analysis also suggest that experts attend less to the form 
of the device to discriminate than novices. The internal components of the 
third oscillatory device look very different than those of any of the other 
oscillatory devices. Novice undergraduates performed better on judgments 
involving the static version of this device than on any other type of judg
ment. In fact, they performed better than experts on these judgments. While 
novices correctly use the configuration of the internal components of this 
device to differentiate it from other oscillatory devices, they perform more 
poorly than experts, when form information does not discriminate between 
devices. 

The question of how experience influences this task has a complex answer. 
Clearly, none of the subjects had ever been exposed to the specific 2D devices 
included in this task. Experts have examined a wider variety of devices and 
therefore can find an appropriate analogy to the device and use that informa-
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tion to simulate the operation of the device in order to make a judgment. It 
appears that the perceptual units upon which they infer an analog are the 
speed and phase relations of the devices. 

Differences in Reasoning About Drawings 

In this section we discuss the differences in the knowledge and reasoning 
used by designers with different expertise in interpreting mechanical engi
neering drawings. Engineering drawings provide a coded, schematic repre
sentation of a mechanical design. These established codes are intended to 
communicate to others the spatial and functional aspects of the conceived 
design. It is from these drawings that important manufacturing information 
is derived. This interpretation issue was studied by presenting schematic 
drawings to mechanical designers with different levels of expertise. The fol
lowing work is largely drawn from the papers by Waldron et al. (1989) and 
Chovan and Waldron (1990). 

Method 
Thirteen drawings of various mechanical assemblies were used in this study. 
The drawings were presented to the subjects in three forms: (1) the line 
drawing alone; (2) the line drawing with a descriptive title; and (3) the line 
drawing with a descriptive title and a brief written explanation. The drawings 
were carefully selected with different levels of complexity. These drawings 
included several types of couplings, valves, motors, and other mechanisms. 

All13 drawings were presented to subjects in three groups, namely, expert 
(six professional designers), semiexpert (seven graduate students, special
izing in mechanical design) and novice (six undergraduate non-mechanical
engineering students). Verbal reports were collected while the subjects were 
viewing the drawings. The subjects were asked to describe what they saw in 
each drawing, and if they knew the function of the device. Their responses 
were videotaped. Each subject's videotaped protocol was transcribed and 
analyzed for every drawing. Those design features, subassembly functions, 
and overall function of the mechanism represented in the drawings that were 
either included or excluded by the subjects in their responses were tallied by 
drawing for each protocol. Two types of reasoning methods were identified, 
namely, inverse reasoning (where the subject starts by recognizing the overall 
function and, thereby, forming a hypothesis that can be tested by examina
tion of component parts and their functional relationships) and forward 
reasoning (where the subject starts by recognizing one or more components 
and proceeds by reasoning about the formal or functional relationships of 
the components, thereby deducing the function). The identification was 
taken to be correct if the subject explicitly or implicitly identified the compo
nents and an overall function that was similar to the one intended as iden
tified by the title and description. 
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Results and Discussion 

Analysis of variance showed significant differences (p < 0.0001) between the 
groups with the mean recognition rates being 67% for experts, 47% for 
semiexperts, and 8% for the novice subjects. There were significant differ
ences in the reasoning methods used (p < 0.0001) with inverse reasoning 
used by experts 75% of the time, by graduate students 33% of the time, and 
by novice subjects only 27% of the time. This is shown in Figure 2.4. All 
subjects were more successful at recognition when they used inverse rea
soning. Furthermore, experts used all the component functions and sub
functions present in the diagram in their verbal reasoning, whereas novice 
subjects used few or none. Experts initially perceived the overall function, 
semiexperts perceived the features in the drawing, whereas the novice fo
cused on the geometry of the drawing. 

Each diagram was analyzed to enumerate all the functions and subfunc
tions used by each subject to further their reasoning, and the energy sources 
used were identified. The results were subjected to discriminant function 
analysis to uncover by which aspects (function, subfunction, reasoning, de
sign feature, etc.) the groups could be distinguished. We were thus able to 
identify the variables that contributed significantly to the distinction between 
the groups. We were able to establish, through this analysis, that for those 
drawings that represented devices more likely to have been experienced by 
the subjects, including functions such as valves and differentials, the semi
experts behaved more like the experts. They used inverse reasoning and the 
functions and the subfunctions in their analysis. For the drawings of less
often-encountered functions, such as cams, special couplings, and a spring 

Recognition Rate ("'o) 

a b c 
Drawing type Fig. only Fig. with label And with explanation 

Experts 67 80 85 
Graduates 47 54 62 
Novices 8 38 58 

p = 0.0001 

Inverse Reasoning 
Experts Graduates Novices 

Use rate(%) 75 33 27 
Success rate(%) 80 50 21 

Forward Reasoning 
Experts Graduates Novices 

Use rate(%) 25 67 73 
Success rate(%) 30 25 6 

p = 0.0001 

FIGURE 2.4. Recognition rate and the reasoning types for the three groups. 



www.manaraa.com

16 Manjula B. Waldron and Kenneth J. Waldron 

motor razor, the semiexperts behaved more like the novice subjects. When
ever reasoning was a significant contributing factor, the experts always used 
backward reasoning, whereas the other groups did not. This study strongly 
suggests that the meaning of the drawing varies significantly with the design 
experience of the subject. To the experienced designer, the drawing indicates 
its intended function but not to the inexperienced person. The function is 
recalled when the drawing is viewed, suggesting that memory is organized to 
retain the function in association with the drawing. Inverse reasoning sug
gests efficiency of storage. 

Differences in Designing 

The purpose of this study was to perform a systematic study of designers 
with different expertise engaged in a robotic manipulator arm design activity. 
Based on the analysis, it was proposed that the expertise of the designer can 
be decomposed into a knowledge (knowing) and a skill component (doing). 
The skill is responsible for providing the designers with a feel for their design 
and is used extensively in error checking. This section forms a summary of 
the paper by Waldron (1988). 

Method 

A descriptive statement of a problem requiring subjects to design an indus
trial robot manipulator arm was provided to subjects. They were asked to 
carry out the design and to give verbal explanations while they designed. The 
depositional method (Chapter 3) was used for data collection. The designers 
were videotaped while they designed and talked about their designs thus 
providing information about the design process they followed. No time limit 
was set for the task. Subjects were free to take as long as they wished. The 
subjects consisted of eight male designers with different levels of experience 
designing manipulator arms. Five had more than 10 years of industrial 
experience; two of the five had recently designed a similar manipulator. 
Three subjects had less than 2 years of experience, and one of these had no 
practical experience. 

The videotaped design protocol was transcribed. The utterances, gestures, 
and the items the designers used during design were annotated. From this we 
attempted to answer the question, how does the designer perceive what is 
required of himjher? 

Results and Discussions 

The data analysis showed that the experienced designers relied more on 
commercial catalogs, whereas the inexperienced designers relied on texts 
and handbooks. Recency of designing similar objects decreased the initial 
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problem set-up time considerably (75% in fact). All designers attempted to 
find the total peak torque requirement-a principle taught in robot design 
courses. The average time for obtaining the torque values was 6.8 s for 
experienced designers, which was significantly different from 48.3 s for the 
less experienced designers. This difference was largely due to the simplifying 
heuristics employed by the experts to arrive at static and dynamic torque. 

The experienced designers bring to the design heuristics that are based on 
seemingly "simple," yet powerful, analytical models in the early stages of 
concept development to set basic parameters and make configurational deci
sions. The more experienced the designer, the "simpler" is the model he used. 
This supports the earlier observations of Waldron and Waldron (1988) that 
the inexperienced designers have difficulty in applying the appropriate ana
lytical model to the design in the conceptual stage. 

Furthermore, all designers but one (who had no practical experience) 
spread their work out on the table and referred to it spatially while working. 

Experience lends itself to opportunistic behavior in which the designers 
were willing to commit to a procedure and patch if they ran into difficulty. 
The less experienced designers relied on a systematic textbook approach that 
required major changes in the procedures when difficulties were encountered. 
Designers with practical experience tended to set design time as a major 
design constraint, and physical analogs were important to them when con
ceptualizing a solution. 

Implications for the Design Process 

In Developing CAD Tools 
The results summarized above strongly indicate that the interpretation, and 
the manner of interpretation, of the drawings vary significantly with design 
experience. Hence, drawings carry more than structural information to the 
experienced designer. If the hypothesis that engineering drawings are the 
most common mode of communication of information between the design 
and manufacturing communities is accepted, then this study indicates that 
any intelligent computer-aided design (CAD) system that stores the design
er's drawings must also carry with it some information about the level of the 
designer's experience as well as the functional decomposition and function in 
order to structure mapping of the particular design. CAD systems that adapt 
to the expertise of the designers may thereby be of use to both experienced 
and inexperienced designers. 

In designing CAD tools, it is important to keep in mind the visual-spatial 
orientation of designers by providing them with spatial as well as sequential 
access to their designs. Since the initial interpretation is important in deter
mining how quickly and well the designs will get done, it is important that 
the design heuristics of very experienced designers, in as wide a variety of 



www.manaraa.com

18 Manjula B. Waldron and Kenneth J. Waldron 

design situations as possible, be archived in order for successive design times 
to be reduced and the quality of the designs improved. 

Such smart CAD tools could carry out routine computation for designs of 
devices with which the designer is already familiar. These systems would 
have certain functional and subfunction hierarchies as well as subfunction to 
structure mapping, so that the designer can guide the system in functional 
decomposition. Likewise, such decompositions can provide large relational 
databases for searches for new designs to accommodate varying degrees of 
expertise possessed by designers. These systems would be of great benefit in 
teaching design. The design students could gain experience in designing by 
experiencing different designs. 

In Education 

The above studies indicate a strong correlation between the designers' expe
rience and the information to which they attend, and how they reason about 
this information. The results presented above have implications for educa
tion and research. Since the efficiency of information handling by mechanical 
designers is dependent on their level of expertise, these types of perceptual 
tasks potentially could be used to evaluate the adequacy of an educational 
curriculum. A perceptual task could be used to identify skill within a design 
domain. Visual-spatial recognition and reasoning skills are very valuable 
skills for designers. The above studies link these skills to the designer's 
experience in designing. Currently, no college or professional entry examina
tion tests these skills. Exams presently used exclusively test analytical and 
verbal comprehension and reasoning. While these skills are important, the 
above studies show conclusively that design potential and ability are highly 
related to visual-spatial perception. This important skill is ignored both in 
curriculum development and in testing. 

Design is learned by designing. No verbal or analytical presentation by 
itself can teach the perceptual skills necessary to design. Apprentice mechani
cal designers need to attempt and encounter a wide variety of designs in 
order to increase their knowledge of artifacts and to enhance their visual
spatial skill. Experienced designers combine appropriate analogies of previ
ously encountered designs and simulation to obtain new designs. Inexperi
enced designers need to increase their repertoire. The adaptive CAD system 
proposed could provide the information for an intelligent CAD instructional 
system, which could be used by design education programs to enhance de
sign education. 

In Industry 

Designers are visually and spatially oriented and like to be able to review their 
work as they proceed through their design. The procedural sequence per se 
is not of great significance, but the results obtained are. Time is an important 
parameter through which designers organize and plan their design process. 
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The experience in a particular type of design has a direct impact upon 
reducing the time used to set up the initial analytical model to be used. The 
experience is further directly related to the sophistication of the model, which 
manifests itself in the form of strategic, but physically simple, models, based 
on powerful heuristics. Initially, exact computed numbers are not crucial, 
but a ballpark figure is required to find the class and type of components that 
would be directly applicable. Mechanical designers seem to depend on visual 
and haptic associations (their own arms in the manipulator design example) 
to see if the design will be successful or not. Hence, such simulation tools that 
allow visualization and heuristic computations are necessary for designers, 
and clearly mandated time limits for the design need to be specified. 

In selecting teams to carry out new designs, it is important to include a 
designer experienced in the particular design domain. The intent is that this 
designer will initially establish the heuristic models from which the less ex
perienced designers can work. The availability of product catalogs is very 
important to experienced designers in the conceptual design stage. 
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Methods of Studying 
Mechanical Design 

MANJULA B. WALDRON AND KENNETH J. WALDRON 

Abstract. In this chapter we present different methods used for studying 
mechanical design, including the process of creating designed artifacts. If we 
wish to understand fully the manner in which successful products are created 
and design specifications are converted into information for manufacturing 
and use, then we need to comprehend better the design process that creates 
them. While successful engineering products have been designed for cen
turies, understanding the process of this conversion has only begun. This has 
been largely motivated by a need to create a more efficient process to de
crease time to market, requiring better design tools to assist designers in 
coping with the increasing informational demands placed upon them. The 
methods of study naturally involve interactions with designers or design 
teams, be it through case studies, interviews, or observations. In this chapter 
we survey different methods currently in use to study this process and pro
vide the context in which each method can be used. 

Introduction 

The development of design theories, or the creation of effective tools and 
techniques for design engineers, requires one to examine not only the charac
teristics of the designer but also of the design process that created the de
signed artifacts. One must understand what knowledge is brought to the 
process by the designer, how it is applied, and in what manner the design 
process progresses from initial specifications to the final artifact. Designers 
are an integral part of the process and are the source of information about 
the knowledge and the rules that are applied to arrive at the designed arti
fact. Thus, the output of the study of the design process is information that 
must, of necessity, be obtained from the designers who actually produced the 
design. The goal of this chapter is therefore to discuss the methods in use 
to put the designer in the driver's seat of creating computer-aided design 
(CAD) tools. The chapter does not discuss the techniques or the computer 
tools used for the representation of the designed artifacts. These aspects are 

21 



www.manaraa.com

22 Manjula B. Waldron and Kenneth J. Waldron 

dealt well in other works, for example, Tong and Sriram (1992), Sriram and 
Adey (1987). 

The design process consists of the evolution of the artifact in time includ
ing the plans for manufacture, use, and (oflate) disposition of the artifact. It 
has an initial input in the form of functional descriptions, specifications, etc., 
which form the starting point of any design process. This input may be 
technically vague, in the form of goals rather than specifications, or very 
tightly defined in terms of physical constraints and materials to be used, etc., 
providing very little flexibility of approach. The final product consists of the 
designed artifact that is capable of performing the originally specified func
tions or attaining the stated goals. Everything which occurs between the 
specification and the production of the artifact is then part of the process. 
The development of the design is dependent on physical laws, the environ
ment in which the design must function, the designer's experience in the 
domain, and the collective knowledge of all the persons active in the process. 
In other words the design process takes the required function of the design 
in the environment in which it must work, and transforms it into the form of 
the designed artifact utilizing the knowledge of the designers in the process 
(Waldron, 1989). 

The only successful designers available for study are humans, and a con
siderable part of the information they use is not readily accessible. The study 
of the design process therefore, of necessity, requires some study of human 
behavior. The tools and techniques available for this must be borrowed from 
observational and social psychology. These tools are often subjective and 
require techniques different from those usually encountered by engineering 
students and faculty. Because of this, the study of the design process is 
considered to be more of an art, and traditionally trained engineers may find 
these techniques difficult to accept. However, their acceptance by the artifi
cial intelligence and expert systems communities has provided credibility to 
their application to engineering design. In fact, there is a definite recognition 
that engineering education must move back from engineering science to 
engineering practice, which must include the qualitative methods developed 
by social scientists in addition to the quantitative analysis of physical sci
ences (Vest, 1994). 

There are two basic types of methods used to study the design process: one 
in which the researcher is in control, the other in which the designer is in 
control. The first type includes methods based on interviews. In the second 
type the researcher works with the designer. This type includes process trac
ing methods. 

Process tracing methods allow development of an understanding of the 
problem-solving processes of designers. The procedure is concerned with the 
type of information used and its function in the design process while arriving 
at the design. A representative, or sample design, is studied to obtain infor
mation about the process, so that tools for assisting designers to design more 
efficiently and naturally can be developed (Waldron, 1985). Thus, this meth-
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odology has the potential to allow the consumers (designers) to drive the 
CAD development process in a manner that is natural to them. Examples 
of process tracing methods are protocols, depositions, retrospective studies 
(including case studies), and observational studies. These methods are de
scribed in detail in the following sections. 

Interviews 

The methods discussed in this section are more suited for knowledge elic
itation from experts than for the chronological study of the design process 
per se, because these methods provide information about functional relation
ships and rules, and about the rationale behind different rules, but may not 
provide accurate chronological information about how the design may have 
proceeded. Nevertheless, these are important techniques traditionally used 
to study human behavior and develop case studies and expert systems. We 
feel that it is important to include these techniques. In addition to ensuring 
the historical completeness of this chapter, the interviewing techniques pro
vide a powerful combination when used with protocols, as is noted in the 
discussion of the depositional method. 

Structured interviews have a fixed schedule of questions. Therefore, the 
researcher must first develop an expertise in design and the design process 
through prior review of pertinent literature (Boose, 1989). The questions can 
be closed, open, or probing. Care must be taken to make the questions clear 
and unambiguous and not to make them leading or loaded. The designer 
can also be asked to scale responses. McCracken (1990) found the use of 
unstructured exploratory interviews with experts in the design process to 
be very important in facilitating the process of information gathering. He 
argues that for large projects, a series of interviews, both structured and 
unstructured, may be useful. The researcher must understand the design 
sufficiently to ask relevant questions of the designer. The advantage of this 
method is that the researcher can focus on direct acquisition of the informa
tion of interest to him or her, thus reducing the time needed for data analysis. 
Following preliminary informal study and knowledge gathering, the re
searcher sets up the fact finding interviews (Hart, 1986; Waldron, 1986). The 
interviews are often used in initial sessions with the designer, and are ofthree 
types-descriptive, problem-oriented, or directed. 

Descriptive interviews represent the earliest method and predate the con
venient video recording techniques available today. Initially, the designer 
gives a lecture to familiarize the researcher with the domain. Then the 
designer completes a worksheet describing the important characteristics 
of the design and a step-by-step description (as opposed to a chronologi
cal ordering) of the design process. This method provides only an ideal
ized, textbook form of design and may omit critical strategies for decision 
making. 
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In the problem-oriented interviews, the researcher presents a design prob
lem to the designer and asks a predetermined set of questions at each step of 
design process. These are structured by the researcher to follow a predeter
mined plan of questioning, such as how and why certain decisions were 
made, and verifying the context in which these were made for a given design. 
The structure of knowledge the designer uses can be identified, but it is still 
limited by the researcher's questions. 

In the directed interviews, the interviewing technique depends on the type 
of knowledge representation to be used. The frame representation is a com
mon knowledge representation scheme. Each frame consists of a series of 
slots, each of which represents a standard property or attribute of the ele
ment represented by the frame. A slot is identified by a name associated with 
the attribute. It can have default values specified or can include a range of 
values for the attribute. Each slot can have procedural information attached 
to it, indicating an action to be taken if certain values of the attribute are 
obtained. The researcher creates a set of frames for the knowledge domain 
and presents them to the designer to help fill in the slot values and pro
cedures associated with the information in the slot. In this method, the 
familiarity of the researcher with the domain limits the knowledge that the 
designer provides and critical information may be missed. 

Both of these methods have the advantage of allowing the researcher to 
direct the information acquisition process, so that the data are easy to ana
lyze. However, they are both sensitive to the capabilities and the time avail
ability of the researcher and the designer. These methods are dependent on 
the researcher's grasp of the subject, and may not be a true representation of 
the design process. If the researcher is ill prepared, or does not have good 
communication skills, then the whole study is in jeopardy. While authors 
such as Hart (1986) have provided general guidelines for conducting good 
interviews, descriptive interviews still suffer from being subjective, haphaz
ard, and inefficient. Nevertheless, interviews provide a powerful fact-finding 
tool for obtaining information from designers regarding their reasons for 
taking a particular course. 

Protocol Analysis 

A protocol is defined as a description of the activities (ordered in time) in 
which a subject engages while performing a task. The power of a protocol 
lies in the richness of its data. Even though protocols may be incomplete in 
themselves, they allow an investigator to see the cognitive processes by which 
the task is performed. The manner in which this process is ordered in time 
and the cognitive behaviors exhibited in performing the intended task can 
also be examined (Ericsson and Simon, 1984). There are two types of proto
col methods proposed, namely, verbal or think-aloud protocols and discus
sion protocols. 
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Verbal or Think-Aloud Protocols 
This method is described in great detail by Ericsson and Simon (1984). 
Several researchers have used this method to study engineering design pro
cess (Ullman et al., 1988; Waldron, 1989; Christiaans and Dorst, 1992). In 
this method, the designer is asked to speak aloud while designing. The expert's 
solution process is recorded on an audio- or video-tape recorder. The role of 
the researcher during data collection is to ensure that the designers continue 
to think aloud if they should lapse into silence. Ericsson and Simon (1984) 
suggest several techniques including training for increasing verbalization. 
The researchers are not allowed to interrupt the problem-solving process, 
and should be as unobtrusive as possible. The recorded session is analyzed 
by the researcher for facts and procedural and judgmental knowledge. 

The basic assumptions of protocol analysis are that the subject's behavior 
provides information about his or her design knowledge. Each step observed 
provides information about the task-relevant operators and the knowledge 
available to the subject. The verbal reports are a reflection of the information 
the subject holds in his or her short-term memory, including information 
about the goals and subgoals, and the operators that bring new knowledge 
to the short-term memory. 

The analysis procedures proposed by Ericsson and Simon (1984) include 
transcribing the tapes and the breaking the transcription into meaningful 
episodes or segments. An episode is an aggregate level of problem solving 
introduced by Newell and Simon (1972), while a segment is at a finer level 
and is a statement (Ericsson and Simon, 1984). Each episode or segment is 
coded, with or without a context, to extract the knowledge, relationships and 
reasoning used by designers. The protocol contains words and expressions 
that are indicative of what may be occurring. Coding of the data may be 
done by identifying following types of statements: 

Intentions, goals, or ideas, which can be recognized by verbs such as "must" 
or "have to." 

Cognitions, or the current situation, which are recognized by sentences indi
cating immediacy. 

Planning, or sequences of possibilities are explored and include constructions 
like "If x, then." 

Evaluations, or comparison of alternatives, which are recognized by words 
like "yes," "no," "fine," or expletives. 

For mechanical design, researchers have identified other items such as draw
ings, gestures, simulation, constraints, and process and design decisions 
(Ullman et al., 1987; Waldron et al., 1989). 

The advantage of this method is that the designer guides the design and 
the information collected provides information for a more normal task envi
ronment. The researcher must have acquired some background knowledge 
of design to organize the data into meaningful episodes and relationships. 
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This method of generating and analyzing protocols has the distinct advan
tage of obtaining a designer's solution as it occurs. It helps in the collection 
of information that is accurate and that truly reflects the designer's chrono
logical approach to the design. The researcher can study the protocol and 
arrive at the information structure at leisure. 

This technique nevertheless has disadvantages: Verbalizing knowledge 
during designing may interfere with the task, or it may alter the expert's 
usual approach. Protocol analysis is also difficult and time consuming. 
Analysis requires a theoretical framework and a coding scheme for cate
gories and types of information. The researcher should be skilled in the area 
of protocol analysis. Tracing the entire design process may not be feasible, 
particularly if the expert must think about the solution, and the solution may 
take days or months, as is the case in practical design tasks. 

Discussion Protocols 
Discussion protocols are more commonly used in the analysis of group 
design activity. In this method, two or more designers engage in design 
through discussion. These discussions are recorded for use in analysis. The 
discussion provides the researcher with extra information about the design 
from two perspectives: the decision-making alternatives and the strategies 
for resolution of conflicts during design. The analysis procedures are similar 
to those described above for use in think-aloud protocols. While this method 
has advantages, such as that of obtaining more general and diverse designs, 
it also has disadvantages. The designers discussing the problem may have a 
mutual vocabulary and shared knowledge that may not be verbalized during 
the discussion, and basic information may not surface in the discussion since 
it is assumed in their higher-order understanding. These techniques have 
been used in studying mechanical engineering design by Tang and Leifer 
(Chapter 5) and Nagy et al. (1992). 

Depositional Method 

In some areas, such as the study of conceptual mechanical design, the think
aloud methodology may actively impede the designer's thinking. The de
signer may be literally unable to think and talk at the same time, thereby 
forgetting to verbalize. If the designer forgets to verbalize this information, 
then it is lost in the verbal think-aloud protocol. The researcher's prompting 
may only produce partial information utterances. 

In the depositional method proposed by Waldron (Waldron et al., 1989), 
the best parts of the protocol and interview methods are combined. Here the 
designers still have control of the process, but must provide the researcher 
with a rationale for their actions and describe what they have done at conve
niently chosen intervals. The researcher is free to interrupt if the designers 
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should forget to make their deposition. Thus, the interviews are structured 
by the design activity. At each step in a design the decisions and strategies 
used to arrive at the result are theoretically available. The analysis of the 
depositions (see example below) provides information about the design 
goals, strategies (St) used, process (Pd) and design decisions (Dd) made, the 
actions (A) carried out, the given and/or generated constraints (GC), negoti
ated constraints (NC), and the skills (S), knowledge, and metaknowledge 
(Mk) used. This method was used to acquire conceptual design strategies and 
provided a means to study expert novice differences in conceptual design 
(Waldron and Herren, 1992). 

For example, a depositional protocol from a person designing a robot 
manipulator arm was analyzed. The result of the analysis is shown below. It 
can be seen that a goal is followed by a strategy, which is followed by a 
process decision, which is followed by an action based on skill or knowledge. 
This temporal sequence was observed in the depositions analyzed from seven 
designers of varying degrees of expertise. 

A sample depositional protocol analysis of data from the manipulator arm 
design problem: 

A: Read problem 
Goal 1: Conceptualize the problem 

St: integrate the available information 
Pd: relate text to diagram 

A: look at diagram 
A: reread problem 
A: write DIMENSION-RECALL 

Pd: seek additional information 
Mk: doesn't understand the meaning of outer arm is a square tube 
A: uses diagram to resolve 

Pd: list questions about problem 
S: metal, plastic, or alloy materials possible 
S: mechanical, hydraulic power available 
A: turns back and forth between diagram and description 

Pd: try to figure out where to start 
Mk: mind flips between range of motion, speed it has to operate, and 

actuation and sensing systems 
Mk: not sure what "motion of the joint should be resolved to 2 min of 

arc" means 
GC: BC has to be able to swing 
Mk: doesn't know why elbow joint needs sensing system 
A: looks at diagram 
S: it would seem the sensing system would be allocated at the gripper 

Pd: read problem for info. about sensing system 
A: reads problem 

This technique has the advantage of traditional verbal protocols in that it 
captures detailed information about the designer's strategies and decisions 
and information about the procedures used. It provides information on 
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design histories (sequence of choices and alternatives) and the corresponding 
rationale. In addition, it has the advantage of being able to track designs that 
take place over a period of several days. Furthermore it allows for design
oriented interviews in which the designer can clarify how, when, and why he 
or she made a particular decision. It can capture the strategies the designer 
uses to constrain the design process and information about the contexts of 
design decisions by encouraging the designer to report available alternatives. 
In this way, the researcher may identify decision alternatives that may not be 
verbalized during verbal protocols or discussed in structured interviews, be
cause the designer is not in control and is therefore not actively seeking 
alternatives. 

The disadvantage of the method is similar to that of verbal protocols; that 
is, the large amount of data that must be analyzed. Furthermore, inter
rupting the designer during the design may alter the activity. Rationaliza
tions about decisions or strategies may not be those used originally, since the 
goal of the study is not to document the exact cognition of the designer 
but to capture information about the design process, so this is not a serious 
flaw. Nevertheless, when studying design, the advantage of this method 
in obtaining information that is otherwise unobtainable far outweighs this 
disadvantage. 

Case Studies 

This method is the earliest retrospective method. Case studies of designs 
were compiled by Fuchs at Stanford in the 1970s. These were used to allow 
design students to learn about designs, but were limited in value as far as 
obtaining information about the design process because of a lack of estab
lished analysis techniques. These are more useful for their archival value. 

Case studies such as those by Fuchs were designs that were documented 
and compiled, and are now accessible to the researcher studying the design 
process. They often contain detailed information about final overall design, 
but the process information is sketchy. Likewise, the final selections are 
documented, but seldom do they contain the unsuccessful designs that were 
considered. Finally, exact chronological development of the design is not 
available through the examination of case studies. Hence, the sequence of 
relevant information and how it was used is absent. The researcher can look 
at the case study and analyze it based on the information contained in the 
document about the process. However, this can be ad hoc at best. Because 
case studies were often idiosyncratically documented, it is difficult to develop 
analysis techniques that will apply to all of them. Process observation tech
niques have been more successful in obtaining meaningful information about 
the design process. 

More recently, case studies have employed three types of data sources, 
namely, observations, interviews, and archival documents. Researchers rec-
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ord the design protocol of designers while working, either by videotaping or 
by sitting in on meetings and observing how people interact and taking 
notes. These techniques, although ubiquitous in other domains, have not 
been used extensively in the study of the engineering design process. This 
may be because engineering design research began in the 1980s, when pro
tocol analysis was more in use to develop expert systems. 

In obtaining data for case studies, researchers may conduct face-to-face 
interviews with designers engaged in the design process and other members 
who are relevant to the particular design exercise. In addition, the archival 
data sources, such as catalogs, papers, books, and other sources used during 
the design process, are also gleaned for the information used in developing a 
particular design. Case studies are considered to be an appropriate research 
tool for looking at complex design processes and are therefore considered 
exploratory and descriptive in nature. 

In a complex and long-term design process, case studies allow researchers 
to look at more complex questions and to answer the how and the why of the 
design process, particularly when they have little control over the manner 
in which the design will progress who the players might be, and when the 
designing activity may take place. 

Yin (1989) lists the steps that necessary to carry out a case study. The first 
step is to have a theory that is being tested, and then select a design that 
embodies the theory under scrutiny. Next develop a design data collection 
strategy prior to actually conducting the research. During the research, the 
data are collected via observation, interviews, and archival sources. These 
data are then analyzed using the techniques that are usually employed in 
analyzing such data. Naturally, the data are qualitative, and will usually be 
in a text form, and may contain drawings that were used to describe the design 
to other team members. These may come from field notes collected during 
observations, as well as the transcripts of interviews which may have been 
structured or unstructured, that were obtained from team members involved 
in the design process. The qualitative data analysis techniques are based on 
content analysis (Weber, 1985), and domain analysis (Spradley, 1979). 

A grounded theory is also sometimes used in analyzing data obtained in 
qualitative research (Glaser and Strauss, 1967). This analysis involves ob
taining data categories of context-specific knowledge that are important and 
meaningful to designers involved in the design process, and allowing one to 
obtain relationships between the categories and the data collected through 
an inductive process. These relationships or hypotheses can then be tested 
against new design data, which in turn allows one to refine one's categories 
and hypotheses further. 

Content analysis, on the other hand, allows one to make inferences from 
the data collected through using specialized procedures for processing such 
data. These procedures include partitioning the transcribed data into sets of 
units that can be clustered to define categories. These can then be examined 
to determine if they are indeed mutually exclusive. A coding system can be 
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devised based on a sample of the text that can then be used to code the entire 
transcript. These categories are often devised to explain relationships that 
exist among similar data in the protocol or the transcript. 

Retrospective Method 

In order to overcome the noninteractive nature of case studies and yet capi
talize on the wealth of already completed designs, Waldron and Waldron 
(1988) proposed the retrospective method in which the designers provide a 
detailed record of the design process through recall and reference to written 
records. This approach is similar to case studies, but with the addition of 
chronological information about the design process, and when and how 
major decisions were made. The designers provide the written trace suitably 
coded, showing the major events of the design, including the design decisions 
and completion of subphases, etc., which directly impact the design process. 
These traces properly register the times and indicate the major information 
pathways utilized directly and indirectly to show the factors that influence 
the design process including the environment. The researcher, after review
ing the material, then interacts with the designer to obtain the details of the 
process information. The difference between this and the descriptive inter
view method is the control. In this process the designer is in control and the 
researcher is organizing the information about the process in a manner 
useful for analysis and computer simulation. It does require the researcher to 
learn something about the domain and have good interviewing skills. Since 
the designers are documenting their own solution, the data will be more 
accurate than in the descriptive interview method. 

The advantage of this method over the protocol method is that larger 
problems that take longer time periods to solve can be accommodated. This 
is possible because the real time records can be supplemented by the retro
spective information from the designers or the group leaders who may be 
able to provide chronological records of the process. Good design practice 
includes the use of designer's notebooks containing and documenting all 
written work performed. It is common practice to date each page as it is 
used. The structural elements identified could be used to guide the interpre
tation of individual or group protocols. In content-intensive areas such as 
mechanical design, the interpolation of knowledge and solution may take 
considerable time. The integration of this information is not visible in the 
protocol or depositional methods, but may be identified through retrospec
tive examination. The disadvantage of this method includes loss of memory 
or incomplete written records. The designer may forget to describe some 
aspect of the process or may rationalize it to be unnecessary. The errors and 
dead end paths may not be recounted. The designer may not think it neces
sary to provide small but important details, because these may have been 
negotiated automatically, with little conscious thought by the designer. 
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Waldron and Waldron (1988) used this technique to trace the design 
process of a complex design project (the Adaptive Suspension Vehicle). 
Using this technique they were able to identify complex decision making and 
information structures. 

Process Observation 

In this method, the researcher observes the designer(s) engaged in designing 
with no interference to the normal activities. He or she simply records all the 
interactions relating to the design. This technique provides information not 
obtained by other techniques, such as each person's role in the design pro
cess. The method is very useful in large industrial settings where multiple 
persons are involved in the design process. The researcher can set up a 
context for each decision and create partitioned knowledge bases for individ
ual designers. This method may help to see how these designers interact to 
make decisions and solve problems. 

This technique is obviously an extremely time-consuming method of pro
cess information elicitation. The transcripts require extensive analysis to 
glean useful information. In addition, it is a more intrusive technique, since 
the designer's conversation and movements related to the design must be 
recorded at all times, by either the researcher or the designer. This adds 
an element of uncertainty and may make consent harder to get from the 
designers. 

Hales (1987) used this technique to study the design of a system for evalua
tion of materials in a coal gassification environment. He observed the project 
for 2.8 years. He recorded 1373 interchanges from 37 people covering 2368 h 
of work effort with resolution down to 0.1 h. His field data consisted of 76 h 
of audio tapes, 1180 pages of diary notes, 116 weekly notes, and 6 design 
reports. He reduced these data by color coding the notes according to the 
participants. These were entered into a computer database for analysis by 
indexing, sorting, and grouping of information. He found that the obvious 
problem in objective analysis was that many of the human exchanges do not 
lend themselves to objective analysis other than for time and work effort. For 
this reason he added the notion of context to his work effort data. By context 
he meant what the work was, with whom, where and when it was done, and 
the techniques and the tools that were used at that time. He was thus able to 
track the project costs with the number of persons involved, and was able to 
identify the types of activities carried out in addition to designing, such as 
planning, social contact, information retrieval, reviewing, helping others, 
etc., and the percent of times these were done. He identified communicating 
techniques to be important and found that the "mood" of the designer 
contributed to the design process. This method allowed him to represent this 
design process in the context of environment, marketing, management, and 
the project. He found an iterative relationship among these. 
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Waldron and Brooks (1994) used the sense-making methodology pro
posed by Dervin (1989, 1992) to analyze data obtained from a collaborative, 
concurrent group design through process observation techniques. They tran
scribed the observational protocols and partitioned the design process into a 
series of situations about which the designers were trying to obtain informa
tion from each other. They used a two-step coding scheme to identify inter
and intragroup information exchanges among designers. The sense-making 
methodology allows one to identify situations in which the designers were 
stopped, that is, faced a gap and sought resources or help in order to pro
ceed. This analysis allowed them to trace the inter- and intragroup gaps, 
help, and decisions made. The results showed an underlying structure to the 
basic information exchange in the design process. The gaps faced were much 
larger than the help received, which were much larger than the decisions 
made by the groups. 

Conclusions 

In this chapter we have described a number of methods that can be and have 
been used in the study of the design process. Because of the nature of the 
study of the human behavior, analysis of the data collected follows a general 
description rather than a prescription. There are general analysis techniques, 
but the data in each situation will need to be partitioned in an ad hoc 
manner, reducing their scientific validity. However, they provide informa
tion about the design process that is not available by any other means. 

Protocol analysis is the most commonly reported technique in the litera
ture reporting the study of the design process. However each researcher has 
had to adapt the analysis technique proposed by Ericsson and Simon (1984) 
somewhat, because of the audio-visual nature of the data to be collected. 
However, the data collection procedure was followed as originally proposed. 
The depositional method was a further modification to obtain strategic 
knowledge from the designers. This method allows better collection of the 
decision-making process. In order to study large cooperative design projects, 
the retrospective and process observation techniques may be of use. 
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4 
Design Characterizations 

MANJULA B. WALDRON AND KENNETH J. WALDRON 

Abstract. In this chapter we present a discussion of engineering design and 
the differences between the design as an artifact and the design as an activity. 
Hence, different taxonomies of design, as well as different models of the 
design process, are discussed. Furthermore, their relationships to intelligent 
computer-aided design are also discussed. The purpose of this chapter is 
to present different facets of design characterization as discussed in the 
literature. 

Introduction 

In characterizing mechanical design it is important to make a distinction 
between what the designers create, that is, the designed artifact, and the 
design process. The design process can be viewed as a sequence of steps, such 
as clarification of the specifications and the environment in which the design 
will function, understanding the behavior, and establishing the operational 
constraints, including manufacture, servicing, marketability, usability, and 
disposability. Or the design process may be viewed as creating conceptual 
design for the artifact, testing and evaluating the designed artifact, and, 
based on the results, refining and optimizing the design, until some satisfying 
criteria is reached. 

The models of these processes can be created from a theory, or a set of 
axioms, or can be based on observations. One could define the designer as 
"somebody who creates something that will be used (practically) by others"; 
that is, the designer is concerned with how things ought to be in order to 
attain certain goals and functionality. The designer is an integral part of the 
design process, and the artifact to a large extent depends on the designer. 
Designers may work by themselves or in groups. The designs may be totally 
new, that is, created from scratch, or, as is more usually the case, they may 
be an improvement on the performance of or the modification of existing 
artifacts. 

35 
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Today's designer faces the challenge of integrating information from many 
domains. There is increasing need for designers to consider the life-cycle 
issues during design. This requires that they have information available on 
the knowledge and the methods used in diverse fields. In order to transfer 
knowledge, so that units from different domains can access it, one needs a 
consistent model along which such knowledge can be transferred and the 
appropriate methods that can be applied in a timely fashion. These models 
should be capable of collective learning so that the information gained from 
one design process can be used again during successive design processes. The 
models through their predictive powers enable the units engaged in the 
design process to foresee problems that may arise from different possible 
candidate designs. In Chapter 15, Ishii discusses this aspect in greater detail. 

In this chapter we describe engineering design and the classification of 
mechanical design, and then present characterizations of the design process 
by different researchers. 

Engineering Design 

Dym and Levitt (1991) define engineering design as a "systematic, intelligent 
generation and evaluation of specifications for artifacts whose form and 
function achieve stated objectives and satisfy stated constraints." Dym 
(1994) states this definition incorporates many assumptions such as that the 
designed representations include form and function and can be translated 
from these representations into a set of fabrication specifications for the 
production of the designed artifact. The problem-solving, design, and/or 
fabrication process incorporates the evaluation criteria for design. 
· The process of designing is different from the design as a product (artifact). 
The process is something that depends heavily on time and the units involved 
in creating the artifact, whereas the artifact may or may not depend on time. 
The process has an initial input in the form of functional descriptions and 
specifications, however vague, that form the starting point of any design 
process. The final output consists of the designed artifact, which is capable 
of performing the initial specified functions or attaining the stated goals. 
Everything in the middle is then the process that is dependent on the physical 
laws, the environment in which the design must function, the designer's 
experience in the domain, and the collective knowledge of all the persons 
engaged in the design process. 

The artifact can be simple or complex. A simple artifact stands alone, and 
may have relatively simple geometry. A complex artifact may have complex 
geometry or it may consist of assemblies, which may in turn consist of simple 
artifacts. Thus, one could describe artifacts through enumerated strings and 
an associated grammar (Fitzhom, 1989). 

A design process has an underlying direction; it is more than trial and 
error. During design the designer formulates an idea, compares it to com-
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peting ideas, or tests for constraint satisfaction. Based on the evaluations, 
new ideas may be generated and the designer learns about the design situa
tion, which will be actively used in the next design process. Any model of the 
design process must accommodate this underlying learning for it to be suc
cessful (Bucciarelli & Schon, 1987). 

Models of the design process are necessary as a basis for interpreting the 
observations, for prescribing a design procedure, or for designing a com
puter system to perform the design. The models constructed require the 
power to describe what is observed and the what might be observed, given 
certain conditions. These models, if based on provisional theories, may 
prove faulty; nevertheless, they serve an important function by allowing the 
research to proceed. Modeling the design process provides us with a system
atic description that can fill gaps in knowledge and enumerate design strat
egies, decisions and knowledge, etc. It can provide us with an understanding 
of how current computer-aided design (CAD) tools are being used, which 
can assist in the removal of inadequacies in the current CAD tools by im
proving the human/machine interface and providing computer aids to differ
ent stages in the design process. One can learn about the logical and spatial 
reasoning necessary in design and create better representation and presenta
tion methods for designed artifacts. 

Dixon (1987) described three theories of design: prescriptive, descriptive 
(cognitive), and computational. The study of the human designer leads to the 
descriptive or cognitive theories. The computational theories, on the other 
hand, need not depend on anything a human does. 

The sequence from process to model to theory is a continuum. One 
can start from an abstract notion of a theory and move in the direction 
of the process or vice versa. No matter how one starts, the two must con
verge, if we want to avoid the situation where we have a useless theoreti
cal structure, or a large amount of process knowledge without a theoretical 
basis. 

Provisional theories could be built on empirical observation or on self
observations, although introspection on cognitive activity can be misleading. 
The study of the designer's behavior as a part of the design process can lead 
to the creation of tools that can augment the designer's thinking. Such data 
can provide information on the types of environment that will be useful to 
make the designer more efficient. Based on these theories models that repre
sent the design process can be created. These models assist in creating better 
CAD tools. These tools could be purely for drawing, or creating the geomet
ric or form representation of the artifact, or, as more knowledge-based tools 
have become available in recent years, they can represent the function of the 
artifact, which is often termed intelligent CAD (!CAD). As more persons 
become involved in creation of the design, the CAD models become increas
ingly complex and the information management becomes crucial. Thus, 
ICAD tools need the support of work flow management tools as described 
by Ramanathan in Chapter 16. 
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Classification of Engineering Design 

Dixon (1987) argued that a classification (called taxonomy) of design may 
lead to relationships among different design models due to certain shared 
characteristics. This may facilitate the manner in which underlying knowl
edge and its representation may be organized to create a scientific theory 
of design. 

Classification of Mechanical Design Problems 
Dixon et al. (1989) proposed that at the highest level of abstraction one 
could view the design as consisting of an initial and a final state of knowl
edge. Furthermore, each state could be characterized by knowledge types, 
such as perceived need (for the initial state that is the motivation), function 
(of what it does), physical phenomenon (or underlying principles), embodi
ment (concept), artifact type (attribute), artifact instance (value,) and feasi
bility (for the final state). As an example, choose the initial state of knowl
edge of design of a plug. The need is to fill a hole. The function is to stop a 
leak. The phenomenon is friction. Embodiment might be a wood peg in the 
hole. The artifact type may be a cylindrical piece of wood, and its instance 
may be of dimensions i in. diameter, 1 in. length. 

Ullman {1992a) extended this classification to include the design environ
ment and the design process in addition to the artifact design. The process 
transforms the initial state into the final state, and the environment stipulates 
the constraints on those doing the design. Hence, the environment consists of 
the participants, resources, and design specifications. The problem consists 
of the initial and the final state representations and the satisfaction criteria. 
The process consists of the plans, the action, the effect, and the evaluation or 
the failure criteria. 

In addition, Ullman proposed the representation languages to be graphic 
(drawings), numerical {computations), textual {writing), and physical {proto
types). For the process the plans and processing actions could be fixed, 
selected from a list, parametrized, or searched. The effects could be refine
ment {improvement on the initial state), decomposition {breaking the design 
into smaller designs), or patching {modification of the design based on some 
failure criteria). 

Routine, Innovative, Creative, Conceptual, and 
Selection Design 

Brown and Chandrasekaran (1985), in examining problem solving, observed 
that the knowledge acquired from previous experiences simplifies the task of 
designing. These experiences may make the design fairly routine, where no 
new knowledge is involved, but new configurations of existing designs may 
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be sought. They proposed three classes of design. Class 1 designs are those 
that require substantially new knowledge or are creative in nature. In Class 
2 or variant designs some knowledge preexists, while Class 3 designs are 
routine. This type of design classification will be further described. 

In routine design, all possible solution types are enumerated (that is, all the 
attributes, applicable useful methods, and the strategies are known a priori). 
The goals are fixed; hence, no overt planning on the part of the designer is 
required. The values of the individual variables may change, but the ranges 
and types of variables do not. Hence, these types of designs lend themselves 
well to the creation of knowledge-based expert systems. Brown and Chan
drasekaran (1989) report an expert system to design an air-cylinder using the 
concept of routine design. In Chapter 9, Brown discusses routine design in 
greater detail. 

In innovative design, the knowledge base is already known and available to 
the designer. The requirements of the design are the same, but its application 
may become different; hence, the solutions are novel, but no new knowledge 
is added. This kind of design requires planning, since new strategies may be 
employed and possible solution types may be novel; hence, all attributes of 
this design may not be known a priori and some of the values of the variables 
may be outside of the normal range. 

In creative design, on the other hand, neither the attributes nor the strat
egies are known ahead of time. Once these are known, the design becomes 
"innovative" or "routine." If, in a design, new variables and new knowledge 
bases are added to the system, then this design becomes creative design. As 
soon as the design is completed, it becomes innovative or routine. 

Based on individual experience, a designer may be able to go directly from 
function to some structure because of having encountered similar conditions 
previously; hence, the design is routine to that designer. Another designer, 
who is not experienced with this function-to-structure mapping, may have to 
go more deeply into the decomposition before a structure can be identified. 
For that designer, then, this design is not "routine." Whether or not a design 
is accepted as "creative" is a social activity. However, for the person doing 
the design, if they have done it without having prior knowledge, and if they 
have added new variables, then to that person the design is "innovative" or 
"creative," whereas to society it may be just "reinventing the wheel," and is 
therefore a routine design. For example, the design of the first automobile 
was creative, or a new automobile design may be creative, but the millionth 
automobile of the same kind is not. Nevertheless, for an individual, for 
whom this is a new project, the process of creating the millionth automobile 
may be creative. Hence, there is a tremendous difference between social and 
personal creativity and it may be dependent on the environment. For this 
reason this classification scheme has limitations. 

To clarify this terminology further, it is worth noting that the conceptual 
design is the initial design that is different from routine and creative design. 
The conceptual design can be studied and modeled. One could have a very 
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routine conceptual design when the specifications are tightly defined, which 
may lead to very creative artifacts! One can gather information about con
ceptual but not creative designs, since the creativity may be in the process or 
the artifact. Conceptual design is in a continuum with detailed design, pro
duction, distribution, and recovery. Hence, it is traceable in the design pro
cess. Selection design, on the other hand, deals with selection of alternatives, 
for example, from catalogs~ 

The problem and process types of taxonomies were used to classify con
ceptual and selection types of design by Ullman (1992a). 

Process Representation 

One model may not capture all the unique models of each individual de
signer. Rather than developing a single model of the design process, it is 
more useful to have a framework in which multiple models of different 
researchers can be incorporated. Conceptually, a design can be thought of as 
moving from function (specifications) to structure (form or artifact) along 
the axis of a cylinder. Each designer's experience is the spiral bound around 
the axis with creativity as the radius of the cylinder. 

Figure 4.1 shows a possible framework to accommodate design process 
models. There are a given set of functions that the designed artifact must 
perform. The designer's task is to attach the appropriate structures that will 
perform the specified functions. Designers with less experience may require 
functional decomposition until they know of an associated structure for each 
decomposed function that may accomplish that function. The mapping to 
the structure is then performed at the subfunctional level in the form of 

Functional 
Decomposition 

Structure to Function Mapping 

Routine Design 

Creative Design 

Function to stucture mapping 

(Physical Laws constrain the map) 

Structural 
Composition 

s 

;•\ 

S1 •••••••••••••••••• Sn 

FIGURE 4.1. A possible design framework to accommodate design models. 
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substructures, which must be recombined to achieve the overall structure. 
This is the synthetic aspect of design. Analysis of this structure ensures that 
the overall function would meet the original specifications. Designers with 
extensive experience in a particular design may already know the associated 
structure that could accomplish the intended function. Therefore, they may 
proceed opportunistically to select the appropriate structure(s) to attain the 
function. This is more of a routine design. The depth of functional decompo
sition and structural recomposition on which the designer must rely would 
be a measure of the creativity in the design process. Hence, for each designer 
there is a unique process model for each design. 

It is important to note that the function-to-structure mapping contains 
both the form and the design knowledge that can be used in future. In 
specific representations and models one would need to retain the design 
history and the design rationale (Ullman, 1992b ). The design history is de
fined as a sequence of choices, the alternatives, and the descriptions of these 
alternatives that are available to designers because of previous encounters. 
The design rationale is the reason behind these choices. Furthermore, the 
design is complete only when someone declares it to be so or when all the 
stated specifications are achieved. The latter does not assume satisfaction but 
only guarantees completeness. 

The output of the design process is the knowledge that a plan for creating 
the artifact exists, either in the form of prototypes or working models or 
drawings that guarantee such production. This output also contains the 
resultant change in the process as a result of traversing through the steps of 
the design process. The representation of this learning is important and as 
yet not satisfactorily studied or represented. Further analogical reasoning 
plays an important role in the process. This too is rarely studied and modeled 
in design. 

Specific Models 

Finger and Dixon (1989) provide an excellent review of the research in 
mechanical engineering design. In Part I of their paper, they discuss the 
descriptive, prescriptive, and computer-based models of design. The reader is 
referred to this excellent reference for both an extensive review and brief 
descriptions of each type of models. In this chapter we present specific 
models for each type of design in detail. 

Descriptive Models 

These models are based on the observation of designers designing. Protocol 
or depositional methods are used for collecting information on the process 
(Chapter 3). The analyzed results provide information on what is important 
to designers, and permit construction of models that can describe the pro-
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FIGURE 4.2. A functional model of the design process. 

cess. Most of these studies have been conducted on the conceptual phases of 
design (Ullman et al., 1988; Waldron et al., 1989) 

One such model is the knowledge flow model described by Waldron and 
Vohnout (1989). Figure 4.2 shows this design process model based on the 
flow of information among different units engaged in the design process and 
accounts for the knowledge used and the realization of the functionality. The 
conceptual, preliminary, and detailed design stages interact so as to reflect 
design-evaluate-redesign. In addition, this model takes into account the 
knowledge designers must use to ensure the success of designs, such as, 
manufacturing, marketing, assembly, maintainability, disposability, and us
ability. It accounts for the knowledge that the designer is using to create the 
design, which can be readily communicated to the manufacturing environ
ment. The design knowledge organization strongly influences the way in 
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which the process planners may use the information contained in the knowl
edge base. 

The approach is to examine the designer's knowledge and its organization 
in the mode of communication used in the design process. In Figure 4.2, the 
conceptual design block represents the beginning of the design based on the 
initial problem definition, which also forms the transactional part of the 
conceptual design as well as the driving force for it. The initial design phase 
takes the problem definition and converts it into functional specifications. 
Based on the designer's social, cultural, and environmental knowledge, the 
problem statement and the functional specifications may be negotiated until 
a set of functional specifications are found that satisfy the designer and allow 
him or her to proceed to formulate embodiments of design schemes which 
can be used to create detailed and working drawings (French, 1992). 

In the preliminary design process the artifact is conceived so that it can 
carry out the prescribed functions. The designer ensures that the logic of the 
design is satisfactory in the layout drawings. These drawings, once detailed, 
will be used by the manufacturer of the artifact. In this phase, in order to 
produce successful and efficient design, the manufacturing knowledge that 
will be used to produce the artifacts is helpful. The layout and detailed 
drawings, after performing the associated analysis, contain the information 
about the shape, geometry, dimensions, and tolerances so that the manufac
tured artifact will indeed perform as intended. In creating the assembly 
drawings, the designer must also have the assembly knowledge to ensure that 
the drawings contain enough information. This will ensure that the manufac
tured artifact, when assembled, will achieve its intended function. Paying 
attention to the servicing (maintenance) during design will also ensure prop
er and easy service of the product during its use. Knowledge of its intended 
use and the customer needs will ensure that the product will be used to 
accomplish the intended function. Finally, incorporating the knowledge of 
product disposal during the design phase will ensure a minimal impact on the 
environment after the useful life of the product is over. 

This additional knowledge may be part of the existing knowledge the 
designer possesses, or it may be that it is acquired through interactions with 
the appropriate persons in the design team. Hence, this model incorporates 
concurrent engineering practices. The actual manufacturing, assembly, use, 
maintenance and disposal of the product is its explicit manifestation. The 
evaluative feedback knowledge, to the designer, from the manufacturers, 
users, field technicians, and people dealing with waste disposal is important 
to contribute to the improvements of future designs. 

The separation of the model into blocks is necessary for representational 
purposes so that the construction of computational models is possible. In 
observing designers working one may not see a clear separation of these 
blocks. Rather this information is inferred from the observed data. Human 
designers, through their integrated, associative, experiential knowledge, may 
flow fluently from the problem statement to the formulation of functional 
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specifications and then to using their accumulated knowledge to arrive at the 
drawings and specifications that are used for the manufacture of the product. 

The designer at the conceptual level cycles back and forth between the 
system, subsystem hierarchy until all the constraints are satisfied and a solu
tion is specified. The choices are made based on the context of the design, 
which depends on the negotiable and the nonnegotiable constraints. The 
model allows the design process to be represented by three levels based on 
context. The highest level or the semantic level allows the goodness of the 
design to be assessed. The next or the syntactic level allows the logic of the 
design to be evaluated. The lowest level allows the selection of the shapes and 
dimensions so that the functional constraints specified in the other two levels 
can be achieved. This paradigmatic representation allows a computer system 
to be developed which can be orchestrated by the designer. 

Williams (JV aldron, 1990) proposed a model based on the reasoning cycle, 
which is employed by the designers using three frameworks of knowledge. 
His model was derived from the results of protocol studies done by others, 
and is based on the premise that designers have a desire to do something and 
a cognitive ability to do it. In designing, the designer faces two types of 
situations that depend on complexity and uncertainty. Complexity is when 
the designer has too much knowledge and uncertainty when the designer has 
too little knowledge. These are interrelated. The standard observations were: 

1. That chunking is ubiquitous in the design process and the designer orga
nizes the elements of the problem into a hierarchy. 

2. Knowledge is used to guide the designer; that is, it is not a blind search. 
3. The designer needs feedback from the results of a prototype or a design 

simulation, in order to improve the design further. 
4. Conjectures are initially made, by designers, based on abductive reason

ing, and then deductive reasoning may be used to from hypotheses. Once 
they have a clear hypothesis designers act to arrive at a problem solution 
and then proceed to a more generalized model. 

The three frameworks of knowledge are the generic knowledge, the specific 
knowledge and information or data about the knowledge. There is an interac
tion between these frameworks of knowledge, which directly affects the hu
man reasoning process in the design activity. The consequences of these 
frameworks allow the computer systems to be isolated from designers and 
allow them to use their personal effective knowledge, and not be constrained 
by what is provided by the system. 

Another model, task-episode-accumulate (TEA) model, was proposed by 
Ullman et al. (1990). This model uses the information processing during the 
design process as its basis. Here they argue that the design information may 
be stored in the mind of the designer (internal environment), who uses short
term memory and long-term memory to retrieve the information and make 
it available to the design state. Alternatively the information may be stored 
in an external environment such as books, papers, drawings, or in the minds 
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of team members. The evolution of the design is incorporated as a design 
state in the TEA model. A design state contains the accepted design pro
posals and the constraints that these designs must satisfy. The design states 
are modified by design operators such as select, calculate, simulate, etc. 

Prescriptive Models 

Prescriptive models, as the name implies, allow one to prescribe the se
quences of activities that constitute the design process. This is distinguished 
from the axiomatic prescription for the attributes of the designed artifacts as 
proposed by Suh (1990). In this chapter we present the design process model 
proposed by Pahl and Beitz (1984), which formalizes the design process into 
four systematic phases: clarification of the task, conceptual design, embodi
ment of the design, and detailed design. 

In the clarification stage the specifications are elaborated and working 
specifications result. During the conceptual design phase, the problems are 
identified, functional structures are established, concept variables are firmed, 
which are evaluated against the technical constraints. The embodiment 
phase of the design results in design layouts through design refinements and 
optimization. In the detailed design phase the design is finalized and detailed 
drawings are produced complete with design documentation. 

The assumption underlying this design process model is that the design 
process can be decomposed into levels of abstraction and the design proceeds 
in a sequence from the definition of subfunctions to selection of physical 
principles, to embodiment of the design, to detail design, to production 
planning. At this point, a new problem is defined and the cycle repeats until 
a solution is reached. It is assumed that both the designers and the design 
process go through the same cycle of design activities. 

These activities consist of solving a series of problems into which the 
design has been decomposed. A solution is found either from intuition or 
from a known method and related information. This solution is analyzed by 
simulation and calculation. The constraints are evaluated and a decision is 
made whether to repeat this process or go on to the next problem identified. 
Hence, each solution leads to another problem. Until this solution is arrived 
at, one does not proceed to the next problem. 

In this theory, the design solution is assumed to be a puzzle defined at two 
levels, namely, the abstract and the solution level. The abstract level is 
assumed to be mapped functionally onto a solution level. It is assumed that 
the physical principles that will bear on a particular function are known a 
priori, and the design is functionally well defined and decomposable. The 
problem with the underlying theory is that it requires the process to be 
independent of the designer. The theory does not allow for the use of anal
ogy, spatial reasoning, etc., which seem to be very important when humans 
design. Furthermore, the theory assumes that a general problem-solving 
model exists, which is not necessarily so. 
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Computer-based Models 

In computer-based models, the information about the design process is en
tirely in the computer program. This is different from the cognitive model 
where the human designer plays an important role and the model describes 
what the human designer does. The computer-based models describe the 
methods by which the computers themselves can accomplish the designing 
task. These models do not necessarily have to be derived from human behav
ior although they may. Likewise the successful computer-based design pro
cess may or may not be used by humans. These may be entirely embedded in 
another design problem. These reciprocal relations, between human design 
activity and the computer programs are neither mandated nor essential 
(Finger & Dixon, 1989). 

Computer-based models have been developed on an ad hoc basis, al
though such models are being developed in research laboratories and have 
been developed to solve specific design problems. There is as of yet no single 
theoretical approach that can handle all aspects of design. The computer
based models largely describe computer programs that carry out, or assist 
in specific design tasks. Since these models are still being developed and no 
established procedures exist for the overall design process in industry, the 
design process models really do not exist except in the form described below. 

In parametric design the structure of the object to be designed is known 
and in the design process appropriate values need to be assigned to the 
parametric design variables. Constraints and criterion functions when ex
pressed numerically allow optimization techniques to be used (Finger & 
Dixon, 1989). Dominic (Dixon et al., 1989) is one of the first computer 
systems for knowledge-based parametric design of components; it uses 
iterative redesign. 

A computer model for "routine" design was created by Brown and Chan
drasekaran (1989). They devised a Design Specialists and Plans Language 
(DSPL) in which the hierarchy of alternative design plans are contained. It is 
a computer model for routine design consisting of cooperating agents such 
as specialists, plans, tasks, steps, constraints, redesigners, failure handlers, 
etc. (Spillane & Brown, 1992). These agents are hierarchically organized and 
cooperate to configure the design. DSPL has been used for design of air
cylinders and gear pairs. 

There are computer-based models for configuration design. Finger and 
Dixon (1989) describe it as the transformation of physical concept into a 
configuration with a defined set of attributes without specific assigned values. 
Mittal et al. (1986) developed a configuration design software called PRIDE 
(Pinch Roll Idler Design Expert), for designing paper handling systems in
side copiers. This computer program assists in the design of a paper trans
port mechanism for copiers by using a knowledge base to generate, evaluate, 
and redesign the configuration of rollers. Figure 4.3 shows such a computer
based configuration design model. The configuration is defined in terms of 
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FIGURE 4.3. Computer-based model for configuration design. 

goals and each goal has its own method and subplans (which could have 
goals of their own) with associated constraints. In addition the "advice" 
feature guides the possible redesign paths (Waldron, 1990). 

Computer-based programs for conceptual design are capable of synthe
sizing structural components from the functional or behavioral requirements 
(Ulrich & Seering, 1989) or by reasoning from first principles (Cagan & 
Agogino, 1987; Williams, 1992). However, these models are still in research 
stages; how effective they will be in influencing the design process in future is 
yet to be determined. 

Modeling and the ICAD Systems 

How do models of the design process affect what is produced? The interac
tion between the model and the product is important. What is the motivation 
behind the study of the process and its relation to ICAD systems? What are 
the issues that are important in design? Should one study the issues asso
ciated with the design process such as the methodological issues or the issues 
associated with building computer systems that support design? These ques
tions are all important and bear investigation. 

On one end, one may study the designers and find out what the designers 
do, while, at the other end, one may make guesses as to what the designer 
does, and create the computer system based on the assumptions and then 
find out if this assists the designer. Perhaps the answer is somewhere in the 
middle. One may want to get some information from protocol or deposi
tional studies, to obtain sufficient information on which to base valid 
hypotheses, models, and conjectures from which the systems could be de
veloped and expanded upon through educated guesses. 
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The model and framework of the design process presented earlier, while 
useful in tracking the design process, is too abstract to be very useful in 
creating practical ICAD systems. In order to guide what the implementers of 
the ICAD systems should do, we need to consider the separate environments 
for design, and develop a specific model or models that help in the develop
ment of ICAD systems. The important aspect in this representation is not a 
search for a proper representation of the process in the machine. Rather, the 
search is for the information structure associated with the design process that 
contains the strategies and the manner in which the process changes and the 
design evolves. In the ICAD systems it is more important to consider the 
control issue rather than the representation issue, so that a distinction can be 
made between the artifact and the process in this system. 

There is certainly a strong connection between the process and the object. 
The model of the design process may be related closely to the artifact rather 
than having a generic process for all artifacts. But one must study this 
interaction and find out what actually takes place. How would the designer 
interact with the system to facilitate the interaction? Should the system be 
made more general rather than specific? How would the learning conse
quences of the designers be incorporated in the ICAD system? These are 
important questions that must be tackled before reliable computer-based 
models which are effective in directing the design process can be envisaged. 

Comparison with Other Disciplines 

When one considers the mechanical design process in relation to other designs, 
one sees some analogies. For example, in architecture, one could view the 
architect more as a product designer, a structural engineer as a mechanical 
engineer, and a contractor more like a manufacturer, a person who must 
physically realize the design created. 

The input-process-output model poses the problem of how to characterize 
inputs and outputs. In some domains, functionality may be the input and the 
defined attributes of the object are the output, whereas in other domains, for 
example architecture, this may be reversed because the vocabulary for the 
function and form are often the same and the designers think of these 
interchangeably. For example, the word "coupling" may mean both the 
function of coupling two shafts or the form this coupling takes. Further
more, the design specifications of goals may be loose and may change during 
the course of the design process. In some fields, artifacts may be defined in 
the specifications, while in others these may evolve. Furthermore, one object 
or artifact may perform many functions, and one function could be per
formed by many artifacts. 

The function-to-form mapping could therefore be one to many or many to 
one depending on the situation. By making many arbitrary or ad hoc as
sumptions, the designers overcome this problem. The assumptions may be 
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based on acceptability of the product in the culture in which it will be placed; 
hence, acceptability becomes a functional requirement. But the artifact has 
to be realizable, which becomes a physical problem; hence, the input to the 
design process may take the form of acceptability, realizability, or feasibility, 
which are really qualifications on the result. To achieve this, one must have 
the knowledge of both the process and the domain. In that case, one needs a 
language to describe the models with "hard" and not "soft" vocabulary. 
This is difficult to achieve in design because the designer's language is inher
ently "soft" or ambiguous. Acceptability is therefore harder to define than 
realizability and feasibility (Waldron, 1989). 

The following is a list of some domain-independent characteristics of the 
design process along which the relative levels of difficulty for each domain 
could be discussed. 

Functional Specification 

1. Difficulty of description 
2. Static and dynamic relations for temporal analysis 

and simulation 
3. Ambiguity of environment 
4. Function to form confusion 

Artifact 

1. Geometrical form is the main attribute 
2. Tolerance and manufacturing as part of design 
3. Assembly of many parts working together 
4. Difficulty in standardizing 
5. Not symbolic 
6. Multifunctional component 

Designing 

Non-isomorphism between functionality and artifact 
may be intuitive, concurrent 

E>M>S >A 

A>M>S >E 
E>M>A >S 
S >E >M>A 

S >E >M>A 
S>E>A>M 
E>A >S >M 
E >A >M>S 
S >E >M>A 
S >E >M>A 

S>E>M>A 

where S = software; E = electrical, including control; M = mechanical; and 
A= architecture. 

Conclusions 

In this chapter characterizations of engineering design as described by dif
ferent researchers was described. Further, a taxonomy of engineering design 
was discussed. The characterization of the design process was described in 
detail. Different types of models based on various theories of design were 
presented and compared. Furthermore, the use of models in creation of 
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CAD tools was discussed and the difficulty in design characterization in 
different design domains was compared. From the discussions presented it is 
apparent that the design process models are still evolving and there is, as yet, 
no single, well-developed theory for design. While considerable effort is 
being expended toward the establishment of such a theory, the progress is 
still slow and somewhat tenuous. 
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5 
An Observational Methodology for 
Studying Group Design Activity 

JOHN C. TANG AND LARRY J. LEIFER 

Abstract. A methodology for observing and analyzing group design activ
ity is presented. This methodology is based on ethnographic and interaction 
analysis methods from the social sciences. Using it to study collaborative 
design activity leads to a descriptive analysis that identifies what resources 
the designers use and what obstacles they must overcome to accomplish their 
work. Based on this analysis, a better understanding of the needs of designers 
can be used to guide the design of tools to support group design activity. For 
example, this analysis led to an understanding of the role of hand gestures in 
collaborative design activity. Gestures are used to help demonstrate actions 
and establish shared reference. Hand gestures are often conducted in relation 
to sketches and other objects in the shared workspace. Descriptions of how 
to record group activity on videotape, represent and analyze the data (using 
a hypertext system), and abstract general observations from the data are 
presented. 

5.1. Introduction 

The design process is a complex and creative activity that has long been the 
subject of study. Several different methodologies have been applied to study 
design activity, as reported in the overview papers ofBessant (1979), Wallace 
(1987), and Finger and Dixon (1989). To name a few, Thomas and Carroll 
(1979) conducted psychological experiments probing design activity, Ullman 
et al. (1987) applied protocol analysis on individual designers "thinking 
aloud," and Wallace and Hales (1987) used participant observation to study 
an engineering design project for almost three years. 

The research presented in this paper draws upon an exisiting methodol
ogy, known as interaction analysis, to study group design activity. Videotape 

This paper first appeared in Research in Engineering Design, Vol. 2. 1991, pp. 209-
219. Reprinted with permission. 
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records of actual design activity are analyzed to identify how the designers 
accomplish their work and what problems they encounter along the way. 
This qualitative description of design activity leads to a deeper understand
ing of the design process and raises implications for the development of 
technology to support it. This methodology was used in recent research to 
study small group, conceptual design activity (Tang, 1989), leading to design 
implications for tools to support that activity. In applying this methodology 
to study a particular design activity, we also discovered ways in which it 
could be used as part of any design process to understand the needs of the 
end user. 

This chapter presents a methodology for studying group design activity 
based on interaction analysis methods, which are introduced in Section 5.2. 
Detailed descriptions of how to observe and analyze group design activity 
are presented in Sections 5.3 and 5.4. As an example of the kind of findings 
that this methodology yields, Section 5.5 discusses observations on the role 
of hand gestures in collaborative design activity. The advantages and con
straints of this methodology are discussed in Section 5.6, and applying it as 
part of the design process is discussed in Section 5.7. 

5.2. In Introduction to Interaction Analysis 

The observational methodology presented in this paper is based on interac
tion analysis, a qualitative analysis method used in the social sciences. In the 
fields of anthropology and sociology, qualitative methods are used to investi
gate human activity. Since group design activity is a complex social activity, 
it is appropriate to apply these methods to study it. Other design researchers 
[Bessant & McMahon, 1979; Darke, 1979; Wallace, 1987] have also advo
cated applying social science methods to study design activity. 

In the field of anthropology, ethnographic studies observe the activities of 
a culture by participating in it through an extended period of time. The daily 
life of the culture is studied in its natural setting with minimal disruption to 
that activity. The resulting ethnography is a description of the common 
practices of that culture, as experienced by the observer. Recently, ethno
graphic methods have been used to study not only foreign cultures, but 
professional subcultures in developed countries (Latour & Woolgar, 1979; 
Lynch, 1985), and design activity in particular (Bucciarrelli, 1988). 

Interaction analysis is a recent development in anthropology and qualita
tive sociology that integrates an ethnographic perspective with fine-grained 
analysis of human interaction. This methodology involves analyzing records 
of human activity in order to understand how that activity is accomplished 
through the interactions among the participants and the artifacts in their 
environment. Ideally, the participants should be observed in their natural 
working environment addressing a real task. Logistics sometimes dictate that 
the situation be structured to the extent that a realistic task is given to the 
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participants in an environment where they can be easily observed. A crucial 
element of this approach is that the researcher not intervene in the group's 
activity once they have begun working on the task. The participants are free 
to organize their work as they wish, and it is the observer's responsibility to 
record and analyze the activity that subsequently unfolds. The goal is to cap
ture samples of human activity in contexts in which they would naturally occur. 

The activity is typically recorded on videotape, which is analyzed to iden
tify patterns in how the participants accomplish or are hindered from accom
plishing their work. By collecting and comparing among examples from the 
data, specific resources that the participants use to help them accomplish 
their work or obstacles that hinder their work can be identified. 

Conversation analysis is a prominent form of this kind of analysis that 
studies how people interact through conversation (Levinson, 1983; Sacks 
et al., 1974). Interaction analysis extends beyond focusing only on the con
versation of the participants to include other aspects of how people inter
act with each other and their environment. Examples of video-based interac
tion analysis include the study of the accompanying nonverbal behavior in 
conversation (Goodwin, 1981; Heath, 1986) and the interaction between 
humans and technology (Suchman, 1987). Our research extends the use of 
interaction analysis to study group design activity. 

This approach contrasts with experimental methods where tightly con
trolled situations are constructed to test a preformulated hypothesis. Rather, 
interaction analysis explores naturally occurring activity to identify and un
derstand what parameters and relationships are important to the interaction. 
This approach also contrasts with participant observation, which relies sole
ly on the accuracy, completeness, and objectivity of notes collected by the 
participant observers. Rather, the activity is recorded on videotape, which 
can be reviewed again and again from a variety of perspectives. These under
lying tenets of interaction analysis are described in Suchman's (1987) study 
of human-machine interaction: 

This study proceeded, therefore, in a setting where video technology could be used in 
a sort of uncontrolled experimentation. On the one hand, the situation was con
structed so as to make certain issues observable .... On the other hand, once given 
those tasks, the subjects were left entirely on their own. In the analysis, by the same 
token, the goal was to construct a characterization of the "interaction" that ensued, 
rather than to apply a predetermined coding scheme. Both predetermined coding 
schemes and controlled experiments presuppose a characterization of the phenomo
nenon studied, varying only certain parameters to test the characterization. Applica
tion of that methodology to the problem of human-machine interaction would be at 
the least premature. The point of departure for the study was the assumption that we 
lack a description of the structure of situated action. And because the hunch is that 
the structure lies in a relation between action and its circumstances that we have yet 
to uncover, we do not want to presuppose what are the relevant conditions, or their 
relationship to the structure of the action. We need to begin, therefore, at the begin
ning, with observations that capture as much of the phenomenon, and presuppose as 
little, as possible (Suchman, 1987, p. 114, original emphasis). 
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Our research is premised on the need to observe and understand what design 
teams actually do in order to guide the design, development, and introduc
tion of tools to support their activity. Our research applies the interaction 
analysis methodology to study the activity of design teams. 

5.3. Observing Group Design Activity 

In our studies, eight different sessions of small groups (3-4 people each) 
working on conceptual design tasks were observed. The groups consisted of 
peer participants who were not in the context of any formal authority hier
archy (i.e., no supervisors with people who report to them). The observed 
sessions were the first time that the participants worked together as a group 
on the task, thus capturing the earlier, more conceptual stages of the design 
process. All of the tasks that the groups worked on were human-machine 
interface design problems (see sample problem statement in Appendix). The 
groups typically worked on the task for about l t hours, deciding on their 
own when to end their session. 

Videotape was used to record the design activity for later analysis. The 
final configuration for the observational equipment used in our research is 
depicted in Figure 5.1. Two video cameras were mounted on tripods: one 
aimed at the shared workspace of the group, while the other captured a wide 
angle view of the group as a whole. The cameras were "passive" in that they 

FIGURE 5.1. Observational configuration. The participants were separated from 'the 
observational equipment and the experimenter. One camera is aimed at the shared 
workspace of the group, another captures a wide angle view of the group as a whole. 
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FIGURE 5.2. The recorded video image. The split screen image combines the wide 
angle view of the group (top) with a close-up view of the group's shared workspace 
activity (bottom). 

were not moved or re-aimed during the session. This arrangement is consid
ered less distracting than having an active camera person in the room aiming 
and focusing the cameras. The cameras were partially obscured from the 
participants by a partition, and the experimenter and recording equipment 
were located in a neighboring room. 

The signals from the two video cameras were combined into one split 
screen video image, shown in Figure 5.2. A time stamp that displays the date 
and elapsed time in hours, minutes, and seconds was included in the video 
image. This time stamp was used to index the contents of the videotape. The 
split screen image with time stamp and the accompanying audio were rec
orded on videotape. An additional audio tape recording was made as a 
back-up and for use in transcribing equipment to help make a transcript of 
the verbal dialog. 

5.4. Analyzing the Data 

Videotape records of design activity contain a wealth of data for analysis, which 
can initially be overwhelming. Reviewing the videotape data itself quickly 
suggests more specific foci for analysis. Analyzing the video data involves: 
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• becoming familiar with the data 
• developing a workable representation of the data for analysis 
• abstracting patterns and general observations from the data 

Although it is clearer to introduce this process of analysis as if these activities 
occurred in a three step sequence, the actual analysis was much more com
plex. The three activities occurred concurrently and were informed by each 
other. It was often the case that representing the data or identifying patterns 
in the data led to a new perspective on it, prompting a re-familiarization with 
the data or a modified representation for the data for further analysis. For 
clarity of presentation, this section presents an idealized, three step frame
work for the analysis. However, the examples drawn from our study of 
group design activity will indicate that the analysis that actually occurred 
was a much more interrelated process. 

5.4.1. Becoming Familiar with the Data 

After videotaping the design sessions, the initial task in analyzing the data is 
to review the tapes to become acquainted with the sequence of events in the 
session and to note incidents for closer examination. A good exercise for 
becoming familiar with the data is to make a transcript of the verbal dialog 
of the session. Deciphering who said what and in what order is a prerequisite 
for deeper understanding of the activity. 

Figure 5.3 shows a section of transcript from a design session. The speaker 
associated with the text is designated by the 'S' labels. Some indication for 
the pacing of the speech is given through the punctuation and line format
ting. Turns of talk from different speakers with no line space between them 
indicate overlapping talk. 

In our study of group design activity, making a transcript of the verbal 
dialog not only helped us become familiar with the data, but also revealed 
that the transcript by itself did not adequately represent the recorded design 
activity. Understanding the transcript often required attending to the accom
panying drawing and gesturing activity that was observable on the video
tape. This initial familiarization exercise led to the development of a repre
sentation that included these nonverbal activities as will be described later. 

Another technique that is helpful for developing an overall perspective on 
the data is to bring several different viewpoints to bear on the video data. At 
the time of this research, a working group of designers, anthropologists, and 
computer scientists (called the Interaction Analysis Lab) met weekly at the 
Xerox Palo Alto Research Center to review videotapes of human activity. 
These meetings brought together insights on the data from the different 
perspectives of these disciplines. Since the researchers came from different 
academic disciplines, they each brought different sensitivities to bear on ana
lyzing the video data. Furthermore, they were each forced to demonstr
ate their claims about the activity by observable evidence from the video 
data, rather than relying on any single discipline's characterization of human 
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53: What if on your machine you just had no screen, you just l"lad like, you could 
have like a little written area that you write, just a little paper card with a little 
plastic over it and there's a little LED next to it and 

51 : Right. A button next to it, sure you could do that too. why not? 
53: a button next to that, or maybe your button is a lit button, and you come 

home and this one is blinking or not blinking and this is you, so you hit it 

51: Yeah, and you pop it and there it, you get your messages. 
53: Yeah 

51 : Sure you could do it that way, too 

53: There's no security on this but maybe we shouldn't worry about security 
((pause)) 

52: Well. 
For housemates it's not so important, but it would always be a n ice added 
feature 

51: Say you have a key slot here 

53: ((laughs)} Then you have to carry this little key around 
52: It could have, it could have, umm, fingerprint recognition 
51 : Oooo! There you go, high technology ! Yay 
53: Oooo! That's a good idea! Yeah ! 

So you put yourfinger on this to get your message, that's great! 
Ok 

((pause)) 

FIGURE 5.3. Sample transcript section. This sample section of a transcript illustrates 
how the verbal dialog and its pacing are represented. The speaker is designated by 
"S" labels. 

activity. This emphasis on understanding human activity through the di
rectly observable interactions among people and their environment is a dis
tinctive characteristic of interaction analysis. This approach contrasts with 
cognitive orientations that account for human activity by mental activity 
that is not directly observable. Multidisciplinary group analysis is a practical 
technique for assuring that the resulting observations are based on observ
able evidence from the data. 

Selected segments of our video data on group design activity were re
viewed in the Interaction Analysis Lab. One issue that emerged from these 
analysis sessions is the variety of activities that could be observed in the 
recorded design activity and their interrelationships: talking, writing text, 
drawing graphics, and gesturing. These sessions helped identify some of the 
patterns of activity (e.g., instances of using hand gestures, classifying the 
various uses of gestures, quick alternation among writing, drawing, and 
gesturing) that we focused on in our research, as will be discussed later. 

The videotapes can also be reviewed with the participants themselves to 
elicit their perspectives and help focus the analysis of the video data. In our 
research, the participants were invited individually to review the videotape. 
This technique was modeled on the work of Frankel and Beckman (1982) in 
their analysis of doctor-patient interactions. The participants were encour
aged to comment freely on what they saw; they could stop the tape at any 
time to interject their thoughts. These sessions also provided us an opportu-
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nity to ask the participants specific questions about issues that arose in our 
prior examinations of the tape. We believe that reviewing the actual data 
with the participants elicits more detailed recollections than if they were 
asked in an interview to recall their thoughts from memory. These review 
sessions were audio taped to record their comments. 

5.4.2. Representation of the Activity for Analysis 

Developing a representation for relating the verbal transcript, notes on non
verbal activity, and comments from other researchers and participants is 
a major methodological issue. In our studies of group design activity, the 
NoteCards software system was used to help manage this wealth of data and 
organize its analysis. NoteCards is a hypertext system that runs in the Xerox 
Lisp environment (Halasz et al., 1987). It is analogous to index cards, in that 
it encourages breaking data down into small units, called cards. These cards 
can be pieces of text, graphics, or other information representable in the 
Lisp environment. NoteCards provides mechanisms for linking and group
ing these cards to facilitate organizing them. The cards can be connected by 
links, which can be designated by type (e.g., comment, related, next). Cards 
can also be grouped together into fileboxes. NoteCards offers several mecha
nisms for structuring, displaying, and navigating through large networks 
of cards and links. It also allows users to program functions to execute 
customized operations on the data. 

An example will demonstrate both how NoteCards was used to develop a 
representation of the activity and how that representation was used in this 
analysis. After creating a transcript of the verbal dialog, the transcript was 
divided into segments. Each segment consisted of an interactional exchange 
over a particular focus of attention. When the group's attention shifted to a 
new focus, a division between segments was marked. The segments averaged 
less than a minute in length and typically comprised 3-7 turns of talk. No 
claims in the analysis are based on the definition of these segments. This 
segmentation was done to facilitate the analysis-to be able to distinguish, 
identify, and group together different segments of the activity. While many 
of the segment boundaries were clear-cut, some were rather arbitrary. An 
alternative method proposed by Fish (1988) divided the data into segments 
of fixed time intervals (i.e., 30-second segments) without attending to the 
content of the activity. 

Each segment of transcript was placed on a separate card, and linked to 
the segment that followed it, creating a chronological chain of links through 
all the cards. Each segment was linked to other segments dealing with a 
related topic, or grouped together into fileboxes that collected segments 
exhibiting a common pattern of activity. Segments were also linked to com
ments by the researchers or participants that refer to some part of the activity 
included in the segment. 

As mentioned earlier, our initial work on making a transcript and ana-
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FIGURE 5.4. How segments are linked to other objects. Arrows from the link icons 
indicate how a segment from a design session transcript is linked to other segments, 
notes on the workspace activity, and comments of analysis. 

lyzing the data as a group led to a focus on the listing, drawing, and ges
turing activity that occurs in collaborative design work. Portions of the 
videotaped data were selected to investigate these drawing space activities 
more intensively. For one entire 1 t hour design session and a 10-min section 
of a second design session (where the group specified a design for one of their 
ideas), each instance of listing, drawing, and gesturing was described on an 
individual card. Each transcript segment was annotated by links to those 
cards noting any instances of listing, drawing, or gesturing that occurred 
during that segment. A sample segment from the transcript of Figure 5.3 and 
the cards that it is linked to are shown in Figure 5.4. In this way, NoteCards 
was used to manage and keep track of a variety of information, comments, 
and relationships among the empirical data. 

5.4.3. Abstracting Observations from the Data 
The goal of this analysis is to identify generalizable observations about 
design activity from the videotaped data. One strategy in this analytical 
process is to look for "collectibles" -recurring patterns of activity that 
can be collected throughout a session or across a variety of sessions. This 
strategy is a common technique in conversation analysis [see for example 
Levinson (1983)] that has been extended to interaction analysis (Tatar, 
1989). Patterns of activity were identified and other examples of that pattern 
were collected. Comparing and contrasting among several different examples 
(while being sensitive to the contexts in which they were situated) leads to a 
better understanding of that activity. 
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In particular, our interest in analyzing group design activity was to iden
tify implications for the design of tools to support that activity. We focused 
on identifying collectibles that led to an understanding of what resources the 
designers used or what obstacles they encountered in accomplishing their 
work. Analyzing these collectibles led to an understanding of specific re
sources and obstacles for the designers. 

For example, one pattern of activity identified as a collectible in our study 
of group design activity was the use of hand gestures. Many instances of the 
use of hand gestures were collected from the recorded design sessions. This 
collection of data raised several research questions: 

• What did these hand gestures accomplish? 
• What relationship did these gestures have with the group's other ongoing 

activity (e.g., talking, drawing)? 
• What problems arose from the use of these hand gestures? 

Comparing and contrasting among this collection of data led to an under
standing of what resources and obstacles are associated with gestures. For 
example, the relationship of gestures to the drawing space is a resource for 
interpreting them, since gestures often refer to marks in the drawing space. 
On the other hand, visual obstructions that prevent collaborators from 
sharing a view of their gestures can be an obstacle. These observations are 
discussed in more detail in the next section. 

In summary, the analysis consists of: 

• identifying specific patterns of activity of interest 
• collecting instances of that activity in a variety of situations 
• comparing and contrasting among the collected instances to explain the 

activity and its variation across different situations 

The advantage of this approach is that the resulting observations are closely 
tied to the empirical data. It is the data that initially suggest the collectibles 
and groupings, rather than hypothesized groupings being imposed onto the 
data. The disadvantage of this approach is that it is very time consuming. 
Careful attention is required to identify collectibles and to collect enough 
relevant instances of each collectible for analysis. Much qualitative analysis 
is needed to compare and contrast among the collected instances in order to 
gain an understanding of the activity that leads to generalizable observa
tions. Tang (1991) describes observations that were raised in using this 
methodology to study group design activity. 

5.5. Findings: The Uses of Hand Gestures 

One issue that emerged from analyzing the data was understanding the use 
of hand gestures. There is a long history of studying gestures in human 
interaction [see for example Goodwin (1986) and Kendon (1986)] and the 
prevalence of gestures in collaborative design activity is obvious. Our re-
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53: a button ned to tnat. or maybe your 
button is a lit button. ana you come 
home and this one i' blinking or not 
b linking and tnl ~ i:!!l you . so you hit it 

51 ' Yeah. and you pop it and there it. you 
your me,,age3. 

53: Yean 

52: It could nave. it could have , umm. 
fingerJ:Jrint recognition 

51 : Oooo! Tnere you go, hign teen 
Yay 

S3: Oooo! That' s a good idea! Veah! 

FIGURE 5.5. Annotated transcript section from design session. A section of transcript 
from a design session, linked to notes on the instances of listing, drawing, and 
gesturing that occurred. The area of the paper being worked on during this section is 
shown at the right. 

search focused on what gestures accomplish in group design and how they 
could be supported by collaborative tools. We observed that gestures can be 
used to: enact a simulation of an idea; help mediate the group's interaction; 
and possibly help store information. An important feature of gestures is their 
relationship to drawings and other objects in the drawing space. These obser
vations are illustrated with an annotated transcript representing a scene from 
the video data, shown in Figure 5.5. 

5.5.1. Scene from the Video Data 
The section of transcript shown in Figure 5.5 is annotated with brief descrip
tions of every instance oflisting, drawing, and gesturing that occurred during 
the section. An icon is placed in the text of the transcript at approximately 
the point where the listing, drawing, or gesturing activity begins. That icon is 
linked to a note describing the activity. The line numbers along the left 
margin are used throughout this section to index locations in the transcript. 
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The region of the paper where the participants are making their marks and 
sketches is included to the right of the transcript. 

The designers have chosen to design a custom phone answering machine 
to service a household that has several different inhabitants (see Appendix 
for complete problem statement). At this stage of the session, they have 
established that the answering machine routes incoming phone messages to 
particular recipients in the household. In this section, they talk about how 
those recipients retrieve their phone messages, and especially how they could 
prevent their own messages from being accessed by others. 

In this section, S3 first proposes a "namepad" configuration where each 
recipient has a slot and can select to hear their own phone messages when a 
flashing LED indicates that their slot has messages. However, S3 realizes 
that this solution does not prevent other people from accessing the phone 
messages directed to a particular person, a security issue that the group had 
previously raised. Sl proposes that each button could be locked with a key. 
Then S2 proposes that the machine sense the person's fingerprint when 
pressing the button to access messages, and recognize whether to grant 
access to them or not. This idea gets an enthusiastic response, culminating in 
S3 imitating the fingerprint recognition gesture and documenting it. 

5.5.2. Observations on the Use of Hand Gestures 
One observed use of hand gestures is to enact ideas that involve a dynamic 
sequence of actions. Hand gestures can be an effective way to express these 
ideas to other group members. For example, in the gesture noted in line 25 
of the transcript in Figure 5.5, one designer acts out the fingerprint recogni
tion idea. This gesture is shown in Figure 5.6. By holding her finger over a 
button on the sketch of the phone machine, S2 demonstrates how she imag
ines the phone machine recognizing her fingerprint and subsequently playing 
her phone messages. Enacting a sequence of actions through gestures is a 
convenient way of demonstrating behavior, especially how people will inter
act with the design. These gestures range from abstract motions to more 
detailed enactments, often done in relation to existing sketches or other 
objects in the drawing space. 

Hand gestures are also commonly used to mediate the interaction of a 
group, such as raising a hand to indicate wanting the next tum in the 
conversation. As part of the gesture marked in line 25 of the transcript, S2's 
hand moves deliberately toward the namepad sketch, effectively command
ing a tum in preparation for her acting out the fingerprint recognition idea. 
Gestures are also used to direct the group's attention by pointing to or 
otherwise referring to drawings or areas in the drawing space. 

Gestures are not typically thought of as a medium for storing information 
because they do not leave behind any persistent record. However, the data 
showed some evidence that information can be chunked and preserved effec
tively through gestures, especially if the gesture is imitated by others and 
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FIGURE 5.6. Gesture example. S2, on the far right, enacts the fingerprint recognition 
idea by pressing her finger on a sketch of a button. 

labeled in text or graphics. For example, on line 30 of the transcript, S3 
imitates S2's gesture of the fingerprint recognition idea from line 25. The idea 
is later written down by S3, as noted in line 33, but the essence of the idea is 
encoded in the gesture, which is not otherwise persistently documented. The 
fact that the fingerprint recognition idea is not readily apparent just by 
looking at the marks made in the workspace is evidence that much of the 
idea is not preserved except through the gesture. 

A most important characteristic of hand gestures is that they are typically 
made in relation to existing objects in the drawing space. Gestures that enact 
an idea are often acted out in the context of a sketch or other object in the 
drawing space (e.g., the fingerprint recognition gestures over the namepad 
sketch on lines 25 and 30). Gestures are often used to direct the group's 
attention by referring to sketches or other objects (e.g., pointing to another 
group member) in the drawing space. These observations indicate that it is 
important to not only see the gesture, but also to see it in relation to the 
workspace and the other participants. 

One observed problem concerning gestures is that they are sometimes not 
perceived by other team members, because their attention is focused else
where. Being able to clearly view gestures can be difficult, especially in meet
ings with many participants. Meetings in computer-augmented rooms [e.g., 
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Colab (Stefik et al., 1987)] that are cluttered with computer equipment, 
or meetings involving participants in physically remote locations present 
greater challenges in sharing gestures. 

Tools could be applied to convey gestures so that all of the participants 
can share in viewing them. Such tools should also preserve the relationship 
between gestures and their referents in the shared drawing space. Video Draw 
(Tang and Minneman, 1991) is an example of a prototype tool that uses 
video to convey gestures in support of collaborative drawing activity. Hand 
gestures are captured by a video camera aimed at the drawing surface. This 
video image is presented as part of the shared drawing surface that the other 
collaborators view, so that everyone can see those gestures and see them in 
relation to the marks that they refer to on the drawing surface. 

5.6. Advantages and Constraints of the Methodology 

Video-based interaction analysis is a useful methology for studying human 
activity. Studying how people actually accomplish an activity leads to a 
better understanding of the resources and hindrances that exist for the par
ticipants and suggests the design of tools to augment those resources while 
eliminating obstacles in their work. This methodology results in an analysis 
that is strongly tied to examples from realistic work activity. 

Interaction analysis enables a new understanding of design activity that 
cannot be obtained by the previously discussed methods that have been 
applied to study it. For example, with respect to studying hand gestures, 
interaction analysis has enabled an understanding of how gestures are used 
in the context of collaborative design, leading to specific design implications 
for tools to support that activity. Psychological experiments would have 
studied gestures in isolation, possibly missing the importance of the relation
ship between gestures and their referent sketches. Protocol analysis would 
depend on people being sufficiently aware of their use of gesture to report on 
it in their thinking aloud. Yet, it is because gestures are so naturally and 
effortlessly used that they are an effective resource for designers in collabora
tion. The time scale of participant observation studies would not lend them
selves to focusing on the role of hand gestures in the design process. 

However, video-based interaction analysis has some constraints that sug
gest when it is and is not appropriate to use. Interaction analysis is limited to 
observing a tractable time period of activity (typically hours, rather than 
weeks or months). This may seem like a limited amount of observed activity, 
yet it contains a wealth of data that requires a large amount of time to 
analyze. Consequently, only a limited sample of activity can be studied using 
this fine grained analysis. 

A related concern is how the observations gained from this methodology 
can be generalized. Certainly, other kinds of activity might occur under 
different situations than those observed. Thus, it is important to present the 
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findings in terms of the context in which they were observed. Those findings 
that are based on evidence that goes beyond that particular context (such as 
the observations reported here on the use of hand gestures) can be more 
broadly generalized. However, some findings will be more dependent on the 
specific context (e.g., that only one person tends to work at the chalkboard 
at a time), and can only be generalized to certain similar contexts. 

A concern that is often raised in observational studies such as these is that 
observing the activity may affect the activity itself. There is evidence in the 
psychology literature that the initial effects of being observed fade quickly 
with time (Kelley & Thibaut, 1969, p. 6). There is no rigorous test that can 
determine the effects of being observed. We assert that the passive observa
tional method presented in this paper is less disrupting than the controlled 
experimental and protocol analysis methods used in other design studies. In 
the sessions that we have observed, there were only isolated references to the 
fact that the participants were being videotaped ("Don't mind the 'explosive' 
television cameras", "Oh I did that on TV"); otherwise the activity was 
focused on the design task. Besides these isolated references, there was no 
visible evidence that the observation affected the group's activity. 

5.7. Applying this Methodology in the Design Process 

In applying interaction analysis to study group design activity, we discovered 
that it could be used not only to study the design process but also as part of 
the design process. In the research reported in this paper, the work activity 
of design teams is studied in order to help develop tools to better support 
group design activity. This research models a design process where the de
signers first understand the needs of their end users (which in this case are 
designers engaged in group work) before building tools to support the users' 
work. Applying interaction analysis to study the activity of the target end 
users could be used in any design process to understand the users' needs and 
guide the design of tools to support their work activity. 

While designers are often encouraged to understand the users' needs and 
design technology that meets those needs, the designers are typically not 
equipped with any methodologies to help them accomplish this need-finding. 
Interaction analysis could be applied to study the work activity of target end 
users in order to help designers identify what resources are used and what 
hindrances are encountered by their target users. This understanding could 
help guide the designers in designing technology that augments resources 
while eliminating hindrances in users' work. In this way, interaction analysis 
can be an integral part of the design process. 

When applying this methodology as part of the design process, a trouble
some concern arises. Since this methodology depends on observing actual 
interaction with an artifact, it is difficult to apply it to the design of future 
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technology that does not yet exist. The participants must have an artifact of 
some form to interact with in order to use this methodology to observe their 
interaction with it. A starting point is to study a related work activity in 
order to understand where to begin intervening with new technology. The 
research presented in this chapter an example of that approach: collaborative 
design activity using conventional tools (paper, pen, chalkboard) was studied 
in order to guide the design of new tools to support that activity. 

Additionally, a rapid prototyping design approach that functionally pro
totypes or simulates the imagined new technology can give some indication 
of how the users will interact with it. Vertelney (1989) describes some tech
niques using computers and video to quickly prototype user interfaces. By 
iterating between observing prototypes in use and developing new proto
types, a new technology can emerge that is designed to fit the needs and 
capabilities of its users. Early experiences in applying the observational 
methodology as part of the design process to understand the needs of users 
are reported by Tatar (1989), Tang et al. (1990), and Suchman and Trigg 
(1990). 

5.8. Conclusions 

Video-based interaction analysis is a qualitative methodology that can be 
used to study group design activity. This methodology results in a descriptive 
analysis of the activity, leading to an explanation and understanding of how 
the group accomplished their work. It has been applied to study the colla
borative drawing activity of design teams (Tang, 1989). In this research, the 
methodology identified prominent features of group workspace activity (e.g., 
gestures, the process of creating drawings) and a better understanding of 
specific aspects of those features (e.g., the relationship of gestures to the 
workspace, the use of the drawing process to mediate interaction). Using this 
methodology to study design activity leads to a better understanding of the 
design process. 

This methodology can also be used as part of the design process, to 
understand the needs of the users and guide the design of technology to meet 
those needs. In our studies of collaborative design activity, this methodology 
helped identify specific implications for the design of tools to support that 
activity. Using this methodology as part of the design process leads to the 
design of better artifacts that fulfill users' needs. 
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Appendix 

Problem statement for the design session: 

In teams of three or four, design a custom multifunction telephone for the user and 
environment of your choice. 

It should have at least three of the following functions: auto-dial and redial, 
answering machine, calendar and clock, log or diary, call waiting and forwarding, 
hold and transfer, conferencing, call-back, speaker-phone or any other you might 
think of relevant to your particular user(s). 

The goal of this project is for you to be able to design complex computer-based 
products which are easy, efficient, safe and satisfying to use. You should be able 
to use scenarios to describe users and environments, task analysis to determine 
information needs, keystroke models to predict efficiency and simple prototypes and 
storyboards to check learning. 
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ARTHUR G. ERDMAN 

Abstract. Conceptual design is typically not well represented by traditional 
engineering mathematics. This work is concerned with eliciting and repre
senting the knowledge used in the conceptual stage of mechanism design. 
This is the first stage of design, and, along with formulating the problem, 
establishes a function structure and selects processes and geometries for 
components realizing the functions. A formally based representation is de
veloped that reveals conceptual connections and explicates terms and their 
valid patterns of use. The formalisms are largely adopted from theoretical 
computer science. Two knowledge components are formulated: one reveals 
the designer's view of the problem as it evolves, and the other captures 
aspects of control and strategy. The reliability of these schemes is discussed 
and characteristics of limited conceptual design are identified. We describe 
our methods of collecting and encoding protocols and discuss how our 
formalisms could underlie a software toolkit for acquiring and representing 
conceptual mechanical design knowledge. Finally, we relate our formalisms 
to paradigms of conceptual design. 

1. Introduction 

This work is concerned with one tool used in the application of AI to design: 
protocol analysis [(see, for example, Ullman and Dietterich (1988) and 
Waldron and Waldron (1989)]. A protocol is a record of a problem-solving 
session in which the subject thinks aloud. Analyzing the protocol reveals the 
concepts brought to bear in the problem area and the inferential relation
ships among the concepts. Protocol analysis is thus a primary tool for 
acquiring knowledge used in knowledge-based systems (KBSs). We are con
cerned with the analysis of mechanical design protocols and especially with 
the conceptual stage of design (Pahl and Beitz, 1984), which establishes a 
function structure and chooses the physical processes and geometries for 
components realizing the functions. Conceptual design is followed by em
bodiment design, which determines the layout. The problems we present to 
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our subjects are intermediate in the innovative-routine spectrum of design 
(Brown, 1985). Initially, the function structure is only roughly known, and 
there is no hint of the structure of the solution, yet our subjects solve them in 
1 or 2 h. While the problem-solving strategies are not known in advance, 
they are largely determined by the designer's understanding of the problem. 
We call the sort of design revealed in our protocols limited conceptual me
chanical design. 

This chapter presents a constellation of formally based schemes to repre
sent what is revealed in these protocols and is one step toward integrating 
"scruffy" and "neat" aspects of AI as they apply to design (Esterline et al., 
1989). The fact that knowledge-based design approaches generally ignore 
problem formulation originally motivated our use of protocol analysis. Our 
study of problem formulation led to the entire conceptual stage. Indeed, 
insufficient attention is given to how a problem is initially elaborated even 
though some sort of structure is assumed by AI approaches to design, such 
as constraint propagation (Sussman and Steele, 1989), qualitative simula
tion, and case-based reasoning [see, for example, Riesbeck and Schank 
(1989) and Sycara and Navinchandra (1989)]. We emphasize the importance 
of a sound representation, which is reliable in the sense that two people 
encoding the same protocol into the representation tend to agree, which also 
allows one to judge the similarity of design approaches and to evaluate 
prescribed techniques against practice, and which, finally, suggests testable 
generalizations. 

A formally based representation is desirable since we wish to capture 
conceptual relations that allow the design to carry through and we wish to 
explicate with computational notions the terms we introduce. In addition to 
predicate logic, we borrow formalisms from theoretical computer science 
(denotational semantics, formal language theory, and Petri nets). Note that 
we use computational formalisms for representing a design problem and its 
evolution. This shows an emphasis different from that traditionally asso
ciated with computers in engineering, where typically one attempts to find 
efficient algorithms for solving problems that can be handled with simple 
data structures. The formalisms we use come from programming language 
semantics and the study of concurrent systems. They have been used in 
software engineering, where representing what is required or specified, rather 
than stating how to compute the solution, is emphasized. Knowledge repre
sentation in AI has drawn some from formal areas of computer science. 
Formulating results in computational formalisms not only enhances rigor 
but also makes these results more accessible to implementation in software, 
thus promoting the AI goal of modeling intelligent activity computationally. 
In our case, results become accessible for design automation, the ultimate 
practical goal of our work. 

Our attempt to represent the problem aspects that are significant in a 
sequence of design steps may be compared with the drill students in philoso
phy and linguistics go through translating English sentences into logical 
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formulas. Since the goal of this drill is to determine whether an inference is 
valid, the task is to reveal a sentence's logical form relevant to the inference 
at hand. The level of detail in this logical form depends on the inferential 
mechanisms involved. Often detail in the English sentence is suppressed, but 
often what is only implicit in the English sentence must be explicitly repre
sented in the formalism. Likewise, in encoding design protocols, we capture 
the conceptual relations that allow the design to carry through; a major goal 
is to encode at the appropriate level, and this requires encodings of protocol 
fragments to be both backward- and forward-looking. A related issue is the 
vocabulary to use in the encoding. On the one hand, we would like to use a 
uniform vocabulary with a mathematical flavor for all protocols. This would 
allow conceptual relations to be expressed in a uniform and perspicuous 
manner. On the other hand, we would like to keep contact with the designer 
and the design context by using terms from the protocol. We have accepted 
a compromise. 

We first present the structured instance diagram (SID), which represents 
the designer's view of the problem state evolving through time. Static aspects 
of this diagram (the "static ontology") are discussed in Section 2, while 
dynamic aspects (the "dynamic ontology") are discussed in Section 3. Sec
tion 4 formulates the static and dynamic ontologies in the domain equations 
of denotational semantics. These ontologies can be viewed as type systems 
such that a SID is composed of interrelated instances of items declared in the 
ontologies and values associated with these instances. Section 5 presents our 
representation of control knowledge in terms of modified Petri nets. These 
nets consist of "foci" and transitions among foci, which are controlled by 
conditions relating to a SID. Each focus has as its name a phrase that 
describes the focused, coherent aspect of design represented by the focus. 
Focus names and atomic conditions are described by formal languages 
(grammars) to ensure that they are formally well-defined. 

Note that a SID is specific to a particular protocol. The ontologies, in 
contrast, are type systems that govern the construction of any SID. The 
design nets are likewise general. When a protocol is encoded, a document 
called a trace is produced that partitions the protocol into episodes identified 
with net transitions. The conditions and changes in the SID associated with 
each episode are noted, and the SID is accordingly updated. As a protocol is 
encoded, new items may need to be added to the ontologies to sanction 
needed constructs in the SID and new foci or transitions may need to be 
added to the nets to reflect new kinds of transitions, but these additions are 
permanent and are available when future protocols are encoded. 

We defer to Section 6 a detailed discussion of our encoding process and its 
reliability so that the formal framework presented in Sections 2-5 may be 
assumed. Section 7 discusses software support for our encoding schemes. We 
review several toolkits and indicate how a software toolkit for our schemes 
could borrow from these. A prior question is whether the general models 
underlying these toolkits are appropriate for protocol analysis in our do-
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main. We assess in these terms the most influential toolkit, Shelley, and the 
KADS model of expertise underlying it. Section 8 addresses the difficult 
notion of strategies, conceived as abstract control patterns with scope greater 
than but encompassing that of the transitions in the design nets. We review 
the various computer-science formalisms used to capture the temporal order 
of events as possible ways to represent strategies in conceptual mechanical 
design, and again modified Petri nets are found most appropriate. Capturing 
strategies, however, strains our representational resources and, note, the 
resources of any formally based schemes. In section 9, we discuss two para
digms of design that together subsume most paradigms that have been advo
cated recently. We consider how these paradigms relate to and supplement 
our framework and especially how they interact with our representation 
schemes. Section 10 is the conclusion. 

It is important to realize the limitations of the research reported in this 
chapter. We do not claim that protocol analysis is the only valid method for 
investigating conceptual mechanical design. Indeed, in Section 9.1 we de
scribe a method (the "critical instance technique") we have developed to 
supplement our protocol analysis, and there are many other knowledge 
elicitation and acquisition techniques that could be applied to our domain. 
But we do claim that protocol analysis, along with representation of the 
knowledge thereby revealed, is the principle tool for investigating how con
ceptual design is performed. The spontaneous flow of a protocol is required 
to get a handle on the progressive structuring of the problem state that 
characterizes conceptual design. One devises representation schemes to cap
ture this structure and its evolution and to express control patterns and 
strategies. In the first instance, knowledge elicitation is not appropriate here 
since it imposes representation schemes on the problem solving. 

Again, problems remain with our schemes. The SID and allied notions are 
largely worked out, but there remain problems with the design nets, espe
cially as these are intended to support our representation of strategies. There 
is, however, no need to follow our framework in toto. Protocol analysis is a 
very time consuming endeavor. We tend to select only the more revealing 
protocols and analyze them from start to finish. One could, however, skip or 
lightly analyze large parts of a protocol. Again, one could use only part of 
our representation scheme or use only part in outline. For example, one 
could construct only a skeletal SID for a protocol and attach comments to 
the structure it presents. 

What is presented in this chapter is not an account of conceptual mechani
cal design but rather aframework of techniques and especially representation 
formalisms. (Still, this framework sets limits for an acceptable account.) The 
ultimate practical goal of these formalisms is to facilitate automation of 
aspects of conceptual mechanical design. Again there is no need for the 
representations to be automated in toto. For automation of conceptual de
sign, the control patterns represented by the design nets, and especially 
strategies, are particularly important since conceptual design generally offers 
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a multitude of options and picking up a viable line of reasoning is critical. 
We envisage such automation as human-machine cooperation in part be
cause specifications often need to be added, modified, or refined. 

To represent control patterns, we use formalisms intended to capture 
concurrency. This may seem odd since we usually think of a train of thoughts 
as serial, although perhaps this is because speech is necessarily serial. The 
concurrency assumed by the formalisms is the existence of concurrent se
quences of events, and this does not imply that the individual events occur at 
the same time. The usual picture is an interleaving of sequences that is 
nondeterministic regarding whether certain events in one sequence precede 
or follow certain events in another sequence. We identify episodes in the 
protocol that correspond to transitions in the design nets. Using formalisms 
that admit concurrency allows us to look for patterns that abstract from 
insignificant ordering and fluctuations. Its is also useful to consider episodes 
that overlap or coincide. This is natural since lines of reasoning often 
overlap. 

In this chapter, we discuss a significant number of formalisms and we 
describe our rather extensive representation schemes. Space restrictions, 
however, prohibit detailed discussions and all but a few examples. Generally, 
we give just enough information on the various formalisms to compare them 
on critical points and to highlight their strengths and weaknesses as means of 
representing aspects of conceptual mechanical design protocols. We give a 
few examples of skeletal SIDs, but we do not show examples of design nets; 
we give fragments of the semantic grammars for generating focus names and 
atomic conditions, and it is hoped that the reader will generate several focus 
names and atomic conditions to get a feel for the nets. We give the key 
references for each formalism discussed, and the interested reader is encour
aged to refer to the appropriate references for a presentation of the formal
ism; the issues raised here should be kept in mind when the references are 
consulted. What inevitably is lost in our presentation is a clear picture of 
how the various formalisms support rigorous reasoning; the reader is asked 
to accept this on faith until he/she consults the references. 

2. The Structured Instance Diagram (SID): 
A Representation of the Designer's View 

The structured instance diagram (SID) is a representational device, con
structed as a protocol is analyzed, that represents the designer's view of the 
problem state evolving through time. It makes explicit the ontology inherent 
in the problem state. Our graphical representation involving entities, rela
tions and properties elaborates the entity-relationship model used in da
tabase modeling (Chen, 1976), although our representations denote instances 
of concepts (thus "structured instance diagram") and not sets of tuples. The 
SID is a framework for tabulating information about the things referred to 
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(if only implicitly) in the protocol. It captures this information by relating 
instances of general concepts of entities, tasks, relations, and properties in a 
structured way that generalizes graphical representations using nodes and 
arcs. The SID can give a snapshot of the design at any specific stage. It also 
includes special relations (which appear as special kinds of arcs) that indicate 
how the design evolves. Section 3 discusses how the evolution of the design 
is represented; this section is restricted to the snapshot aspects of the SID. 
The elements of a SID are, in the first instance and as discussed below, 
formal elements that feature in domain equations of denotational semantics. 
They are secondarily elements of a graphical representation that is an intu
itive tool allowing one not only to comprehend at a glance the major features 
of the protocol but also to encode all but the fine points of a protocol with a 
limited background in computer science formalisms. As a protocol is ana
lyzed, the ontological items are tabulated in a structured way as indicated 
below. This tabulation translates directly into the graphical representation. 
Each item tabulated must be declared in the static ontology (discussed in 
Section 4), and the structure of the SID must be consistent with the type 
constraints imposed by this ontology. (The evolutionary aspects of the 
SID-discussed in Section 3-are declared in the dynamic ontology, also 
discussed in Section 4.) In this section, we first (in 2.1) present and illustrate 
the basic notions involved in a SID. The representation of time and change 
(in the task or artifact being designed) is an important special area and is 
discussed separately (in 2.2). 

2.1. Basic Notions 

The items represented in the SID include not only entities, properties, and 
relations, but also tasks. 

• Entities (represented by rectangular nodes) include not only devices but 
also operands, obstacles, and more. 

• Tasks (represented by hexagonal nodes) are functions required by the 
design. 

• Distinguished relations (represented by special arcs) are usually among 
tasks or among entities and tasks. 

• A nondistinguished relation (represented by a diamond node connected 
by arcs to the items it relates) typically (but not always) relates entities. 

• A property (represented by an oval node connected by an arc to what it is 
a property of) is typically (but not always) a property of an entity. 

In general, a relation could be among any kinds of items and a property 
could be of any kind of item. To relate items in the diagram to tabulated 
items, either names (preferably taken from the protocol) or reference num
bers may be used. 

Figure 6.1 presents a problem specification that we have given to de
signers: to design a device that will tie together bundles of plastic tubes. 
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Device 
B A 

000 
to tie o0o 0000 
Bundles 

0000 < o0o0o0o0o0o 
000 Bundle of Plastic Tubes 

FIGURE 6.1. Problem specification. (1) A device is required to tie mechanically a 
bundle of flexible plastic tubes. (2) Each tube will be 12" long and will have an outside 
diameter of 1/2". The tubes will be presented to the device already loosely grouped in 
a bundle, as shoWn above at A. The bundle will always have 12 tubes. (3) The device 
should return the tied bundle to approximately the same place where the bundle was 
presented to the device (that is, A and B are at approximately the same location). 
(4) The device is to use the relative inexpensive paper enclosed wire "twist-ons" to tie 
the bundle of tubes. 

Figure 6.2 is the tabulation of that part of the SID representing the infor
mation in this specification. This was completed after only the specification 
was read, but it is subject to revision in light of statements later made by the 
designer that indicate his/her interpretation of the specification. There are 
three tasks and two entities in Figure 6.2, each labeled with a unique positive 
integer. Item I is the main task of the problem: tying the bundle of tubes. 
Entity 2 is the bundle of tubes, task 3 returns the bundle, task 4 receives the 
bundle, and entity 5 is the twist-on used to tie the bundle. Entities and tasks 
are labeled with consecutive integers, beginning with 1, roughly in the order 
they appear in the protocol. Relations, properties, and most other informa
tion are listed under the appropriate entities and tasks. A relation is listed 
under its first argument. Additional properties and relations of a given task 
or entity may appear any time in the protocol, so it is advisable to list each 
entity or task on a separate sheet of paper. A reference in square brackets to 
one or more protocol fragments is included as justification at the end of 
a tabulated entry. The references in Figure 6.2 have the form [O.X] or 
[O.X, O.Y]. "0" indicates the problem specification and X andY indicate the 
specification (1-5) or the figure (fig) in the specification; the second form 
indicates that two specifications are relevant. Before a protocol transcription 
is encoded, it is divided into large sections numbered 0 (for the specifica
tions) on up, and each section is segmented into phrases. (Partition into epi
sodes, reflecting transitions in the design nets, comes later, as part of the en
coding process.) Figures (supplied or drawn by the designer) are associated 
with protocol sections and are enumerated within these sections. A square
bracketed justification in a tabulated entry is a list of one or more references 
of the form M.X, where M is a section number and X is either the number 
of a segment or a reference to a figure in that section. (This form of refer
ence to segments is also used to relate episodes to parts of the protocol text.) 
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1. Compact-typing (task) (0.1] 
Operand (l, (2, 5) ): the operands of 1 are 2 and 5 [0.1, 0.4] 

(WR(1) n R(2))som• # 0 (0.1] 
(WR(1) n R(5))som• # 0 [0.4] 

2. Bundle (of flexible plastic tubes) (entity) [0.1] 
Rei-Joe (2, 5): the relative location of 2 to 5 [0.4] 

initial: 2 distant from 5 [0.4] 
-+ I [0.4] 
final: 2 tied to 5 [0.4] 

a (2): orientation of 2 (quality) [O.fig] 
value: The axis of 2 is horizontal and is normal to the direction 2 

moves to and from the device realizing 1. 
b (2): compactness of 2 (accident) [0.2] 

initial: no (0.2] 
-+ 1 [0.2, 0.3] 
final: yes [0.2, 0.3] 

collection (2) [0 .2] 
collection(2). cardinality (quality); value: 12 
collection(2). type (quality); value: tube 

collection(2). type. a: flexible (accident) 
collection(2). type. b: material (quality); value: plastic 
collection(2). type .length (quality); value: 12" 
collection(2). type. c: inside diameter (quality); value: 1/2" 

length (2) (0.2] (quality); value: 12" 
3. Returning (task) [0.3] 

Operand (3, (2)): the operand of 3 is 2 [0.3] 
end (1)::;;; end (3) (0.3] 
Postrequisite (3, I): 3 is a postrequisite of 1 [0.3] 

4. Receiving (task) (0.3] 
Operand (4, (2)): the operand of 4 is 2 (0.3] 
begin (4) ::;;; begin (1) [0.3] 
Prerequisite (4, 1): 4 is a prerequisite of 1 [0.3] 

5. Twist-on {tie} (entity) (0.4] 
a (5): composition of 5 (quality) (0.4]; value: paper enclosed wire 
dimensions (5) [0.4]; value: 

(>the perimeter of the cross section of 2nnal(l)• ::;;; 1-2", negligible) 
deformed-shape (5) (quality) 

initial: 
-+ 1 [0.4] 
final: the largest dimension is deformed to follow the perimeter of a 

cross section of 2nnal(l)· (0.4] 
b (5): tied (accident) [0.4] 

initial: no [0.4] 
-+ I [0.4] 
final: yes (0.4] 

FIGURE 6.2. The tabular form of the SID for the specification in Figure 6.1. 
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FIGURE 6.3. Graphical representation of major items in the SID tabulated in Figure 
6.2. Prereq, Postreq, and Op stand for the relations Prerequisite, Postrequisite, and 
Operand. Rel-loc is the relative location relation. Tasks are represented by hexagonal 
nodes and entities by square nodes. The reference numbers refer to the tasks and 
entities as in Figure 6.2, viz.,l: Compact tying (task); 2: Bundle (entity); 3: Returning 
(task); 4: Receiving (task); 5: Twist-on (entity). 

Figure 6.3 shows the major items in the graphical representation of the 
SID for the specification given in Figure 6.1. For simplicity, this suppresses 
much of the information in the tabular form of the SID presented in Figure 
6.2. 

A task generally has one or more operands, the entities on which it oper
ates, and instances of the distinguished relation Operand are listed under the 
appropriate tasks in Figure 6.2. For example, under 1, there is Operand 
(1,(2,5)), indicating that the operands of 1 are 2 and 5. In general, the 
second argument is ann-tuple indicating that all n elements are operands of 
the first argument. The arguments of relations in general are listed as far as 
possible in the order they appear in their English reading, with the subject 
first; it is thus natural to tabulate a relation under its first argument. 

We frequently use the term "relation" or "property" to mean an assertion 
that a relation holds among certain items or that a property (which mathe
matically is a unary relation) holds of an item. That is, we often use "rela
tion" or "property" to mean an instance of the relation or property, with all 
argument positions filled in. In contrast, when we say that a relation is 
distinguished, we mean that the relation itself (with its argument positions 
unspecified) is accorded special status and its name is part of the established 
terminology. Names for other, nondistinguished relations must be coined as 
they are encountered. There are also distinguished properties. For example, 
length(2) refers to the length of entity 2 (the bundle). This has an associated 
value, 12", and so it is what we term a quality. Other properties (such as the 
compactness of the bundle) are aU-or-nothing (at least at this stage of the 
analysis): if one is asserted of an item, there is no need to specify a value for 
it. We call such properties (as with "quality," with apologies to Aristotle) 
accidents. 

More explicitly, a quality fmay be seen as a binary relation/(-._) that is a 
functional relation: given i (of the appropriate type), there is a unique v such 
thatf(i, v) holds. We could thus represent/explicitly as a function and write 
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f(i) = v.lfwe allow that i may not be of the appropriate type, thenf(i) may 
or may not be defined [that is.f(-) would be a partial function not necessar
ily total on this larger domain]. The values of i for whichfis defined (that is, 
the values constituting the "appropriate type" for i) are the domain of 
definition off. When we consider/(-) to denote a property, we takef(i) to 
be true or false depending on whether i is in the domain of definition of the 
function/(-); if it is, then we may further ask about the value off(i), where 
f(-) is now treated as a function. In database terms, f is an attribute, i is a 
key (or denotes the individual uniquely determined by a key), vis the value 
of attribute f for the individual i, i is of the appropriate type if it is in the 
domain of the database relation in which f appears as an attribute (and 
possibly must also satisfy certain other integrity constraints), and v is of the 
appropriate type if it is in the domain off[which, by an unfortunate linguis
tic twist, is the case if mathematically it is in the range of the function/(-)]. 
A parallel analysis of an accident g shows that, in any instance g(i) of g, g is 
an attribute, i is a key, and the only possible values for g are true and 
false. The usual database way to handle this is to have a database relation 
(that is, a table) in which i occurs as a key iff (if and only if) g holds of i. We 
thus see g(_) as a predicate without a corresponding function. Because the 
emphasis is on functions in denotational semantics, we shall indeed later 
view an accident as a function with range {true,fa/se}. For now, however, we 
use the natural distinction that a quality has an associated (functional) value 
while an accident has not. The quality-accident distinction also applies to 
relations. For example, the Operand relation is an accident relation: Ope
rand(/, L), where I is a task and Lis a list of entities, is true or false, and no 
value is indicated if it is true. In contrast, Re/-loc(l, J), where, for example, I 
and J are entities, is true if there is a relation of relative location between I 
and J; if there is, then we may ask for an associated value, say, a direction 
and a distance. 

Properties that are not distinguished are given consecutive lower case 
letters, starting with a, as names [see, for example, a(2) and b(2) under 2 in 
Figure 6.2] so the SID may be annotated without clutter. Each task or 
entity has its own sequence of names. Each nondistinguished property is 
accompanied in the tabulation by an English phrase to explain its meaning. 
Nondistinguished relations are treated similarly but with upper case letters 
since our convention is that a relation name begins with an upper case letter. 

Properties of properties are represented by recordlike structures. As an 
example, col/ection(2) in Figure 6.2 asserts that the distinguished pro
perty collection holds of entity 2 (the bundle). Accident collection has pro
perties cardinality (a quality whose value is the number of repeated parts) 
and type. The quality type has a value but also has its own properties. At this 
stage, we have three levels of properties, giving expressions such as a( type 
(collection (2))). Our conventions allow us to write this as collection(2).type.a. 
Property collection(2) also illustrates that, for an item that does not change 
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throughout the protocol, a single reference can apply to that item and all 
its subordinates. 

The values recorded for quality properties and quality relations in Figure 
6.2 undoubtedly strike some as strange. The values that pass without ques
tion are real numbers, which may be associated with measurements. No 
measuring procedure, however, is defined early in the protocol and it would 
be a mistake to distort the protocol by overspecifying the problem state 
even if the additional precision were accompanied by such qualifications as 
intervals or probabilities. Sometimes the problem state, by virtue of the 
specification or a pronouncement by the designer, does afford a real number, 
as when length(2) in Figure 6.2 has the value 12". Sometimes all that is 
available is something similar to a constraint, like the value for a(2), the 
orientation of the bundle. A value might have components, only some of 
which relate directly to real numbers-see the value of dimensions(5), the 
dimensions of the twist-on. In finding an appropriate level of detail at which 
to encode a protocol fragment, we try to decompose the problem state into 
ontological items that give the most direct translation consonant with the 
minimum structure that allows the content of subsequent fragments to be 
treated as an elaboration of the structure and constraints already present. 
Values are to be no more precise than the fragment warrants and no more 
decomposed than references later in the protocol require. One can always 
revise the encoding of a fragment in light of the detail needed to support later 
design activity. In fact, we have discovered that usually almost all elabora
tion can be attributed to new tasks and entities (and their properties and 
relations) that are introduced as the protocol evolves (see Section 3). 

The values of qualities typically are the types of items that further qualify 
items that have already been identified. For example, an entity must be 
identified before the question of the numerical value (or any other value) for 
its length can arise. Our approach emphasizes from the start the ontological 
items that impart structure on the problem state. Within the structure, it 
locates restrictions and constraints; these lead to the numerical values ex
ploited by familiar engineering techniques. Not only may a problem state fail 
to suggest values for familiar qualities, but it may also be mute about in
stances of certain very general and universally applicable properties and 
relations. For example, it may be pointless to assert a relation of relative 
location (Rel-loc in the terminology of Figure 6.2) between a certain pair of 
entities. 

2.2. Representing Time and Change 
It is essential to represent changes that certain items undergo. For example, 
the relation Rel-loc(2, 5) in Figure 6.2 is a quality relation that changes value 
when the top-level task is performed. This is indicated by recording, in lieu 
of a single value, an initial value and a final value; the -+ 1 between these 
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values indicates that the top-level task (1) intervenes. In general, the changing 
values of a relation or property are listed under it in chronological order, 
with tasks that contribute to the change from one value to another listed 
between them. Since an accident either holds or does not hold, the "values" 
for a changing accident are yes or no. 

Tasks potentially exhibit the richest temporal nature. When a task is 
sufficiently specific, a time profile is listed under it; this has the form 

initial: (description) [Ref0 ] 

ei: (description of e 1 ) [Refd 

en: (description of en> Refn] 
final: (description) [Refn+d 

The e~o 1 =::;; i =::;; n, are events and are listed in the order they occur and [Refd 
is a reference to the segment(s) in the protocol referring to event e1• If the 
task is repetitive, then .final is replaced by repeat and information about such 
things as period is included in the accompanying description. With constitu
ent events identified, changes in relations and properties can be correlated 
more finely with events within tasks; we use the notation e1(/) for the ith 
event of the task whose reference number is /. 

To state the spatial information available, WR(l) is used to denote the 
working region of the task with reference number I, the region where that 
task operates. Similarly, if J is the reference number of an entity, then R(J) 
denotes the region occupied by this entity. [Regions and working regions are 
histories in the sense of (Hayes, 1985).] To represent a temporal cross section 
of an item A, we use an expression of the form AT. Here T is a temporal 
reference of the form initial(/), final(!), or e1(/), where I is the reference 
number of a task. Relations among regions and working regions, or tempo
ral cross sections thereof, are expressed in set-theoretical notation. Examples 
are shown under task 1 in Figure 6.2, where the operator some (meaning 
sometime) is applied as a subscript to entire intersections; the first of the two 
statements asserts that WR(J) and R(2) intersect sometime. 

Representations for temporal relations have been extensively studied in 
the AI literature and elsewhere [see, for example, Allen, (1983), McDermott, 
(1982), and van Benthem (1983)]. We use the usual relation symbol for 
total orders (=::;;) and what can be defined in terms of it and equality to 
represent temporal relations among events that, at the current level of 
analysis, are thought of as happening at instants. Events thought of as oc
curring over time intervals are accommodated by introducing expressions 
begin(lnt) and end(lnt) to refer to the initial and final instants (or greatest 
lower bound and least upper bound) of interval Int. All these temporal 
relations are distinguished and are accidents with a mathematical flavor 
since there is an underlying total order. Indeed, there generally is significant 
temporal structure explicit in a design problem state. There are also distin
guished relations with a temporal aspect that presuppose something more 
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than a mere underlying order. For example, Prerequisite(4, 1) in Figure 
6.2 indicates that task 1 could not be done unless task 4 is done, and 
Postrequisite(3, 1) asserts that a successful conclusion of task 3 be done. 
Another distinguished relation is Causes(/, X), where I is a task and X 
can be (the value of) a relation or property or could even be an entity. The 
last three relations are accidents and have temporal implications (for exam
ple, a cause cannot occur after its effect), but they also presuppose some 
underlying mechanism (usually still to be designed). 

Most distinguished relations and properties have a mathematical flavor, 
yet, unlike temporal relations, are qualities (they have values). Even though 
the distinguished spatial relations (several of which appear in Figure 6.2) 
themselves have a mathematical flavor, their values, like the descriptions and 
values of nondistinguished relations and properties, tend at the beginning of 
the design process to be stated informally. The distinguished relations and 
properties, whose names are uniformly imposed independently of the terms 
used by the designer, frequently are only implicit at the beginning of the 
design process. The exceptions are temporal relations. 

3. Evolution of the SID: Representing the Designer's 
Changing View 

The SID thus far has been considered as it appears at one point in the design 
process. To capture its evolution as the design progresses, we introduce 
several distinguished relations. These relations are declared in the dynamic 
ontology, discussed (along with the static ontology-relating to the SID 
aspects discussed in Section 2) in Section 4. In this section, we first (in 3.1) 
present the distinguished relations in question along with some examples and 
introduce the notion of a "task DAG," which is a skeletal representation of 
a SID emphasizing evolutionary relations. As the designer's view evolves, 
alternatives arise and are evaluated. This requires additional representa
tional resources, which are discussed in 3.2. This section concludes with a 
summary (in 3.3) of how the character of the SID changes as the design 
activity progresses. 

3.1. Basic Notions 
One way for a design to progress is for a task to be decomposed into 
subtasks. If I is a task and h ... , In are subtasks of /, then Subtask(l~o /) 
holds for all i, 1 ~ i ~ n. Another way for a design to progress is by introduc
tion of an entity to realize (partially or wholly) a task. Sometimes a new, 
more specific entity is introduced to realize a less specific entity; a similar 
relation can obtain between tasks. Finally, an entity may require one or more 
tasks to be realized for it to perform as required. The distinguished relations 
we have just mentioned (after Subtask) are encoded as Realizes(E1, T1), 
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FIGURE 6.4. The major features of the initial expansion of the diagram of Figure 6.3, 
following A's protocol. Task 7 and entity 12 play a minor role and are ignored here. 
The labels Prereq, Postreq, Op, and Sub are abbreviations for the relation names 
Prerequisite, Postrequisite, Operand, and Subtask. The reference numbers refer to the 
tasks and entities as follows. 1: Compact-tying (task); 2: Bundle (entity); 3: Returning 
(task); 4: Receiving (task); 5: Twist-on (entity); 6: Compacting (task); 8: Gathering 
(task); 9: Jiggling (task); 10: Compacting device (entity); 11: Tying (task); 13: Two 
"C"-clamps (entity). 

RealizesE(EI> E2), RealizesT(Th T2), and Sustains(Th E 1), where T1 and T2 

are tasks and E 1 and E2 are entities. Note that, for fixed T2 , there is at most 
one T1 such that RealizesT(Th T2); if there were several tasks realizing Tb 
these tasks would count as subtasks. 

We illustrate these relations from our encodings of two protocols in which 
the problem shown in Figure 6.1 is solved. The first subject (henceforth 
called A) is a member of the mechanical engineering faculty at a major 
university. The second subject (henceforth called B) has more than 20 years 
industrial experience and is undegreed. At the level of detail shown, Figure 
6.3 (the graphical version of the SID for the specification in Figure 6.1) is 
valid for both subjects. Figure 6.4 shows how this was initially expanded by 
designer A, and Figure 6.5 shows how it was by designer B. To emphasize the 
general structure of the diagrams, with two exceptions (the tied property and 
the detached-part-of relation in Figure 6.5), only tasks, entities, and destin
guished relations are shown, and the Rel-loc relation shown in Figure 6.3 is 



www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 85 

FIGURE 6.5. The major features of the initial expansion of the diagram of Figure 6.3, 
following B's protocol. The labels Prereq, Postreq, Op, and Sub are abbreviations for 
the relation names Prerequisite, Postrequisite, Operand, and Subtask. The reference 
numbers refer to the tasks and entities as follows. 1: Compact-tying (task); 2: Bundle 
(entity); 3: Returning (task); 4: Receiving (task); 5: Twist-on (entity); 6: Hopper 
(entity); 7: Wire (entity); 8: Detaching (task); 9: Feeding (task); 10: Winding (task); 
11: Spindle (entity). The relational reference A( 5, 7) indicates that 5 is a detached part 
of7. 

ignored. Relations that give the history of the design are shown with double
headed arrows. 

Designer A decomposed the top-level task into a compacting task and a 
tying task, with compacting a prerequisite for tying. B, in contrast, decom
posed the top-level task into a detaching (of the twist-on from a uniform 
length of paper enclosed wire) task, a feeding (of the wire through a groove 
on the inside of a hopper holding the bundle) task, and a winding (to tie the 
twist-on) task. The subtasks A chose exhausted the parent task, while those 
chosen by B did not. A decomposed the compacting subtask into a gathering 
(the tubes together) task and a jiggling (the bundle so it assumes a stable 
shape) task but then realized (see the relation Realizes) both tasks with a 
single entity, called simply a compacting devise; it was ultimately realized 
(Realizes E) more concretely as a device consisting of two "C" -shaped 
effectors. (This remained conceived as a single entity throughout the proto
col.) B partially realized the top-level task with a hopper then accounted for 
the remaining aspects of the task with subtasks. He introduced a spindle to 
do the winding and detaching, but this introduced the need (Sustains) for a 
new task (not shown in Figure 6.5) of rotating the spindle. 
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If we restrict the SID to entities and tasks and the evolutionary relations 
among them, the result is nearly a tree or a forest (a set of trees), where the 
children of a node are those items derived directly from it by one of the 
evolutionary relations. Because of "function sharing" (where an entity real
izes more than one task-see 10 in Figure 6.4 and II in Figure 6.5), however, 
the skeletal diagram may fail to be a tree or even a forest. Still, the set of 
nodes and the set of arcs in question is formally a graph and it is never 
possible to find a directed path consisting of evolutionary arcs that cycles 
back on itself. That is, the skeletal diagram is formally a DAG (directed 
acyclic graph)-we call it the task DAG. This implies that, if two nodes in 
the task DAG are on a common directed path, then one unambiguously 
occurs earlier in the path than the other. This imposes a certain (partial) 
order on the nodes of the DAG, which we envision as ordered top (for 
items appearing earlier in the protocol) to bottom. The task DAG is similar 
to what Pahl and Beitz (1984) term a function structure. They see elabora
tion of a function structure as an initial phase of conceptual design. Our 
subjects, in contrast, intermingle elaboration of the task DAG with other 
aspects of design. 

Relations and properties are generally inherited along directed paths in the 
task DAG. The most obvious items not inherited are aggregate properties. 
This inheritance takes two forms. Relations and properties are inherited in a 
weak sense when several descendants taken together fulfill the role of an 
ancestor. For example, if a task is a prerequisite for another, then the sub
tasks of the first are collectively prerequisite for the subtasks, taken collec
tively, of the second. A relation or property is inherited in a strong sense 
when, if it holds of an ancestor, it holds of each descendent on its own. For 
example, if a task precedes another task, then all subtasks of the first precede 
the second and all subtasks of the second follow the first. Certain relations 
and properties (such as temporal relations) that may hold of tasks are not 
applicable to entities, and some that may hold of entities do not apply to 
tasks. Thus inheritance may skip items in the task DAG. Still, temporal 
relations among tasks, for example, impose constraints on the entities re
alizing those tasks. 

The task DAG shows how the problem is decomposed into subproblems. 
In the simplest case, a subproblem consists of a task, an entity realizing it, 
the information listed under both in the tabular form of the diagram, and 
any tasks or entities that evolve from the task and entity in question (that is, 
any of the subproblem's subproblems). The SID tends to cluster into sub
problems; this allows the graphical form of the diagram to be modularized 
so that the top level of each subproblem may be represented separately. A 
relation among items both in and outside a cluster represents, from the point 
of view of that cluster, an externally imposed constraint; such constraints 
make the diagram an a/most-hierarchical constraint network in the sense of 
Sussman and Steele (1980). Inheritance can be exploited to give succinct 
tabular and graphical representations of subproblems and to avoid redun
dancy across subproblems. 
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3.2. Alternatives and Evaluation 

Thus far all nodes in the SID have been considered AND nodes. For exam
ple, realizing a task requires realizing all its subtasks; the node representing 
the task is an AND node since it relates to the conjunction of the nodes that 
are reached from it along single evolutionary arcs. When, however, there are 
n > I alternative realizations of an item, we make n copies of the item, each 
connected to an arc from the original item. Each arc from the original to a 
copy represents an alternative path in the elaboration of the problem state, 
and the original node is an OR node since it relates to the disjunction of the 
nodes reached from it along each such arc. In the tabular form of the SID, 
each of the n alternatives is assigned a unique number J, 1 :s;; J :s;; n, and is 
listed separately and numbered /. J, where I is the number assigned to the 
original; each alternative is annotated with a summary of the alternatives 
to it. 

Each alternative is the starting point for a separate elaboration of the 
problem state. These elaborations may involve large parts of the structure 
beyond the alternatives themselves. Any arcs to or from the original node are 
present for each copy, although inheritance can be invoked to avoid explicit 
repetition. Even inheritance, however, cannot avoid detail that arises be
cause relations with other parts of the problem are elaborated differently. 
Furthermore, function sharing in an alternative may cause paths from other 
parts of the problem to converge on that alternative. The problem state can 
become complex when there are alternatives for several nodes concurrently, 
for then in principle each combination of alternatives is a possible starting 
point for further elaboration. In fact, however, experienced designers are 
adept at avoiding this combinatorial complexity. There are practical mea
sures to cope with such complexity in the graphical representation of the 
SID. A picture of the task DAG that suppresses most detail is a useful 
summary of the overall problem state. Separate sheets of paper can be used 
for the graphical representation of alternatives and repeated detail can be 
accommodated by drawing common structure once and photocopying. 

Often an alternative is not articulated until another alternative has been 
worked out in detail. There is apparently a preference for evaluating alter
natives against each other rather than on their own merit. The SID thus 
contains dead parts, representing failed alternatives, dormant parts, corre
sponding to unexplored alternatives, and growing parts, corresponding to 
the options currently considered. 

Evaluations are encoded as separate items. Such an encoding lists the 
alternatives being evaluated, their rankings according to any criteria that are 
mustered, records of which alternatives met whatever conditions are raised, 
and any facts cited. The encoding concludes with the decision to reject or 
to accept (possibly tentatively) various alternatives. An evaluation is repre
sented graphically by enclosing its scope within a dashed oval; "accept" and 
"reject" are written next to the appropriate items. 

A typical protocol revealed much less alternative development and explicit 
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evaluation than was anticipated. What generally occurs, however, is a review 
at the end of the design activity to ensure that nothing has been overlooked 
and that the proposed solution is consistent. Such reviews usually also hap
pen at least once earlier in the protocol; they guard against wasting effort 
developing results that are already vitiated by a careless mistake. A review 
may reveal deeper problems with the current (partial) design and occasion 
further elaboration. For example, the design may violate some condition; if 
the condition has not already been articulated, noting its violation is an 
occasion for doing so. The design may also fare poorly according to some 
criterion, which again may not be articulated until applied. In either case, 
further facts may be invoked to support the judgment, and, in general, more 
information is articulated and the diagram is accordingly modified. We do 
not introduce new representational resources to capture these reviews. We 
record when a review happens and any features it exhibits in common with 
evaluations: criteria and how well they are met and any facts raised. Also, if 
an error is uncovered, the diagram is changed to reflect the corrections the 
designer makes, but the old version is retained so that the steps taken may be 
recovered. 

The SID brings together all views the designer had during the design, but 
there is no guarantee that the designer actively retains all the information 
represented therein or that the designer has at any one time a global compre
hension of the current problem state. Our encoding does not represent such 
limitations on the designer's cognitive facilities. A good designer is aware of 
his/her limitations and engages in review as frequently as needed to be 
reasonably assured of consistency and comprehensiveness. 

Alternative accounts can be given of the modifications imposed when the 
current design is found unacceptable. One popular account views design as 
driven forward by propose-evaluate-accept/reject cycles. Capturing such 
cycles in our representation, however, would burden it with unjustifiable 
detail. For one thing, the individual propose-evaluate-accept/reject cycles 
and the relation of an accept or reject to a subsequent propose would impose 
many more relations of temporal order than in our scheme. Also, informa
tion articulated at any one of the three steps in a cycle could not be assumed 
to be of the same nature as the information articulated at the other two steps. 
Finally, since the decomposition of problems into subproblems can carry 
on arbitrarily far, propose-evaluate-accept/reject cycles can be arbitrarily 
deeply nested within other such cycles. In fact, given a proposal, the corre
sponding evaluation or acceptance/rejection could be indefinitely delayed by 
intervening proposals. 

In contrast, our account of the modifications imposed when the current 
design is found unacceptable is simply as further elaboration of the SID. 
Alternatives are listed together even when formulated at very different times, 
so a modification is seen as rejecting one alternative in favor of another. In 
general, the SID (in contrast to the nets discussed in Section 5) only roughly 
captures the sequence in which steps are taken. The task DAG captures only 
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a partial order on the tasks and entities articulated in the protocol. If two 
items are not on a common path, then they are incomparable: we cannot 
recover from the task DAG which was articulated before the other. 

3.3. The Changing Nature of the SID 

The SID changes character as it evolves. Entities and tasks at the top are 
concrete but typically only roughly described and are embedded in the con
text of the design problem. Early in the design process, entities and tasks are 
introduced that are more abstract and, in particular, are abstracted from the 
specific application context. Designers differ on how abstract they make the 
problem. Identification of the (largely spatia-temporal) properties relevant 
to mechanical design and especially relations (which are more important 
than properties in the abstract view) is a major part of abstracting from the 
context. As the design progresses, the number of tasks and entities increases, 
increasing the opportunities for relations and the general amount of detail. 

Accidents (both properties and relations), which are ali-or-nothing, tend 
to give way to qualities, which may assume various values. Some values are 
simply topological, expressing relations (such as above and below) among 
items without specifying distances, time intervals, and so on. Other values 
are dimensional or metric, and express such notions. Apart from quantitative 
information given in the specification, metric notions initially tend to be 
expressed qualitatively ("close", "far", "soon after") yet with an intended 
foundation that supports the comparisons ( ~) and operations(+, x ) valid 
for the real number system. Increasing detail restricts the range of the vari
ous dimensions relative to the dimensions in the specifications. Causal rela
tions give way to mechanical relations, and temporal relations become con
sequences of device structure. Our protocols conclude with all tasks realized 
by entities, and all mechanically relevant relations identified, although their 
values often remain fuzzy or even qualitative. 

4. Ontological Analysis and Domain Equations 

We now show how more formal rigor can be achieved with the representa
tional techniques we have presented. Such rigor is necessary to explicate the 
meanings of terms and valid patterns of their use. Defining the method in 
this way allows it to be applied consistently by different researchers. The 
following owes a great deal to Alexander, Freiling et al. [see Freiling et al. 
(1985), Alexander et al. (1987), and Freiling (1988)]. Their ontological 
analysis 

is a technique for the preliminary analysis of a problem solving domain. An ontology 
is a collection of abstract and concrete objects, relationships and transformations 
that represent the physical and cognitive entities necessary for accomplishing a task. 
(Alexander et al., 1987) 
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In this section we introduce ontologies, which are type systems available 
for declaring items that are instantiated in SIDs. While a SID is part of an 
encoding of a specific protocol, the ontologies are type systems for all SIDs 
hence for encoding any protocol. When a term is introduced for the first time 
in a SID (for example, it might be the name of a property taken from a 
protocol), it must be declared in a domain function equation in the static 
ontology. New domains (types) can be defined by domain equations, which 
impose explicit (and possibly extensive) constraints on how the declared 
terms can be instantiated together in a SID. The basic notions of ontological 
analysis are presented in 4.1. We use two of the three ontologies introduced 
by Alexander et al. The static ontology (presented in 4.2) gives the types of 
the items discussed in Section 2, that is, items that are instantiated in a SID 
insofar as part of the SID presents a snapshot of the problem state. The 
dynamic ontology (presented in 4.3) gives the types of the relations repre
senting in a SID the evolution of the problem state, as discussed in Section 3. 

4.1. Basic Notions 
Ontological analysis is based on the domain equations of denotational se
mantics [see Gordon (1979) and Stoy (1977)]. For our purposes, domains 
may be considered sets. There are two basic statement types: domain equa
tions (for example, SITE = BUILDING x CAMPUS) define domains or 
types, and domain function equations (for example, cscLbuilding: SITE) de
clare the domains to which elements belong. The right-hand side of a state
ment is composed of one or more domains (whose names contain upper case 
letters) or constant elements (whose names are those used in the SID) with 
operators relating them. Some domains (such as BOOLEAN and REAL) are 
given as primitives. There are five kinds of operators: 

• the discriminated union (generalization) of domains D and E, written D + 
E, defines the domain composed of each member of D and E, with original 
domain identity preserved; 

• the cartesian product (aggregation) of D and E, D x E, defines the domain 
composed of all ordered pairs whose first element is a member of D and 
second element is a member of E; 

• the mapping of D onto E, [D -+ E), defines the domain of all functions 
mapping D onto E; 

• the power set of D, D**2, defines the domain consisting of all subsets of 
D;and 

• the collection of ordered subsets of D, D*, defines the domain of all se
quences of zero or more elements of D. 

Ontological analysis classifies statements into one of three groups (or 
"ontologies") according to their function. The static ontology defines the 
primitive objects of the problem space. The dynamic ontology defines the 
actions that transform the problem from one state to another. Finally, the 
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epistemic ontology defines the control knowledge applied to the static and 
dynamic ontologies. In our terms, the distinguished relations, such as Real
izes, that govern the evolution of the ontology network relate to the dynamic 
ontology. All other items of the SID relate to the static ontology. In section 
5, we introduce design nets that do the job of the epistemic ontology but are 
more concrete. We preempt the epistemic ontology because, we believe, 
control knowledge is not adequately treated in the manner of a type system. 
Rather, control knowledge essentially relates to sequences of events and to 
how one set of events establishes a condition for a subsequent event. 

While a SID is specific to a protocol, the static and dynamic ontologies are 
general and may be thought of as supplying a type system (in the computer 
science sense) for the items that are recorded in any SID. Distinguished 
properties and relations are declared (via domain function equations) in 
advance and may be used in the SID encoding any protocol. Items that are 
introduced as a protocol is analyzed (and a SID is constructed) must be 
declared. (One can annotate the tabular form of the SID with type informa
tion for each item. Alternatively, one can maintain in parallel a separate 
dictionary with this information.) Requiring that all items be thus declared 
is the most fundamental step in promoting the logical coherence of the 
encoding of a protocol. Experience with protocol encoding indicates that 
logical coherence, while absolutely vital, is difficult to achieve without ex
plicit formalisms. Also, enforcing a type scheme on the items of an encoding 
greatly facilitates the move to executable code for a KBS. 

4.2. The Static Ontology 
Figure 6.6 shows a fragment of the static ontology simplified to avoid the 
notion of time. The standard primitive domains NAT _NUMBER (natural 
number) and REAL are used. The domains ENTITY and TASK are defined 
as domains of atomic objects, and SORTAL and MATERIAL are defined 
by enumeration. The definitions ofiNF_DISTANCE, INF_REGION, and 
TOPOLOGICAL-REL have not been shown because they are complex and 
involve informal notions. INF _DISTANCE (respectively, INF _REGION) 
is the domain of informally specified distances (respectively, regions); 
TOPOLOGICAL_REL can be thought of as the domain of spatial vectors 
specified only by topological relations (such as above). A quality property 
(for example, length) is represented as a mapping from the domain of things 
of which it holds to the domain of its possible values. A quality relation is 
similar. Note that [X--+ [Y--+ Z]] is the type of a two-argument function 
whose first argument is in X, second argument is in Y, and value is in Z. An 
accident property, which either holds or does not hold of an element, may be 
thought of as a Boolean-valued function, of type [X --+ BOOLEAN]; a simi
lar comment applies to accident relations (such as Prerequisite). Note that 
the value of collection may be false, allowing for entities that are not collec
tions. Also, the type of collection has been defined in terms of COLLEC-
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ENTITY= (atomic object) 
TASK= (atomic object) 
RR =REAL+ INF_DISTANCE 
length: [ENTITY -+ RR] 
SORTAL ={tube, ... } 
MATERIAL = {plastic, ... } 
COLLECTION_RECORD = 

NAT_NUMBER x SORTAL x 
BOOLEAN x MATERIAL x RR x RR 

collection: [ENTITY-+ (COLLECTION_RECORD + 
{false})] 

3D = RR x RR x RR 
LL = 3D + TOPOLOGICAL_REL 
dimension: [ENTITY -+ LL] 
Operand: [TASK-+ [ENTITY•-+ BOOLEAN]] 
Prerequisite: [TASK-+ [TASK-+ BOOLEAN]] 
Prerequisite: [TASK-+ [TASK-+ BOOLEAN]] 
REGION = LL + INF _REGION 
WR: [TASK-+ REGION] 
R: [ENTITY -+ REGION] 
n: [REGION-+ [REGION-+ REGION]] 

FIGURE 6.6. Fragment of the static ontology when time is omitted. 

TION_RECORD, which specifies sextuples that obviously address the cur
rent case of a bundle of tubes. In other contexts, we might want a relation 
type with fewer, more, or even different argument types. Thus, for the gen
eral case, we want a polyadic relation, and the right-hand side of the domain 
equation for COLLECTIQN_RECORD would list all the alternatives, sep
arated by'+ 's; such prolixity is the wages of accuracy. 

Figure 6. 7 shows how time is handled. The domain equations state that a 
time point is either a primitive time point or a relative time point. A primitive 
time point is an event in the time profile of a task, and the duration of this 
event is not considered significant for the problem at hand. A relative time 
point is a primitive time point with an offset, which is a (temporal) distance. 
The definition of time interval is similar. A time is either a time point of a 
time interval. The last line in Figure 6. 7 shows the declaration for the prop
erty length when values are allowed to change. It indicates that an entity 
at a time (point or interval) has a length. The definition of the entire time 
profile of a task has been omitted since it requires more sophisticated notions 
from denotational semantics. 

In Figures 6.6 and 6. 7, domains that are generally thought of as consisting 
of real numbers are augmented to allow for values denoted by informal 
descriptions. This is necessary to allow the values of properties and relations 
to be refined as the design progresses. · 
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POINT _EVENT = (atomic event) 
INTERVAL_EVENT = (atomic event) 
PRIMITIVE_ TIME_POINT = TASK x POINT _EVENT 
TIME_OFFSET = RR 
REL TIME_POINT = PRIMITIVE_ TIME_POINT x TIME_ OFFSET 
TIME_POINT = PRIMITIVE_ TIME_POINT x REL TIME_POINT 
PRIMITIVE_TIME_INTERVAL =TASK x INTERVAL_EVENT 
DERIVED_ TIME_INTERV AL = TIME_POINT x TIME_POINT 
REL_ TIME-INTERVAL= 

(PRIMITIVE_TIME_INTERVAL + DERIVED_TIME_INTERVAL) x 
TIME_ OFFSET 

TIME-INTERVAL = 
PRIMITIVE_ TIME-INTERVAL+ DERIVED_TIME_INTERVAL + 
REL_ TIME_INTERV AL 

TIME = TIME_POINT + TIME_INTERVAL 

length: [ENTITY -+ [TIME -+ RR]] 

FIGURE 6.7. Fragment for the part of the static ontology defining temporal domains. 
The declaration of length indicates how qualities are declared when their values are 
allowed to change. 

4.3. The Dynamic Ontology 
The dynamic ontology, as presented in this paper, is quite simple: 

Realizes: [ENTITY-+ [TASK-+ BOOLEAN]] 
RealizesT: [TASK-+ [TASK-+ BOOLEAN]] 
RealizesE: [ENTITY -+ [ENTITY -+ BOOLEAN]] 
Subtask: [TASK-+ [TASK-+ BOOLEAN]] 
Sustains: [TASK-+ [ENTITY-+ BOOLEAN]] 

5. Design Nets: Models of Control Knowledge 

To do the job of the epistemic ontology of Alexander et al., which defines 
control knowledge, we introduce a set of three design nets. In this section, we 
first (in 5.1) introduce the basic notions and the three design nets we have 
found necessary for encoding the control patterns in our protocols. In 5.2 we 
describe the trace encoded for a protocol, which (among other things) en
codes sequences of protocol episodes as sequences of net transition events. 
Since a problem decomposes into smaller problems and we maintain that 
design nets are general structures that govern the evolution of problem 
states, we must allow that there are different, concurrent activations of the 
nets for different subproblems that are still evolving. In 5.3 we explain the 
notion of a net activation. Having outlined what we require of design nets, 
we address in 5.4 how the nets can be formalized. The standard automaton 
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used in computer science for modeling concurrent sequences of events is a 
Petri net. To capture the salient aspects that we find in control patterns that 
occur in conceptual mechanical design, we add certain enhancements to Petri 
nets. Later, in Section 8, after characterizing strategies, we address the 
advantages for our purposes of Petri nets over other computer-science for
malisms that capture the temporal order of events. A Petri net has "places" 
that are connected by "transitions." We call a place a "focus," a term more 
appropriate for our application since we relate a focus to a coherent aspect 
of the problem considered at a particular step in a design process. Each 
focus has as its name a phrase describing the aspect to which it relates. The 
major enhancement we make, described in 5.5, is to associate a condition 
with each transition. A condition states something about the SID and a 
transition can "fire" only if its associated condition is true. Transition condi
tions are seen as Boolean combinations of atomic conditions. Thus, certain 
phrases-focus names and atomic conditions-are integral parts of a design 
net, and we must ensure that their functions-denoting problem aspects 
and stating conditions-are formally defined. A phrase must be constructed 
from a vocabul_ary with fixed meanings and so that the meaning of the phrase 
is composed in a well-defined way from the meanings of its constituents. 
Section 5.6 presents "semantic grammars" that generate these phrases. The 
control patterns in the traces for conceptual mechanical design protocols are 
often quite indeterminate, so the design nets have a difficult role. In Section 
8, we relate more abstract control patterns-strategies-to design nets. 

5.1. Basic Notions 

Like the static and dynamic ontologies, the design nets are general structures 
that govern the construction of any SID. They are an attempt to identify 
control that is common across diverse designers and mechanical design 
problems while allowing for differences. Unlike the static and dynamic 
ontologies (and unlike the epistemic ontology of Alexander et al.), the design 
nets represent sequences of events and how events establish conditions for 
subsequent events. An event in this context is a transition from one design 
step or state to the next, as indicated by an episode in a design protocol. Each 
net (or, more accurately, net activation-see below) can be in one of several 
states; the state of a given design activity is captured by the vector of states 
in the simulation of that activity by the various nets. The simulation of a 
design activity is a sequence of such vectors of states, and the events of 
interest are transitions from one state vector to another. Alternatively, we 
can think of the fundamental kind of event as a state transition in one net; a 
transition from one state vector to another is determined by one or more 
simultaneous net-specific events. Furthermore, we can think of the simula
tion of a design activity as fundamentally a sequence of (possibly simultane
ous) net-specific transitions (events). 
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We recognize three design nets. The task net relates to the task DAG and 
simulates design steps that decompose tasks into subtasks, find dependencies 
among tasks, and decide which tasks should be realized together. The 
behavior/structure net simulates design steps that articulate items represented 
in the SID that become manifested in the artifact, such as locations of inputs 
and outputs. Finally, the environment net simulates design steps that flesh out 
the problem setting by considering such things as the operands of a task and 
obstacles that exist in the environment. Nets interpret the SID. For example, 
the behavior/structure net might identify certain changes of location of 
entities as output motion for the artifact being designed. Again, the environ
ment net might identify a certain entity as an obstacle. 

5.2. The Trace Encoded for a Protocol 
An encoding of a design protocol using our methodology results in two 
documents: a SID and a trace of the net transitions. The trace is a collective 
document, with a separate document for each net. It records each transition, 
with (among other things) references to the episode(s) in the protocol that it 
simulates, the (pre)conditions in the SID that (along with the state of the net) 
enabled it, and the postconditions it established in the SID. The trace is 
specific to a protocol, but the nets (like the static and dynamic ontologies) 
are general. The SID is typically more complex than the bare sequence of 
transitions recorded in the trace since nothing in the structure of the nets 
represents items (entities, tasks, properties, or relations) in the design state. 
As a SID is constructed during the analysis of a design protocol, the dynamic 
and especially the static ontology are updated to declare new items and 
distinguished properties and relations that are needed to represent the 
evolving design state. Similarly, as the trace is constructed, the nets are 
updated to allow for steps, transitions, and conditions that are required by 
the encoding of the protocol but that have not previously been registered in 
the nets. The updates to the nets made while encoding a given protocol are 
typically more involved than the updates to the ontologies. The latter are 
usually declarations of items introduced specifically for the protocol and are 
largely independent of each other-the interactions of items are recorded 
in the SID. Updates to the nets, in contrast, allow steps and transitions that 
interact with those already allowed, and often a significant proportion of the 
steps and transitions recorded in the trace require new steps or transitions in 
the nets. 

Recall that the SID has a meager representation of the order in which 
items are added. The only ordering is supplied by the evolutionary arcs, 
which impose a partial order on the items in the task DAG. The episodes 
into which the protocol is partitioned are totally ordered since human speech 
is necessarily serial. The trace allows for concurrency of events since the 
nets support such concurrency-so an episode could correspond to several 
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design-step transitions. The nets, furthermore, show how the sequence of 
events recorded in the trace could be reordered without affecting the design 
activity recorded in the protocol. The nets thus "make sense" of the trace 
and allow arbitrary sequencing and fluctuations to be abstracted away. 
Thus, notions such as strategy and initiating, pursuing, or abandoning a line 
of reasoning are captured by the design nets and the sequence of design 
events they simulate. 

5.3. Net Activations 
To explain how the nets interact, it is helpful first to review the fundamental 
notions of concurrent processes as supported by parallel or distributed 
computing systems. A process is a running program, or an activation of a 
program, where a program may be considered a block of code. Any number 
of processes may correspond to a given block of code since the code is 
unchanged by being executed and each process has a distinct state, which 
changes as the process proceeds. A process state includes the values of 
program variables, the status of the 1/0 streams, and the address of the next 
instruction (in the code block) to execute. Concurrency exists when several 
processes, which may share code blocks, proceed concurrently. The 1/0 
streams accessed by a process may allow communication with processes 
concurrent with that process. Concurrent processes may also communicate 
via shared memory, which allows one process to change the values of some 
of the variables in certain other processes; thus, one process may change the 
state of another. Processes can be recursive in the sense that one process, an 
activation of a given code block, may initiate an activation of the same code 
block to handle a subproblem of the problem the parent process is handling. 
A process can recursively spawn any number of new processes, and a recur
sively spawned process can itself recursively spawn additional processes. 

The design nets correspond to code blocks. Corresponding to a process
an activation of a code block-is what we call a net activation. The sequence 
of instructions (with variable values) executed by a process is referred to as 
an execution trace. This corresponds to the trace that we encode from a 
protocol except that such a trace generally records transitions from (possibly 
several) activations of the three nets; more accurately, our trace corresponds 
to the merged traces of several concurrent processes. We allow a given state 
of a net activation to include more than one currently active step; in this 
respect, a state of a net activation is more complex than a state of a process, 
which has a unique next instruction. Similarly, more than one transition in a 
given net activation between sets of steps may be recorded in the trace for a 
single protocol episode. We do not admit message passing (via 1/0 streams) 
within or among net activations, but we view the SID as a global data 
structure accessible to all net activations-as if it were in memory shared by 
all these activations. The SID, however, is not held to contribute to the state 
of a net activation, which relates only to the currently active steps. Yet we 
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have (see below) the transitions between sets of steps depend on conditions 
in the SID and active steps are responsible for changes to the SID. 

Conceptual design is typically recursive in the sense that a problem is 
decomposed into subproblems, which themselves may be further decom
posed into smaller subproblems. A major role of the task net is to decompose 
problems (or tasks to be realized) into subproblems (or subtasks). Each 
subproblem corresponds to activations of the three design nets. The activa
tion of the environment net for a subproblem handles the interface between 
that subproblem and the larger problem of which it is a part. Different parts 
of the SID are elaborated in response to different subproblems, and the 
recursive decomposition of the entire design problem is given by the struc
ture of the task DAG. The trace produced as part of the encoding of a 
protocol associates each net transition with a subproblem, in effect iden
tifying the net activation in which the transition takes place. Subproblems 
generally relate specifically to a topmost task or, occasionally, entity. The 
identifier for the task or entity is used to identify the corresponding sub
problem in the trace. For brevity, we shall often in the sequel refer to nets 
when more accurately we should refer to net activations. What is intended 
will be clear from the context. 

5.4. Design Nets as Modified Petri Nets 
Petri nets (Peterson, 1981) are used to model sequences of events in systems 
in which events establish conditions for subsequent events and concurrency 
is allowed. We thus formulate our design nets as modified Petri nets. A Petri 
net consists of places (represented by circles in Figure 6.8), transitions (repre
sented by bars), and arcs. An arc is either from a place to a transition or from 
a transition to a place. 

A place Pis an input place of a transition T if there is an arc from P to T; 
Pis an output place of Tifthere is an arc from Tto P. We assume that there 
is at most one arc from a given place to a given transition and at most one 

Input Places 

Transition T ( PT I F T ) 

Predicate - Action 

Output Places 

FIGURE 6.8. A Petri net transition along with its input and output places. All places 
shown except the left output place are marked, that is have at least one token. The 
right output place has two tokens. This transition, T, is part of a predicate-action 
system since it is labeled with a predicate-function pair, (PT,FT)· Ignoring the 
predicate, the transition is enabled since all inputs are marked. 
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arc from a given transition to a given place. (We thus restrict ourselves to 
ordinary Petri nets; relaxing these conditions on the arcs allows general 
Petri nets.) A marking of a Petri pet is an assignment of zero or more tokens 
(represented by filled circles in Figure 6.8) to each place. A transition may 
fire when it is enabled; it is enabled if each input place has at least one token. 
A transition fires by removing a token from each input place and depositing 
a token in each output place. Each place may be an input place for zero or 
more transitions and an output place for zero or more transitions. A place 
may even be both an input and an output place for a given transition. 

Events are modeled by Petri net transitions. The fact that a condition 
holds is modeled by the presence of a token in the place corresponding 
to that condition. The input places of a transition then represent the 
preconditions of the event in question and its output places represent its 
postconditions. A generally accepted limitation is that events are modeled 
as instantaneous and nonsimultaneous; such events are primitive. Petri net 
models are inherently parallel since two enabled transitions that do not share 
an input place may fire independently. They are also inherently nondeter
ministic since any one of several concurrently enabled transitions may be the 
next to fire. Also, the firing of one enabled transition that shares an input 
place with another enabled transition may disable the latter. 

A Petri net place is what we have called a "design step". We now refer to 
it as a focus to emphasize that it identifies features the designer is considering 
at a certain point. The firing of a transition corresponds to an event recorded 
in the trace encoded for a protocol and thus relates to an episode in the 
protocol. In fact, what is encoded for an episode covers a transition plus 
the activity of the set of newly active foci. The state of a net (or, more exactly, 
of an activation of a net) is simply a marking of the net. The parallelism 
inherent in Petri nets supports the intra-net concurrency we have noted. 
Finally, Petri net nondeterminism allows the nets to indicate how the se
quence of events recorded in a trace could be reordered without affecting the 
design activity. Since several transitions could correspond to a single proto
col episode, the nonsimultaneity requirement must be dropped; this does not 
violate the spirit of Petri nets since we view the synchronization of transitions 
as something added onto the basic net model. 

A focus, then, is a coherent aspect of the problem. When a focus contains 
a token, the corresponding problem aspect is under consideration and the 
focus is considered to be active in the sense that it can elaborate part of the 
SID. How a focus elaborates the SID is not encoded from the protocol and 
need not be addressed, yet the trace records which parts of the SID are 
elaborated by which foci. We associate each focus with a descriptive phrase, 
taken to be its name, that identifies the aspect of the problem it handles. 
These phrases are generated by semantic grammars (Freiling et al., 1985) 
(as discussed in Section 5.6), one for each net. The phrases that correspond 
to foci that have been noted in our protocols form a proper subset of the 
total set of possible phrases; some corresponding foci are unlikely ever to 
appear. 
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5.5. Conditions 

A predicate-action system (Keller, 1976) is a modified type of Petri net in 
which each transition T has a label of the form (PT, FT )-see Figure 6.8-
where PT is a predicate and FT is a partial function defined only when PT is 
true. In such a system, for a transition to be enabled, not only must the input 
places contain tokens but also PT must be true. The predicate, PT, thus adds 
another condition to the event represented by the transition. When the tran
sition fires, the function (action) FT is executed. When a predicate-action 
system is used to model execution of a program, program variables are used 
as arguments of PT and FT. 

We label each transition in a design net with a predicate, which we call 
a condition. Instead of program variables, a condition contains referring 
expressions that denote items in the SID ofthe appropriate type (as declared 
in the static or dynamic ontology). The conditions on transitions thus help 
coordinate transitions in various design net activities and restrict the possible 
problem states. We associate actions with foci, not with transitions, since an 
aspect of the problem is associated with a focus. Although transitions are 
instantaneous, the residence of a token in a focus-the period during which 
the focus can contribute to the elaboration of the SID-is limited only by 
the occurrence of a transition that requires that token as input. We exploit 
this indeterminacy by allowing the various active foci to collaborate in 
elaborating the SID. This collaboration generally requires several sequen
tially coordinated actions hence an interval of non-zero duration. 

Conditions, like foci, interpret the ontology network. The evidence for the 
condition on a transition is tied up with the evidence for the input foci for 
that transition since the marking of the input foci, as well as what we term 
the condition, make up the condition in the broader sense of what enables 
the transition. Three kinds of conditions are recognized: epistemic, require
ment, and factual conditions. Conditions can also be simply enabling or 
transformation-requiring. A condition is enabling insofar as, when it is met, 
the transition may fire if the input states are marked. A condition is also 
transformation-requiring if, when it is met and the transition fires, it should 
be changed by one of the foci activated by the firing. In some sense, transfor
mation-requiring conditions are the reasons (goals) for transitions firing. 
Epistemic conditions relate to how well formulated the problem is, that is, 
what is known about the problem state. They may state that certain aspects 
of the problem are known, are only partially known, or are not known. 
When the aspect is partially known or not known and the condition is 
transformation-requiring, the ensuing transition allows a constrained choice 
that results in the aspect becoming better known. Requirement conditions 
relate to requirements that remain to be met. They are always transforma
tion-requiring and they do not occur in the environment net and occur 
sparingly in the. task net, where they relate to the operands. Factual condi
tions are statements of fact; in their strongest form, they state restrictions on 
the solution domain. Factual conditions are never transformation-requiring. 
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In the task net, the facts generally relate to the time profiles, operands, and 
temporal relations of tasks. In the behavior/structure net, they generally 
relate to the task, device, or operand. Finally, in the environment net, factual 
conditions state what aspects of the operand or environment affect the task 
or device or how the task or device requires or affects the outside world. The 
conditions on a transition as revealed in an episode generally include a 
transformation-requiring condition and one or more conditions that are 
simply enabling. 

The conditions discussed in the last paragraph are (ignoring for the mo
ment occurrences of the connective "not") logically atomic, that is, they 
cannot be analyzed into expressions containing logical connectives. As with 
the names of foci, atomic conditions are generated by semantic grammars, 
one for each net. The several atomic conditions that are recorded for a 
transition firing revealed in a protocol episode form a single conjunctive 
condition: for the transition to fire, all must be true. Certain singular refer
ring expressions, especially definite descriptions (such as "the operand" and 
"the task"), generally occur in several of the atomic conditions thus con
joined, where they consistently refer to the same items. After firings of the 
same transition have been identified in several episodes (possibly in different 
protocols), one generally has a set of such conjunctive conditions, at least 
one of which holds for each firing. We thus form the comprehensive condi
tion associated with the transition in question by forming the disjunction of 
the conjunctive conditions in the set. This gives a condition in a much-used 
normal form, disjunctive norma/form; that is, it has the form 

{c11 1\ c12 1\ • • • 1\ c1n) v {c21 1\ c22 1\ • • • 1\ c2 n) v · · · 

V (cml 1\ Cm2 1\ • · · 1\ CmnJ 

where 1\ is the logical symbol for and, v is the symbol for or, ni ;::::: 1 for allj, 
1 ~j ~ m, each cii• 1 ~ i ~ m, 1 ~j ~ ni, is an atomic condition, and each 
(cil 1\ ci2 1\ • • • 1\ cin·), 1 ~ i ~ m, is encoded for a single episode. Note that 
no not connective o~curs in this expression. There are several ways to sim
plify such an expression, most obviously, if one disjunct (cil A ci2 A · · • A 

cin) contains all the conjuncts cii contained in another disjunct, then the 
former can be dropped (since, if it is true, so is the latter). Since it is difficult 
to specify in advance whether a grammatically negative but otherwise atomic 
condition is tested by searching for the presence or absence of certain 
features in the SID, we do not explicitly represent not as a logical connective. 
We must therefore guarantee that no conjunctive condition contains an 
atomic condition and its negation. 

5.6. Semantic Grammars for Focus Names and 
Atomic Conditions 
To ensure that the phrases constituting focus names and atomic conditions 
are constructed in well-defined ways from a vocabulary with fixed meanings, 
we generate these phrases with certain semantic grammars (Freiling et al., 
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1985). A semantic grammar is a kind of BNF(Backus-Naur form) grammar, 
so its rules (or productions) are of the form LHS ::= RHS, where LHS and 
RHS are (respectively) the left and right hand sides of the rule and ::= is 
read "is replaced by." (BNF grammars, with minor notational variations, 
are also known as context-free grammars.) Symbols in the grammar are 
either nonterminals (or variables), written enclosed in angled brackets, or 
terminals, written without brackets. One nonterminal is designated as the 
start symbol, which is the initial target string. The LHS of a rule is always a 
single nonterminal. We are interested in grammars in which, for each non
terminal, there is exactly one rule with it as the LHS. The RHS is of the form 
S1 l S2 1· · ·I Sn, where n ~ 1, each Si is a string of one or more non terminals and 
terminals, and the vertical bar is read "or." (A rule of the form N ::= 
StiS2 1· · ·ISn is equivalent to a set of rules N ::= S1 , N ::= S2 , ••• , N ::= Sn, 
so our requirement that, for each nonterminal, there be exactly one rule with 
it as the LHS is-except for convenience-equivalent to the requirement 
that, for each non-terminal, there be at least one rule with it as the LHS.) A 
non terminal N in the target string may be replaced by any Si in the RHS of 
the rule with N as the LHS. The target string is rewritten in this way until it 
contains no non terminals. Since there are generally choices in how to rewrite 
a given nonterminal in the target string, there are generally many strings of 
terminals derivable from the start symbol; the set of all such strings is the 
language generated by the grammar. 

A nonterminal is also called a category. Strings of terminals that descend 
from a category are said to belong to that category. An alternative Si 
in a rule may be the special symbol 6, representing the empty string. If 
6 is chosen when the rule is applied, then nothing remains of the category 
forming the LHS of the rule in the string of terminals that eventually 
results. 

Space restrictions allow only fragments (in the sense that neither are all 
rules shown nor are all alternatives within a rule necessarily shown) of the 
semantic grammars relating to the behavior/structure net to be given. Figure 
6.9 gives a fragment of the semantic grammar for the names of foci in the 
behavior/structure net. Figure 6.10 presents a stylized representation of a 
device and identifies the conceptual parts that are referred to in the focus 
names. The term problem/mechanism refers to the entire device and its opera
tion. The term quality refers to a quality property. Attribute also refers to a 
property, but one that is essential to the conceptual part of which it is a 
property. (For example, frequency in the phrase frequency transduction is an 
attribute; we cannot identify transduction without thereby identifying what 
is transduced.) Some categories such as (operand designator), could be elimi
nated in that they can be replaced by only one terminal or sequence of 
terminals. Such categories were introduced both to convey meaning to the 
terminals and to allow for alternatives that might arise in the future. To 
illustrate how one possible focus may be a restricted version of another 
possible focus, note that, for example, frequency is only one aspect of motion 
as an instance of the category (//0 quality). Thus, a focus with name input 



www.manaraa.com

102 Albert Esterline, Megan Arnold, Donald R. Riley, and Arthur G. Erdman 

(BS focus) ::=problem/mechanism (p/m quality) 
I (1/0) (1/0 quality) 
I (1/0) (1/0 attribute) transduction 
I (relational modifier) relation of (components) 
I mechanical connection of (components) 
I spatial relation of (components) to ground 
I (BS entity) (BS entity quality) 
I (component designator) (components) 
I (operand designator) operand 
I (action) operand 

(p/m quality)::= degrees_oLfreedom I dimensionality 
(1/0) ::=input I output 
(1/0 quality) ::= dimensionality I forces I frequency I location I motion I orientation 
(1/0 attribute) ::= frequency I orientation I translation 
(relational modifier) ::= spatial I temporal 
(BS entity) ::=mechanism I (components) 
(components)::= (component) and (components) I (component) 
(component) ::= (component attribute) (component type) I ground 
(component attribute)::= e I (1/0) 
(component type) ::= submechanism I element 
(BS entity quality) ::=forces I geometry I materialljoinLtype I location I orientation 
(component designator) ::= number of 
(operand designator) ::= number of 
(action) ::= accepting I isolating I securing 

FIGURE 6.9. Fragment of the sematic grammar for the names of foci in the behavior/ 
structure net. 

Input transduction Output transduction 
Mechanism. submechanism. or element 

FIGURE 6.10. The conceptual parts of a device as interpreted by the behavior/ 
structure net. 

frequency would handle a more restricted aspect of the problem than a focus 
with name input motion. 

Figure 6.11 presents a fragment of the semantic grammar for the atomic 
conditions in the behavior/structure net. To illustrate how one atomic condi
tion can be more restrictive than another, consider two strings of terminals 
that are instances of the category (BS epistemic condition) . Suppose that 
both are produced using the third alternative in the rule with LHS (epistemic 
object). Suppose also that the two strings result from the e alternative for 
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(BS condition) ::= (BS epistemic condition) I (BS requirement condition) 
I (BS factual condition) 

(BS episternic condition)::= (epistemic object) is (degree) known 
(epistemic object)::= (pseudo-entity) I (property) of (pseudo-entity) 

I (time bounds)(property) of (quantifier)(entity)(state bounds) 
(degree) ::= el not I partially I ... 
(quantifier) ::= el some I most I alii ... 
(pseudo-entity)::= output motion I feature of (entity) 
(time bounds) ::= el initial and final 
(state bounds) ::= el from initial (property) to final (property) 
(BS factual condition) ::= output component (property) matches operand (property) 

I (order attribute) tasks have same operand 

FIGURE 6.11. Fragment of the semantic grammar for the atomic conditions in the 
behavior/structure net. 

(degree) and that they are identical except that the first results from the 8 

alternative for (state bounds) while the second results from the alternative 
from initial (property) to final (property). The first is more restrictive than 
the second since it applies to the entire interval in question. Also, note that, 
concerning instances of the category (quantifier) when (degree) is 8, all 
leads to more restrictive conditions than most, which in tum leads to more 
restrictive conditions than some. 

6. The Encoding Process and Its Reliability 

Having described the formalisms we use to encode protocols, we can now 
clearly describe how protocols are collected and encoded and how we check 
that our representation schemes are followed objectively. In 6.1 we discuss 
the procedures we use for collecting and encoding protocols and the docu
ments produced by encoding. In 6.2 we discuss the reliability of our represen
tations-how well they facilitate agreement between two people indepen
dently encoding the same protocol. 

6.1. Procedures and Documents 
To study limited conceptual mechanical design, we present a subject with a 
mechanical design problem that only roughly gives the task structure and 
environment conditions and that says little or nothing about the artifact. The 
subject completes the design to the point where all significant components 
and their relations are identified, but most dimensions remain to be deter
mined exactly. This takes one to two hours for the subjects and problems we 
have chosen. 

The designer is asked to think aloud and his words are tape-recorded. It is 
sometimes necessary to remind him to articulate his thoughts or to stick to 
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the facts; this causes little disruption. The designer numbers all figures he 
draws and labels significant items. Drawings and the transcribed recording 
constitute the protocol. The transcription is segmented into sentences or (for 
long sentences) clauses; segment boundaries are also introduced at pauses. 
Segments are numbered consecutively for later reference. 

We have encoded about ten protocols. A protocol is encoded separately 
(but concurrently) for each of the three nets, giving collectively a document 
we call the trace, which was mentioned in Section 5. For each net, the 
protocol is partitioned into episodes intended to reflect transitions in the net. 
Generally only one transition per net occurs, although occasionally transi
tions may overlap or even coincide. An episode usually occupies one or two 
transcription segments, sometimes less than one, and rarely more than five. 
Episode boundaries not infrequently fall within segments. Perhaps as much 
as 20% of a protocol is classified as noise-asides in which the designer 
comments on his design or on general points-and is not encoded. The 
following topics are recorded for each episode: 

• a reference, using the segment numbers introduced during transcription; 
• the current subproblem, identified by its top-level task(s) and entity(s); 
• the output foci of the transition; 
• the input foci of the transition; 
• the transformation-requiring atomic condition; 
• the simply enabling atomic conditions; and 
• the modifications made to the SID. 

Modifications are also recorded in the tabular version of the SID. Periodi
cally, the graphical version is updated with the gross changes; this is essential 
for maintaining a general grasp of the protocol. 

We strive for encodings that make engineering sense both in terms of how 
the current problem state is represented and in terms of what is achieved by 
each episode. Our protocol analysis teams thus always include at least one 
mechanical engineer, who explains the designer's activity to other members 
of the team. These explanations are "internal" in that they appeal only to 
mechanical principles. Since verbal recording is the only process intervening 
between the designer's heeding the (largely nonverbal) information and his 
verbalization of it, our protocols record the sequence of heeded information 
as determined by the task-directed cognitive processes involved (Ericsson 
and Simon, 1984). We ensure that such sequences can be recovered from 
our encodings, so internal explanations form a backdrop for judging the 
adequacy of the encoding. This backdrop becomes explicit to the extent 
that constraints among heeded items are essential for internally validating 
the steps the designer was observed to take. Against this backdrop, we 
may merge encodings of protocols from several designers, which requires 
a sizable common vocabulary; part of the internal explanation of a pro
tocol is translating certain lexical items in the protocol into this common 
vocabulary. 
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6.2. Reliability 
A representation is reliable if two people independently encoding a proto
col into that representation generally agree. Reliability is an issue because 
there are no operational definitions leading from the words in the protocol 
to the constructs of our representation. Concern with reliability has had a 
major impact on the representation schemes presented in the chapter. In 
testing reliability, we compare encodings of a given protocol by two people. 
(If either is not a mechanical engineer, he or she is briefed about the engi
neering content of the protocol by a mechanical engineer on the team.) To 
avoid severe penalty from cumulative differences, a section of about two 
pages is encoded and scored, and then the differences are resolved before 
proceeding to the next section. 

Agreement on nets and on the occurrence and extent of episodes was very 
good-almost 90% of the episodes agreed. There was good agreement on 
modifications. Without distinguished relations and properties, this level of 
agreement could not be achieved. Before the semantic grammars were de
fined, the encoders had difficulty even agreeing on the names or descriptions 
of foci and atomic conditions; the grammars caused dramatic improvement. 
Disagreement still arises largely for two reasons: it is possible to produce 
different combinations of foci or conditions that give much the same effect, 
and, secondly, it is difficult to determine whether a focus or enabling condi
tion has a minor role or no role. We return to these problems in Section 8. 

7. Software to Support Knowledge Acquisition and 
Representation 

Any representation of a nontrivial design protocol, if it is to capture the 
coherence of the engineering context, must appear complex in some respects. 
Our formal methods, that constrain and direct protocol encoding, help us 
accommodate this complexity. These methods themselves, however, can bur
den the encoders, eventually to the point where consistency is threatened and 
the time to encode a protocol becomes excessive. The way out of this di
lemma is to supply automated assistance. In 9.1 we first consider executable 
encodings and then review certain software toolkits that support knowledge 
acquisition. We sketch how a similar toolkit could be used for our encoding 
schemes. In 9.2 we consider why our scheme is superior to the KADS model, 
which underlies the most influential toolkit, Shelley. This suggests how a 
toolkit for our encoding schemes would differ in its underlying assumptions 
from Shelley. 

7.1. Software 
The most straightforward way to guard against gross inconsistencies is to 
execute the encodings. This can be viewed as a way to promote the objectivity 
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of our encodings. This is promoted, from one side, by using the measures we 
have obtained in operationalizing our notion of reliability. From another 
side the objectivity of our encodings is promoted by striving for an ideal of 
executable (not requiring human interpretation) encodings. To advance this 
ideal, we have implemented (in the parallel logic programming language 
Parlog [18]) a prototype interpreter that executes steps in a design protocol 
recorded as transitions in the design nets. What is executed is actually Parlog 
code, but there is a rigid and clear correspondence between the Parlog code 
and the encodings except that actions associated with foci must go beyond 
what is revealed in the protocols. The conditions and modifications in the 
SID give input/output specifications for these actions, which are imple
mented in as abstract a form as possible (see Section 9). Modest forms of the 
SID, rule interpretation (for modifying the SID-see Section 9), and condi
tional transition firing are implemented. The user must assist with moves not 
sufficiently specified in the encoding. We reconcile this with our ideal of 
executable encodings by introducing (from theoretical computer science) the 
notion of an oracle. A call to an oracle is embedded in an algorithm that asks 
the oracle a question that is predetermined except for certain parameter 
values and the oracle supplies outputs, which may be complex structures. 

Automated assistance can be directly at the point of encoding. Shelley 
(Anjewierden et al., 1992) is a software workbench (or toolkit) developed by 
the KADS project to support knowledge acquisition and engineering. It is 
analogous to a CASE tool for software engineering. Similarly, KEATS (the 
"Knowledge Engineering Assistant") (Motta el al., 1989) is a toolkit that 
provides life-cycle tools for KBSs. Embedded in KEATS-2 is the knowledge 
acquisition tool Acquist, a hypertext-based facility that allows the knowl
edge engineer to carry out knowledge acquisition by abstracting and struc
turing knowledge contained in raw transcript text. Acquist, Shelley, and 
KRITON (Diederich et al., 1987) are all knowledge acquisition systems 
that emphasize analysis of transcripts to extract expert knowledge. The 
transcripts are, in the first instance, transcripts of protocols, but they may 
also be transcripts of structured interviews and even transcribed portions of 
textbooks. All three toolkits support defining and structuring the concepts 
and the relations among concepts that are noted in the transcript and sup
port linking concepts with terms in and fragments of the raw text. Shelley 
and Acquist support both bottom-up knowledge acquisition, where a model 
is constructed piecemeal as the text is analyzed, and top-down knowledge 
acquisition, where a library of "theories" or "interpretation models" is 
available to assist conceptualization. KRITON supports only a bottom-up 
style and aims to make knowledge acquisition fully automated by eliciting, 
analyzing, and representing knowledge. While KADS emphasizes documen
tation and semi-executable models, KEATS is an environment for building 
the end product and so also provides facilities at the debugging level. 

It is not difficult to imagine the design of a toolkit like Shelley for our 
encoding schemes. Support for bottom-up knowledge acquisition would help 
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partition the protocol text and update the nets when needed transitions are 
missing. It would maintain and display the trace as well as both the tabular 
and graphical versions of the SID, and needed updates to the static and 
dynamic ontologies would be flagged. Bottom-up support would also main
tain links from all encoding documents to terms in and fragments of the 
protocol text and would maintain the consistency of all documents both 
internally and with reference to each other. Support for top-down knowledge 
acquisition would include making available previously recorded net transi
tions and the semantic grammars when the protocol is partitioned and the 
trace is produced. It could also make available fragments of previous SIDs 
(especially fragments of task DAGs) as possible templates for the diagram 
currently being constructed. The interested reader is encouraged to read the 
references on KADS and especially Shelley; he/she should be able to expand 
the sketch given here in light of the earlier sections of this chapter. 

7.2. A Comparison with KADS 
Any toolkit brings a certain amount of conceptual baggage, and that of the 
KADS methodology (which some claim is becoming a de facto European 
standard), which lies behind Shelley, is the most fully developed and in
fluential. We briefly consider why our scheme is superior to the KADS model 
for conceptual mechanical design and probably for conceptual design in 
general. Part of this superiority is because protocol analysis is particularly 
important for investigating conceptual design; our scheme was developed for 
protocol analysis whereas the KADS model is a general model of expertise. 
Also, our scheme emphasizes what is critical in conceptual mechanical de
sign; it is difficult for a general model to compete in this specialized domain. 
We allow the possibility that the KADS model and the Shelley toolkit may 
be adequate for nonprotocol sources and for design stages later than concep
tual design. The following comments can be seen as a sketch for specialized 
additions to the KADS model and initial specifications for a specialized 
knowledge acquisition toolkit. KADS (Wielinga et al., 1992) imposes a four
layer model of expertise; the layers are: domain knowledge, inference knowl
edge, task knowledge, and strategic knowledge. (ML)2 (van Harmelen and 
Baider, 1992) is a formal language for representing KADS models of exper
tise. The TheME environment supplies automated support for model con
struction in (ML)2 by blocking modifications that would result in a mathe
matically ill-formed model or a model violating KADS conventions; it also 
allows the model to be viewed in various helpful ways. Si(ML)2 is an inter
preter for a subset of (ML)2 that allows a model to be executed. 

KADS' domain layer embodies the conceptualization of a domain in the 
form of a domain theory whose primitives are based on the primitives of 
KL-ONE. KL-ONE roughly does the job of our static ontology in that both 
supply a type system and declare items to be of certain types. As KL-ONE 
terms can be combined to represent statements (which are either true or 
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false), so the items declared in our static ontology can be instantiated to
gether, in a SID, to represent statements (of what properties an entity has, 
what task precedes another, and so on). Our scheme, however, explicitly 
includes items-such as time profiles, regions, and relations between tasks
that relate to mechanical design. Furthermore, the graphical form of a SID, 
since it emphasizes the relations among entities in a conceptual layout, is 
conducive to the use of graphical engineering representations, such as bond 
graphs. On its own, KADS is little use in this domain since the fundamental 
domain concepts have rather specific application yet form a rich and expres
sive system. The domain layer is represented in (ML)2 by order-sorted logic 
(in which all variables and constants have types, and the types are arranged 
in a subsort hierarchy); modularity is achieved by partitioning the axiom set 
into several sub-theories, which can be combined by set-theoretical union. 
Thus (ML)2 adds nothing to KADS for our domain and even encourages a 
level of development that obscures the fundamental concepts and their rela
tionships. A representation of the evolving problem state in mechanical 
design must focus on key concepts or risk losing sight of design goals. And 
theories, in the logical sense, can become enormous in engineering design, 
because of engineering's use of mathematics and physics, with little or no 
contribution to our understanding of specific cases. 

The remaining KADS layers can be characterized as control knowledge. 
Inference knowledge, corresponding to our dynamic ontology, captures in
ferences, abstracted from the domain theory. An inference is specified as a 
primitive (a knowledge source), fully defined by an input/output specification 
and a reference to the domain knowledge used. This keeps apart the infer
ence and domain layers. In our scheme, in contrast, the dynamic ontology is 
presented in the same form as the static ontology and evolutionary relations 
are represented in the SID along with other relations. In conceptual design, 
it is natural to integrate the domain and inference layers since the problem 
state, and the eventual artifact design, is structured by the way the decompo
sition evolves. We have emphasized this with the notion of a task DAG, a 
skeleton of a SID showing only the evolutionary arcs connecting tasks and 
entities. The advantages of our scheme in this respect again relates to the fact 
that our scheme is specifically for conceptual design. Our scheme allows 
relations, properties, and values among or of items to be inherited along 
evolutionary arcs. In contrast, the KADS framework, following KL-ONE, 
allows inheritance only among items at the domain level, in effect restricting 
inheritance to design steps that realize an item by specializing it. (ML)2 

represents the inference layer by metalogic, in which terms are names for 
formulas in the domain layer. Since a KADS metaclass describes a role of 
domain expressions in the inference process, metaclasses are represented 
as naming operations, where the names of domain expressions encode the 
expressions' roles in the inference process. Applying this formalization to 
conceptual mechanical design would result in something much more com
plex than the simple dynamic ontology we present. It turns out that, logi-
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cally, domain equations have a higher-order aspect (terms can denote sets as 
well as individuals) and meta-logical notions can be translated into a higher
order setting. In our context, the higher-order formulation has an elegance 
that cannot be approached by a metalogical formulation. 

Turning to task knowledge, a KADS task (unlike a task in our sense, 
something in the problem state) is a fixed strategy for achieving a problem
solving goal, where the primitive problem-solving tasks are inferences spe
cified at the inference layer and a vocabulary of control terms (as in a 
programming language) is used for composing larger tasks. The (ML)2 

formulation does not in this case impose further detail since this layer is 
represented by quantified dynamic logic (QDL), which augments predicate 
logic with atomic programs and syntactic constructs expressing sequence, 
condition, iteration, and so on for composing programs. The final, under
developed layer, the strategic layer, dynamically plans task execution and 
handles failure of a partial solution by suggesting new lines of reasoning or 
introducing new information. In (ML)2 this layer is a metalayer for the task 
layer and reasons about programs expressed in QDL. 

Our scheme makes a sharp distinction between what corresponds to the 
first two KADS layers-items instantiated in a SID and declared in the 
static or dynamic ontology-and what (roughly) corresponds to the last two 
KADS layers-the design nets. Note, in particular, that items declared in the 
dynamic ontology do not occur in the nets. The atomic conditions and focus 
names interpret the current SID. These phrases are generated by the seman
tic grammars, which impose a certain structure on them that somehow 
relates to the types in the static and dynamic ontologies so that this interpre
tation can be carried out. 

Exactly how the phrase structure and the types relate is not formulated. 
Both the grammars and the ontologies are sufficiently explicit that encoders 
generally agree on how the phrases interpret items in the SID, but a corre
spondence between the two as required by an executable specification is left 
to be worked out in detail as the need arises. Formalizing and operation
alizing this correspondence, we believe, is not part of the framework for 
encoding protocols. Likewise, although the foci are supposed to account for 
changes in the SID, we do not consider how they do so as within the realm of 
protocol encoding. Indeed, working out how the foci may modify the SID to 
allow for even a modest executable specification requires design decisions, 
fine distinctions between various conditions, and allowance for sequencing 
among code associated with different foci since several foci may be concur
rently active. This underdetermined nature of how changes in the problem 
state are carried out is to be expected with conceptual design since there 
is no particular representation associated with conceptual design and gener
ally accepted mathematical conventions in mechanical design have been 
restricted to later, more detailed design stages. Consequently, how one de
scribes changes in the problem state depends on the representation one uses 
and how the representation is interpreted. 
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Introducing a control vocabulary to represent the sequence of design 
steps, as required by the KADS model, would impose something foreign on 
a conceptual mechanical design protocol. (Such sources as structured inter
views and texts relating to later stages of design, however, are likely to 
require a QDL-like control vocabulary.) It is much more natural to use the 
concepts that relate to our design nets: pre- and postconditions of steps, 
concurrent steps, nondeterminism in the order in which steps are taken, and 
so on. For one thing, the control vocabulary of a programming language, or 
of QDL, would require steps to be structured in a much too inflexible way. 
Conceptual design is opportunistic: among the many possible sequences in 
which decisions may be taken, a designer typically focuses on some salient 
part of the problem, works out a partial solution for that part, and uses the 
constraints and global decisions imposed with that partial solution as a 
foothold for approaching other parts of the problem. Yet designers fol
low strategies and, indeed, at the conceptual stage, good design depends 
heavily on strategy. There is no clash between the strategic and the oppor
tunistic natures of design: the scope covered by a strategy is generally much 
greater than the scope of an opportunistic choice and the nondeterminism 
that allows opportunism can be constrained by strategies without being 
eliminated. 

8. Strategy 

Research has revealed the importance of strategy to knowledge-based sys
tems. We view strategies as control patterns related to high-level design net 
descriptions. In 8.1 we briefly review the notions of strategy used in KBS 
research and introduce our basic notions. In 8.2 we consider the various 
computer-science formalisms used to capture the temporal order of events as 
possible ways to represent strategies in conceptual mechanical design. Petri 
nets are seen to be the most appropriate; this further justifies use of modified 
Petri nets-design nets-to represent control patterns in this domain since 
strategies are central to control and shade into more concrete control pat
terns, which show up in the trace of a protocol. Flexible control patterns are 
difficult to represent, and abstract flexible patterns-strategies-must be 
identified in protocols, represented, and related to net traces. We address 
some of these conceptual difficulties in 8.3. 

8.1. Basic Notions 
Gruber (1989) relates strategy or strategic knowledge to the order and selec
tion of actions and characterizes it as knowledge used to decide what action 
with real-world consequences to perform in a given situation. Strategic 
knowledge, then, is manifest in activities from asking questions in an intelli
gent order to recommending a sequence of corrective actions. Gruber con-
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trasts strategic knowledge, used to evaluate possible actions given a state, 
with substantive knowledge, used to identify states in the world. If we ignore 
the model (cf "possible") aspects of Gruber's strategic knowledge, it essen
tially imposes temporal relations on what is covered by substantive knowl
edge. When a planner has a complete model of the world, the goals, and the 
effects of actions, then planning can be treated as search. Otherwise, Gruber 
claims, planning must use strategic knowledge in one of two ways. Strategic 
knowledge could be implicit in skeletal plans that are specified in advance 
and refined as the need arises, or it could be exercised in "reactive planning", 
making dynamic decisions by relating a current situation to a goal. KADS' 
task knowledge (the third of the four layers) is similar to Gruber's strategic 
knowledge but does not require that the actions have real-world effects. 
KADS' strategic knowledge (the fourth layer), among other things, deter
mines what goals are relevant, dynamically plans task execution, and re
covers from impasses. We talk about strategies not strategic knowledge. In 
our case, a strategy is like a skeletal plan but admits steps where, for exam
ple, goals are established and plans are filled out up to a certain horizon. [A 
somewhat similar notion of a "plan" in engineering design is given in Brown 
and Chandrasekaran, (1989).] Again, since conceptual design is opportunis
tic, we need strategies that may be refined so frequently that we could call 
the refinement reactive. Finally, we would include as a strategy an efficient 
heuristic (or policy) used with algorithms. In our account, more than one 
strategy may be active. 

We conceptualize a strategy as a high-level description of the essential foci 
and their conditions, essentially a summary of a family of design instances. 
To achieve a summary, some foci can be designated as intermediate goals; 
carrying out the strategy then involves finding an achievable sequence of 
transitions to reach these foci. In Petri nets in general, there are ways to 
collapse a set of adjacent places (foci) and transitions into a single non
primitive transition. This would allow a hierarchy of strategies, where some 
foci in a strategy higher in the hierarchy correspond to sets of foci and 
transitions in a strategy lower in the hierarchy. We have only sketched out 
the effort required to resolve the technical issues alluded to in this brief 
paragraph. We believe that a major contribution of our research is to have 
isolated these issues since the notion of a strategy is perhaps the key notion 
in formalizing conceptual design and establishing specifications for software 
support for conceptual design. 

8.2. Temporal Formalisms for Representing Strategies 

Several formalisms have been used in computer science to model temporal 
aspects of systems, particularly concurrency. In addition to Petri nets and 
QDL, there are temporal logics and process algebras. A temporal logic 
(Manna and Pnueli, 1992) includes temporal operators (such as those 
corresponding to the English terms "always" and "eventually") that are 
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applied to propositions to indicate the extent in time these propositions hold. 
Temporal logics extend predicate logic, which generally suffices to describe 
the effect of any transformational program. Such a program is a usual, 
sequential program, whose role is to produce a final result at the end of a 
terminating computation. The power of a temporal logic, however, is needed 
to describe the effects of a reactive program (such as an operating system or a 
program controlling a real-world process), whose role is to maintain some 
ongoing interaction with its environment. The notions of reactivity and 
concurrency are closely related: in any program containing parallel processes 
(processes running concurrently), from the view point of each process the 
rest of the program is the environment. A process algebra [see Hennessey 
(1988) and Baeten and Weijland (1990)] is a mathematical language with 
basic constants, operators to construct larger processes, and equations as 
axioms to describe the nature of processes. Thus, we speak of process terms, 
which denote processes, and process algebras are subsumed under that part 
of modem algebra called term algebras. The interaction of a process with its 
users (which may be other processes) is thought of abstractly as communica
tion. Concurrency arises because there can be more than one user and, inside 
the process, more than one active subprocess. 

Olderog (1991) considers different levels of abstraction at which concur
rent processes may be described and specified. At the most abstract level are 
logic formulas, which, it is held, specify the communication behavior re
quired. At the next level are process terms, which constitute an abstract 
concurrent language stressing compositionality. At the least abstract level 
are Petri nets, which describe processes as interacting "machines" (in the 
automata-theoretic sense). As models of computation, Petri nets are more 
powerful than finite automata. Statecharts (Harel, 1987) are another formal
ism introduced to specify the behavior of complex reactive systems. They 
extend finite automata with features that allow for hierarchical descriptions, 
interlevel transitions, and multilevel concurrency. 

Petri nets, the least abstract of the three formalisms considered by Olderog, 
are, we maintain, the most appropriate formalism to represent strategy since 
Petri net transitions correspond directly to protocol episodes. The formal 
insight they provide is to view conceptual mechanical design as a sequence of 
interdependent events. As specifications for design software, design nets 
identify specific steps. Temporal logics allow us to specify desirable pro
perties holding of program variables. Such properties include, for example, 
safety properties, which state that certain relations among certain variables 
always hold or always do not hold (that is, never hold). They also include 
liveness properties, which state that a certain relation eventually holds 
among certain program variables. Thus, temporal logics are appropriate for 
expressing certain global invariants (safety properties) and goals (liveness 
properties), but these properties are much more abstract than the sequence 
of episodes in a protocol. The communication and composition expressed by 
process algebras could be useful in our scheme in describing the coordination 
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among different activations of the various design nets since these activations 
are essentially processes. On their own, process algebras do not support a 
notion of strategy since the communication and composition they describe 
assumes there is already something of which there are activations and which 
directly relates to the sequence of episodes; process algebras are too abstract 
(although not as abstract as temporal logics). QDL, on the other hand, is less 
abstract than Petri nets even though it is similar to temporal logics but 
with modalities constructed using operators reminiscent of those of process 
algebras. QDL is less abstract because its operators in fact are control primi
tives for building programs (not processes) from atomic programs. We previ
ously stated that this control vocabulary is foreign to conceptual mechanical 
design protocols. 

We could draw on the temporal formalisms other than Petri nets to help 
define strategies and to improve encoding reliability. This need not add more 
steps to an already extensive encoding procedure, for other formalisms might 
only add high-level guidelines, theoretical support, or specifications to be 
met by the encoding procedure itself. We have already mentioned that even
tuality properties expressed in temporal logics give a notion of a goal and 
that process algebras give an explicit and sound way to relate net activations. 
Temporal logics could also relate to the atomic conditions and focus names 
generated by the semantic grammars. It might be useful to express that some 
condition should eventually, always, or never hold. Or, concerning foci, we 
might specify that, if we have considered certain problem aspects, then even
tually we should consider certain other aspects. Handling within a logic the 
phrases generated by the grammars might give a welcome logical link be
tween the grammars and the ontologies, which declare the items in the SID 
to which the phrases refer. It might even be useful to specify in a temporal 
logic properties that must hold of any conceptual mechanical design activity, 
such as the following (where we give the English phrase that translates the 
formula): 

If a task Tis decomposed into two subtasks T1 and T2 , then eventually either T1 and 
T2 are realized by the same entity or T1 (respectively, T2 ) is realized by an entity £ 1 

(respectively, £ 2 ) and the behaviors of £ 1 and £ 2 are coordinated in such a way that 
the behavior required for Tis achieved. 

Again, the hierarchical nature of statecharts could relate to the hierarchies 
we have noted among strategies. Finally, going beyond protocol encoding 
and aiming for our ideal of executable encodings, the various temporal 
formalisms could be very useful in specifying how the actions of various 
concurrently active foci should coordinate to effect an update to the SID. 

8.3. Additional Considerations 
The conceptual difficulties that arise when we attempt to represent strategies 
are, we suspect, related to the reasons mentioned in 6.2 that cause un-
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acceptable reliability scores for our encodings. Fundamentally, two encoders 
may encode a part of a protocol in what are intuitively similar ways, but the 
reliability score for that part of the protocol may be poor since we lack a way 
to indicate when differences are small and that the differences may tend to 
cancel. In the end, we probably must accept that there is not a unique 
mapping of a sequence of protocol episodes into a design net trace. Any 
number of traces may be acceptable as long as there are well defined ways to 
transform one acceptable trace into another. One could try to define opera
tions that add or remove detail or transform one subnet into another. Such 
changes will show up in the encoded trace, which is formally a string of 
symbols, and there are definitions of edit distance between strings and of time 
warping to compress or expand one string to match another (Sankoff and 
Kruskal, 1983). Also, there is a metric function called synchronic distance 
(Reisig, 1985) that indicates the coupling between sets of transitions. The 
distinction among the three design nets rests on the distinction among the 
three pairs of semantic grammars for the nets. We need a more principled 
way to distinguish the vocabularies of these grammars so they may shade 
into one another and capture conceptual relations among design nets. 

The indeterminacy accepted in the last paragraph is to be expected. We 
claim not that the nets are part of a designer's mental apparatus but only 
that they capture the temporal dependencies among protocol episodes and 
how these episodes address and depend on the evolving problem state. 
Translation from the protocol text into our formalisms must be somewhat 
indeterminate since we go from a largely informal language to a formal 
language. 

A generally recognized control aspect of design that presents difficulties 
for our nets is backtracking. Backtracking is natural in an area, such as 
design, whose solutions involve combining parts. If an attempted combina
tion must be rejected, we backtrack to the point where that combination was 
selected and select another combination. Very little backtracking of this 
simple, sequential nature was found in our protocols, although (as discussed 
in Section 3.2) often two or more alternatives are concurrently available and 
are evaluated against each other and unpromising alternatives are rejected. 
Also, designers review their designs, which may lead to certain parts being 
rejected. Even the rejection, however, was seen as coupled with elaboration 
(or re-elaboration). Perhaps, then, the appropriate notion is that of intelli
gent backtracking, where, rather than selecting the next combination in some 
arbitrary enumeration, one repairs the previous combination only where it 
needs repairing. 

To allow backtracking in the design nets, we would have to assume that a 
sequence of net states (markings) is remembered and that, when a line of 
reasoning is abandoned, there is some way to determine where the "wrong 
turn" was taken, some way to restore the states of the nets just before the 
wrong turn was taken, and some way to erase the elaboration done to the 
SID since the wrong turn was taken. A certain amount of intelligence could 
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be imparted to this scheme by being specific about the wrong turn (for 
example, a certain transition in a certain net), backing up the net states only 
as these depend on that transition, and undoing only the changes to the SID 
that are responsible for the problems. In fact, introducing backtracking into 
the nets would probably be an unnecessary complication. The appropriate 
notion here is again strategy since a useful strategy references control pat
terns for handling rejection of partial solutions and control patterns for 
reviews. These additional control patterns would not necessarily introduce 
many new foci since it is plausible that foci not only can elaborate the 
problem state but also can retract previous elaborations and even replace 
(retract and re-elaborate) items in light of new considerations. 

9. Design Paradigms 

A design paradigm is a research community's unifying vision of the nature of 
design that directs performance, investigation, and automation of design. A 
design paradigm should help one make sense of design activity and should 
suggest useful ways to solve design problems. In this chapter, we have not yet 
addressed the question of a paradigm appropriate for conceptual mechanical 
design, yet viewing design from the perspective of a given paradigm pro
foundly impacts how protocols are encoded. In this section, we concentrate 
on two design paradigms, which were investigated in projects at the Uni
versity of Minnesota that carried on from our protocol analysis project 
(Esterline et al., 1992). The paradigms are case-based design (in 9.1) and gen
erative constraint based designed (in 9.2). In 9.3 we consider the extent to 
which these two paradigms account for all aspects of design; we also con
sider the implications for protocol analysis of viewing design from the per
spective of these and similar paradigms. 

9.1. Case-Based Design (CBD) 

Case-based reasoning (CBR) is reasoning from precedents, adapting old 
solutions to solve new problems, or retrieving old cases to illustrate aspects 
of the current situation. Case-based reasoning improves problem-solving 
behavior by, for example, using shortcuts, anticipating and avoiding errors, 
and appropriately focusing its reasoning (Kolodner and Simpson 1989). We 
refer to precedent-directed design as case-based design (CBD). [For some 
early work in CBD, see Goel and Chandrasekaran (1989) and Sycara and 
Navinchandra (1989)]. In principle, any aspect of design can exploit previous 
cases, and, indeed, our protocols themselves are records of extended cases of 
design. Also, storing a case can be viewed as knowledge acquisition. Tradi
tionally, CBD systems fully automate this acquisition. The CBD system 
implemented in the project at Minnesota (Bose et al., 1992a; 1992b) even 
automated construction of the initial cases, but projected enhancements 
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extend to realms with more flexible and extended conceptual design stages, 
realms in which our representations are applied. 

The current CBD system performs preliminary four-bar linkage synthesis 
and contains four modules. The Retriever uses similarity metrics to retrieve 
cases with functional properties similar to the problem specification. The 
Potential Evaluator studies the functional differences between each retrieved 
case and the problem and passes the case with the most potential, along with 
an abstraction of its violations of specifications, to the Adapter. If success is 
not forthcoming with this case, successively less promising cases are passed 
until success ensues or no promising cases remain. The Adapter uses the 
violation abstractions to alter the case structurally to reduce the violations. 
The Simulator simulates the adapted case. If this indicates compliance with 
the specifications, we have success and a candidate for inclusion in case 
memory. Otherwise, the adapted case is sent back to the Potential Evaluator, 
and the evaluate-adapt-simulate loop is repeated unless the number of 
iterations exceeds a certain threshold. 

Slightly more involved mechanism design problems introduced a more 
global design perspective, involving modest strategies for problems not yet 
clearly formulated. This level was attacked by adapting Flanagan's critical 
incident technique (Flanagan, 1962), giving what was called the critical in
stance technique. [Compare with Waldron and Waldron (1987).] One appli
cation involves presenting task-mechanism pairs (where the mechanism is 
intended to realize the task) and asking the observer (an experienced de
signer) to pick where the mechanism is particularly effective or ineffective in 
realizing the task; in so doing, the observer identifies the key features of both 
that are significant for the evaluation. The result of the study is a mapping 
from mechanism features to task features. Given this mapping, one can 
present task-mechanism-design strategy triples and ask the observer to pick 
where the strategy is particularly effective or ineffective in designing an 
instance of the mechanism for realizing the task; one can also ask for the 
most effective strategy for a given task-mechanism pair and thus increase 
the stock of strategies. When the mechanisms are linkages that are relatively 
simple (say, six-bars) but not too simple (four-bars), this method gives an 
extensive and controlled set of design cases with guidelines for adaptation 
and limits on the strategies. It also gives failure cases, which allow failure to 
be anticipated hence avoided. For a six-bar that is designed as a four-bar 
with dyad added, the strategies are nearly algorithms. In less clear cases, the 
strategies are flexible and more like skeletal plans. If a CBD system based on 
the mappings discussed here were implemented for six-bars, it would appar
ently include as a subsystem the CBD system for four-bars since one way 
to construct a six-bar is from a base four-bar. We would then have an 
evaluate-adapt-simulate loop nested within another. When the artifacts 
designed are reasonably complex, a more abstract and global view of the 
problem, involving more extensive strategies that start earlier in the design 
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process, is needed for the problem solver to avoid being overwhelmed by 
evaluate-adapt -simulate loops. 

When the mechanisms of interest are, say, six-bars, although some design 
net structure is evident and general notions (such as that of a task or of an 
entity) from the ontologies are applied, there is little need to rely on our 
representation schemes. In more general and flexible design domains, more 
advanced representations are needed and cases require correspondingly 
more analysis. If we think of one of our protocols as a case, then a case 
corresponds to a specific SID and a trace of a set of net activations. The 
ontologies and design nets, in this context, can be thought of as integrating 
any number of cases since the schemes are updated whenever they are unable 
to represent some aspect of a protocol. 

Note that the knowledge acquisition effort required for a particular case 
increases as the domain becomes more flexible or general. In the four-bar 
case, there is no knowledge acquisition except automatically storing cases. 
For slightly more involved mechanisms, the critical instance technique is 
used to perform knowledge elicitation. A domain model is already at hand 
and the expert designer only fills in details within this framework. For gen
eral mechanical design, the structure must be extracted from the protocol. 
There is automation appropriate for any point in this spectrum. In the sim
ple case, all is automated, and we discussed software for protocol analysis 
in Section 7. Knowledge editors (Musen, 1989), where the user enters and 
refines the contents of the knowledge base, have become popular for knowl
edge elicitation. 

9.2. Generative Constraint Based Design (GCBD) 
The other project that carried on from our protocol analysis project 
addressed constraints and grammars for mechanical design. Constraint 
networks have been used for some time to represent and to solve design 
problems. Initially, local constraint propagation techniques dominated, but 
more global techniques [see, e.g., Finger (1987)] are now popular. The for
mal grammars most widely used for engineering design are graph grammars 
(Ehrig, 1979). Graph grammars are similar to our semantic grammars except 
that the non-terminals (variables) and terminals are now vertex labels and 
the target that is rewritten is a graph not a string of symbols. In engineering 
design, Finger and Rinderle (1990) and Rinderle and Balasubramanian 
(1990), for example, represent a behavior specification by a bond graph and, 
to realize the specification with only available components, define a bond 
graph grammar and associate a bond graph with each available component. 

The project at Minnesota (Shanmugavelu et al., 1991; 1992) represented 
constraint networks with hypegraphs. A graph generalizes to a hypergraph, 
whose hyperedges may connect zero or more vertices. Hypergraphs are used 
because graphs can represent only binary relations whereas hypergraphs 
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can represent properties and relations of any arity. To modify or otherwise 
generate hypergraphs, hyperedge replacement (HR) grammars (Courcelle, 
1990) are used. In an HR grammar, the nonterminals and terminals are 
hyperedge labels, the LHS of a production is a nonterminal, and the RHS is 
a hypergraph. A production is applied to the target hypergraph by replacing 
a hyperedge labeled by the LHS with its RHS. Implementation is in the 
constraint logic programming language CLP(R), which solves constraints 
over the reals but delays solving a given constraint until values have been 
supplied for all variables with nonlinear occurrences in it. [For CLP(R), 
see Cohen (1990); for advantages of CLP(R) in structural design, see 
Lakmazaheri and Rasdorf, (1989).] CLP(R) allows as subgoals not only 
Prolog terms but also equality and inequality constraints between arithmetic 
expressions containing real numbers and variables. 

In this project, hypergraph vertices are represented with CLP(R) (real) 
variables. A (sub)system is considered a hyperedge connecting all the vertices 
representing the parameters that together define a specific instance of the 
subsystem. A hyperedge label that is not a relational or arithmetic operator 
is treated as a CLP(R) functor. A term with a hyperedge label as its principal 
functor contains variables representing the vertices connected by a hyper
edge with that label. Finally, the relational operators in CLP(R) constraints, 
supplemented with arithmetic operators, are (possibly composite) labels of 
hyperedges connecting the variables appearing in those constraints. 

Three systems were implemented within this framework. The first two 
address rotary power transmission systems [the taxonomy in Kannapan et 
al., (1989) was followed] where all rotations are about axes parallel to the 
three coordinate axes. Trains of spur gears or shafts coupled by V -belts 
are examples. Such systems are easily decomposed and the equalities and 
inequalities used in describing them are generally linear in the system param
eters. There are usually several kinds of solutions with very different struc
tures for a given problem, but the best kind of solution can usually be found 
by testing the values of a small number of parameters. The first system is 
really a CLP(R) programming convention and some reusable code. HR 
grammar rules are clauses of the form 

System :- Constraints, Subsystems. 

The constraints can cause choices among the structurally different kinds 
of systems. The second system is an HR grammar interpreter written in 
CLP(R) and thus offers more flexible control since control is not bound to 
CLP(R)'s implementation of resolution. Given a desired behavior, it applies 
the rules to produce a hypergraph of a device producing that behavior. The 
hypergraph is defined by the constraints imposed and the terms maintained 
in a list. Here hyperedges are discarded when they are replaced so the list of 
terms for the final hypergraph all represent primitives. Rules are stated as 
CLP(R) clauses of the form 

hg_rule( (Old term), (New term list)) :- (Constraints). 
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If no constraint violation arises, the generator can remove the old term from 
the list of terms for the hypergraph (i.e., from the target expression) and 
include the new terms in the list. The third system was developed by 
modifying the form of the clauses implementing HR rules in the first system 
so that constraints are partitioned into required and preferred constraints. 
This system was tested by using it for initial selection of dwell linkage models. 

Abstracted from the particular implementations, this approach to design 
is called generative constraint-based design (GCBD). The representation of 
the problem state as a hypergraph was inspired by the SID used in our 
protocol encodings, which is a constraint network that allows relations of 
arity greater than two. To relate a SID to the hypergraph maintained by the 
second system, which maintains only the current form of the problem state, 
we define the frontier of a SID as follows. Given a SID, erase any task 
or entity that is at the tail of an evolutionary arc and push down to the 
remaining tasks and entities any properties or relations that are inherited 
from the items erased. The result is the frontier of the SID. The structure of 
a frontier of a SID is somewhat different from a hypergraph as used to 
represent the current problem state, where vertices are real variables repre
senting metric properties, hyperedges are relations among such properties, 
and tasks and entities are represented by subhypergraphs. Having vertices 
represent metric properties is something of an artifact of the level of analysis. 
If an HR grammar is used, elaboration occurs on the hyperedges, but a 
hyperedge may connect only one vertex so, in effect, correspond to that 
vertex. With a logic programming language, there is no need to solve num
erical constraints and no need for variables to assume only real numbers 
as values. In general, logic programming languages are good for represent
ing structure and for implementing grammars, so the hypergraph gram
mar systems could be generalized to prenumerical representations for early 
design stages. 

The simulation of the evolution of a SID by a graph or HR grammar is 
about as abstract as we can get. An abstract simulation is desirable if we wish 
to emphasize the pure concepts unobscured by implementation details. Thus, 
in the prototype encoding interpreter implemented in Parlog, the design net 
foci were fleshed out with HR grammar rules so that a minimum of imple
mentation detail would be added to what is revealed in the protocol. 

Concerning control as expressed by the design nets, the implementation 
language, CLP(R), already has a sort of strategy since it delays considering a 
constraint until the only variables in it that remain uninstantiated are linear. 
The interpreter was developed to free control from CLP(R)'s implementa
tion of resolution. CLP(R), like most logic programming languages, back
tracks on failure. An interpreter could catch failures and initiate a more 
appropriate control pattern. In fact, the interpreter used in the second system 
simply relies on CLP(R)'s backtracking when failure is encountered, and a 
major effort would be required to specify control patterns for all possible 
failures. More generally, the design nets can be used as control specifications 
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for the interpreter by including the names of foci among the terms repre
senting the hypergraph and including the constraints on transitions in rules. 
There are several ways, using similar implementation techniques, that strate
gies, as summaries of paths through the design nets, could be implemented. 

9.3. Design Paradigms and Representation Schemes 
Research in design theory has been converging on the paradigms of CBD 
and (under various names) GCBD [see Brown and Chandrasekaran (1990) 
and especially Maher (1990)]. Often the single paradigm of GCBD is treated 
as two paradigms: transformation and decomposition (Kott and May, 1989). 
Transformation is usually explained in terms of grammars or something 
similar but informal. We see grammar rules at work in problem decomposi
tion; also, decomposition imposes constraints on the subproblem that must 
be satisfied when the subsolutions are combined. We do not, however, see 
these two paradigms as the whole story, for we view them against a back
ground of strategy and in a larger, reactive context. This is significant be
cause how one characterizes conceptual design has a profound influence on 
how one analyzes a design protocol. 

Viewing design from the perspective of CBD does not impose representa
tion schemes on one's characterization of conceptual design since CBD as a 
general paradigm is neutral regarding representation. Rather, one must de
vise representation schemes to sanction retrieval and adaptation procedures 
used in particular applications of the paradigm. For interpreting conceptual 
design protocols, the perspective afforded by CBD is useful for at least two 
reasons First of all, it suggests that we must accept without involved expla
nation certain leaps in a designer's line of reasoning. For here the designer 
might be following a precedent, so, apart from similarity between the current 
case and the precedent, there can be no deeper explanation than that the 
designer happened to address a similar problem previously. Secondly, proto
cols themselves are cases. Attempting to relate the encodings of several 
protocols (especially when collected from different designers) encounters 
many of the same problems that arise when CBD attempts to characterize 
different cases as similar or to derive one case from another by certain 
adaptations. 

Viewing design from the perspective of GCBD, on the other hand, does 
have representational implications: the problem state is conceived as a con
straint network and its evolution is viewed in terms of grammar rule applica
tions. The general paradigm, however, is mute about what domain the con
straints are over. The project described above considered constraints over 
the real numbers, where CLP(R) is appropriate, but conceptual design con
straints may be over various domains. (Indeed, CLP(R) is just one possible 
instance of CLP(D), where Dis the constraint domain.) Assuming one is 
interested in a representation that is allied to computation, there are two 
points in particular that make GCBD attractive. Firstly, most interesting 
models of computation are equivalent to some family of grammars. Sec-
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ondly, any set of first-order predicate logic formulas can be viewed as a 
system of constraints, and extensions to first-order logic can be seen as 
allowing more expressive constraints; so anything mathematically express
ible can be expressed as a system of constraints. Whether it is natural or 
useful to view the problem state and its evolution in conceptual mechanical 
design in these terms is another question, one to which this chapter has given 
a positive answer supplemented with a framework for control patterns. 

A paradigm of general problem solving that is considerably less expressive 
and flexible than GCBD yet shares its transformational nature is given in 
Newell and Simon's (1972) Human Problem Solving and has influenced most 
protocol analysis projects. It is assumed that the problem specifies an initial 
state, that there is a fixed set of operators that can transform the current 
state into the next state, and that a new state is evaluated against the goal 
state to determine whether progress has been made. Although this paradigm 
is reasonable for embodiment design, where there is a fixed set of design 
parameters, in conceptual design the operators, and so the search space, are 
not even defined until the problem is sufficiently formulated. And, once the 
problem is formulated, unless care is taken to maintain constraints in a 
usable form, the number of ways to transform the problem state that must 
be considered can become overwhelming. Our protocols revealed little overt 
evaluation and our representations of evaluations are meager. It appears 
that experienced designers are adept at elevating constraints from their role 
as "filters," in which they are used to accept or reject alternatives, to the role 
of "generators," in which they are used to create a tightly bounded number 
of alternatives. This says more than that constraints become "compiled" 
hence covertly applied, for it says something about a change in their abstract 
role. Finally, our protocols show little sense of progress to a goal but do 
show designers striving to keep on track so as to progress along a strategy. 

10. Conclusion 

We have presented formally-based schemes to represent the knowledge re
vealed in limited conceptual mechanical design protocols. We have also 
sketched our method of collecting and encoding such protocols. A protocol 
is directly encoded into a trace, consisting of three documents, one for each 
net, encoded concurrently. The trace partitions the protocol into (possibly 
overlapping or coinciding) episodes, which correspond to net transitions. For 
each episode, we record the subproblem in which it occurs, the input and 
output foci of the net transition, the SID conditions that enabled the transi
tion, and the changes the newly active foci make to the SID. The SID 
(structured instance diagram) for a protocol is constructed as the trace is 
encoded. It represents the designer's view of the evolving problem state. 
Items recorded in the SID are tasks, entities, properties, and relations; cer
tain properties and relations are distinguished, forming a predefined special 
part of the scheme. Both a graphical and a tabular form of the SID are 
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maintained. The static aspects of the SID represent a snapshot of the prob
lem state and its dynamic aspects indicate how the problem state evolves. 
Dynamic aspects are represented by certain distinguished relations, which 
graphically are represented by arcs connecting tasks and entities. The outline 
of the evolution of the problem is represented by the task DAG, which 
consists of the tasks and entities in the SID connected by the evolutionary 
arcs. 

For each protocol, there is a trace and a SID, but these instantiate or 
reflect general structures. These structures are updated as needed when a 
protocol is encoded, so they contain at least the resources to represent the 
content of all protocols so far encoded. The ontologies, formalized in the 
domain equations and domain function equations of denotational semantics, 
form a type system for the items instantiated in a SID; the static ontology 
relates to static aspects and the dynamic ontology relates to the dynamic 
aspects of SIDs. The design nets are modified Petri nets. Each focus ("place") 
has as its name a phrase describing the design aspect it represents and each 
transition is associated with a condition referring to the SID. An episode in 
a trace is interpreted as one or more concurrent net transitions. When a focus 
is first active (receives a token), it accounts for changes in the SID. For a 
transition to be enabled, not only must all its input foci be marked but also 
its condition must be true. A transition condition is a Boolean combination 
of atomic conditions in disjunctive normal form; atomic conditions refer to 
features in the SID. Focus names and atomic conditions are generated by 
certain semantic grammars to ensure that they are well-defined and meaning
ful. The grammars divide quite neatly into three groups, inducing three 
separate nets. There are different activations of all three nets for different 
subproblems. Essentially, the nets integrate interlocking control patterns 
that are instantiated in protocols. To make sense out of the flow of a proto
col, it is necessary to identify higher level control patterns that, however, can 
be related to the detail of the nets. These patterns are strategies and intro
duce problems we are still resolving. 

Two steps in particular were taken to foster objective and accurate 
encodings. First of all, certain measures of reliability were defined to indicate 
how well two people agree when encoding a protocol into our representation 
schemes. Low reliability on some feature of the schemes is reason to re
formulate or supplement that feature. Secondly, an encoding team always 
includes a mechanical engineer, who can explain design steps in terms of 
mechanical principles. Such steps are necessary because our representations 
are not operationally defined in terms of the words in a protocol. No matter 
what steps are taken, however, a certain indeterminacy must remain in 
our encodings since we translate largely informal language into formal 
representations. 

Conceptual problems, including often unacceptable indeterminacy, mostly 
relate to the design nets. There is a threat that the nets might become too 
extensive and fail to capture significant generality, although the semantic 
grammars help by constraining the number and kinds of foci and atomic 



www.manaraa.com

6. Representation of Conceptual Mechanical Design Knowledge 123 

conditions allowed. Strategies are a more abstract way to capture generality, 
but technical problems remain in relating strategies to the detailed nets. We 
need well-defined ways to determine that two net fragments are similar (or 
more similar than two other fragments) and to determine that one net frag
ment is a summary or abstraction of another fragment. Again, the partition 
into three nets is founded on the differences among the semantic grammars. 
These grammars might sanction useful finer partitions or partial mergings of 
the nets. 

Eventually, the work described here should be implemented for design 
automation. We would expect an implementation to draw on only part of 
our scheme and to use man-machine cooperation. Implementation could be 
facilitated by relating our schemes to certain design paradigms (as discussed 
in Section 9). Case-based design (CBD) retrieves and adapts previous cases to 
help solve new problems. It depends heavily on the representations available 
for retrieving cares similar to the problem at hand and for adapting retrieved 
cases; our work affords representation schemes that should be exploitable 
by CBD. CBD has generally not been used to govern control patterns or 
to suggest strategies. Given an adequate representation of control patterns, 
however, CBD could (depending on the previous cases recorded) afford 
automated guidance through much of conceptual design. 

Another design paradigm can be called generative constraint-based design 
(GCBD). It views design as elaboration of a constraint network by applying 
formal grammar productions (graph grammar or hyperedge replacement 
rules, say) to the problem state and solving the constraint network, most 
usefully in an opportunistic fashion that allows partial solutions to guide the 
elaboration. We see GCBD as subsuming the more common paradigms of 
transformation and decomposition. The SID produced in encoding a proto
col can be interpreted as a constraint network. The information in a protocol 
shows a SID being elaborated but it does not suggest how it is elaborated 
or how values meeting the constraints are selected. GCBD supplies answers 
to these "how" questions and, thus, suggests implementation methods. Fur
thermore, GCBD's answers to the "how" questions are about as abstract as 
possible, which is desirable at the level of specifications. GCBD, however, 
has little to say about control patterns other than emphasizing the advan
tages of an opportunistic policy. 

It is important to consider our work in a broader context. Our protocols 
address relatively small problems. Larger mechanical design problems are 
often solved by teams. In teams, coordination is a problem since activities 
proceed concurrently. But we already handle concurrency since we have 
concentrated on the conceptual relations that allow a design to proceed. 
Once we move to a broader context, conceptual design is linked not only 
with later stages of design but also with possibly complex physical, eco
nomic, and social systems that transcend design proper. [This broader 
context is addressed by concurrent engineering-see Sprague et al. (1991), 
Rosenblatt et al., (1991), and Nevins and Whitney (1989).]1t is interesting to 
consider how our schemes could be enlarged to accommodate these design-
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transcending aspects. Obviously, the ontologies would become much larger 
and a typical SID would be much more complex. Evolutionary relations 
would have to capture notions other than those that relate to decomposition 
and realization, but the fundamental categories of tasks, entities, properties, 
and relations-and the general framework built around them-would still 
apply. Three design nets would no longer suffice when new realms are taken 
into account. The indeterminacy we noted in the control patterns for concep
tual design might be less severe in these new realms, which may be governed 
by policies or conventions that have evolved or been imposed to coordinate 
the activities of cooperating agents. 
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7 
Configuring Systems Using Available 
Assets: A Conceptual, Decision
Based Perspective 

P. N. KOCH, J.D. PEPLINSKI, F. MISTREE, AND J. K. ALLEN 

Design using available assets, in the context of theory and methodology, is 
more a state of research than a state of practice. At a low level of abstraction, 
design using available assets, or catalog design, is a procedure in which a 
system design is realized by assembling standard components selected from 
catalogs. A nearly endless supply of available components and component 
assemblies, defined in terms of key features, can be stored in catalogs or 
computer databases as available assets to realize new designs. If this notion 
of catalog design, or design using available assets, is abstracted to higher 
levels and implemented in the earliest stages of the design of a product, a 
consistent method for quickly exploring new designs based on that which 
already exists can be developed. 

In this chapter we present a conceptual framework for designing when 
using available assets at different levels of abstraction. The foundation for 
our approach is rooted in the twin paradigms of Decision-Based Design and 
a Living Systems Analogy (Koch et al., 1994; Mistree et al., 1990). Systems 
are modeled at a high level of abstraction in terms of design requirements 
using this analogy of living systems adapted from Living Systems Theory 
(Miller, 1978). Function level system models are used to identify feasible 
existing concepts and components to realize a system. The use of Decision 
Support Problems (Mistree et al., 1993b) to evaluate and select among feasi
ble concepts and to identify feasible configurations of available components 
is discussed. 

1. Frame of Reference 

The notion of design using available assets has its roots in the familiar topic 
of catalog design, a procedure in which a system is assembled by selecting 
standard components from catalogs (Vadde et al., 1992a). In this definition 
"components" include various sizes of gears, bearings, shafts, motors, tub
ing, etc., that are known to exist in catalogs and databases and are accessible 
to designers. If we begin with this definition of catalog design and expand 
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it to include existing human and physical resources, processes, solution 
principles, abstract and concrete subsystems, etc., as well as components, 
we arrive at design using available assets. The end result, however, is more 
than just a procedure; we feel design using available assets is a philosophy for 
approaching design as much as it is a method for design. 

Our starting paradigms for this conceptual perspective of design using 
available assets are rooted in Decision-Based Design and an analogy drawn 
from Living Systems Theory. We present a brief overview of these paradigms 
in the remainder of this section. 

Decision-Based Design 

At the Second National Symposium on Concurrent Engineering we pre
sented a conceptual model for decision-based concurrent engineering design 
for the life cycle (Mistree and Muster, 1990). We offer Decision-Based De
sign (DBD) as a starting point for the creation of design methods that are 
based on the notion that the principal (not only)1 role of an engineer in the 
design of an artifact is to make decisions. We recognize that the implementa
tion of DBD can take many forms, our implementation being the Decision 
Support Problem (DSP) Technique (Bras and Mistree, 1991; Mistree et al., 
1990; Mistree et al., 1993c; Muster and Mistree, 1988). The DSP Technique 
is being developed and implemented to provide support for human judgment 
in designing systems that can be manufactured and maintained. The DSP 
Technique is used in this chapter as a framework within which guidelines for 
a method of design using available assets are implemented. An extensive 
review of the relevant literature and a description of the DSP Technique is 
given in the references cited earlier and is not be repeated here. 

Living Systems Analogy 

Living Systems Theory (LST) (Miller, 1978; 1990) is a conceptual framework 
that has been created to develop a unified theory dealing with the hierarchi
cal structure of both living and nonliving systems. Any biological system 
can be characterized by its roles and functions within the system using the 
essential characteristics of 20 subsystems. Although LST has been developed 
to model biological systems, by analogy subsets of the twenty subsystems 
have been used to model nonliving systems, (Koch, et al., 1994; Miller, 
1978, 1990; Miller and Miller, 1992; Swanson and Miller, 1989; Walker and 
Thiemann, 1990). The Living Systems Analogy (LSA) is postulated for use 
in dealing with non-living systems, which in effect are viewed as a subset of 
living systems. LSA is based on the use of the LST icons and provides 

1 This does not exclude other activities that are performed by a designer in the process 
of design. One classification of these subordinate activities is described in Bras and 
Mistree (1991). 
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FIGURE 7.1. Symbolic representation of the subsystems of Living Systems Theory 
(Mistree et al., 1993a). 

a useful paradigm, or language, for engineers interested in modeling the design 
of open engineering systems in general and engineering systems, in particular. 

The symbolic representation scheme for the twenty subsystems that com
pose LST is presented in Figure 7.1. These twenty subsystems are classified 
into three categories: 

• Subsystems (two) that process both matter/energy and information 
• Subsystems (eight) that process matter/energy, and 
• Subsystems (ten) that process information 

Systems to be designed can be modeled by assembling the LST subsystems 
to meet the design requirements given in a problem definition (Koch et 
al., 1994; Mistree et al., 1993a). These subsystems are "assembled" through 
the flow of matter/energy and information and by recognizing the system/ 
environment boundary. 

Matter/Energy and Information Processing Subsystems 

In the first group are the reproducer and boundary. The reproducer is capable 
of giving rise to other systems similar to itself. The boundary is the subsystem 
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at the perimeter of a system that holds together the components that com
prise the system, protects them from its environment and excludes or permits 
entry. 

Matter/Energy Processing Subsystems 

In the second group (arranged in the order of subsystems that deal mainly 
with inputs to those that deal mainly with outputs) are the ingestor, distribu
tor, converter, producer, matter/energy storage, extruder, motor and supporter. 
The ingestor transports matter/energy across the boundary from the environ
ment. The distributor moves matter/energy around the system; this matter/ 
energy may be external inputs to the system or outputs from other sub
systems. The converter subsystem transforms some matter/energy inputs to 
the system into usable forms. The producer is the subsystem that forms stable 
associations among matter/energy inputs to the system or outputs from the 
converter. Materials synthesized by the producer are used for the benefit of 
the system, for growth, for repair, for component replacement and for pro
viding energy for the system's outputs of products or information markers. 2 

Matter/energy storage is the subsystem that retains packets of matter/energy 
in the system. The extruder transmits matter/energy out of the system in the 
form of products or wastes. The motor moves the system or parts of it in 
relation to part or all of its environment or moves components of its environ
ment in relation to each other. The supporter maintains the system compo
nents in a predetermined spatial relationship. 

Information Processing Subsystems 

The subsystems that process information are in the third group. These 
include the input transducer, internal transducer, channel and net, decoder, 
associator, memory, decider, timer, encoder, and output transducer. Again, the 
subsystems are arranged in the order of those that deal mainly with inputs 
to the system to those that deal mainly with outputs. The input transducer is 
the sensory subsystem that transports markers bearing information into the 
system. The internal transducer receives markers bearing information and 
transforms them to forms suitable for transmission within the system. The 
channel and net is the subsystem of direct channels by means of which 
markers bearing information are moved to all parts of the system. The 
decoder subsystem alters the code of information input to it through the 
input transducer or internal transducer into a private code used internally in 
the system. The associator is the subsystem that deals with learning in its first 
stages by forming enduring associations among the items of information 

2 Information in living systems is defined as the forms or patterned arrangements of 
the matter and energy in such a system. The transmission of this information on 
channels in space or its retention over a period of time requires that the information 
be embedded in a matter/energy packet which Miller (1978, p. 12) calls a marker. 
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within the system. The memory subsystem conducts the second stage of 
learning, by storing items of information for different periods of time. The 
decider is the executive subsystem that receives information from all other 
subsystems, processes what it receives, chooses a course of action and then 
transmits the decision. The timer subsystem transmits to the decider infor
mation about time-related states of the environment or of components of the 
system. The encoder subsystem alters the code of the information-processing 
subsystems, from a private code used internally by the system to a public 
code that can be interpreted and used by other systems in the environment. 
The output transducer transforms information markers used within the sys
tem into other matter/energy forms that can be transmitted over channels in 
the system's environment. 

The Living Systems Analogy is particularly useful in the early stages of 
a product realization process when only the functional requirements of a 
design problem are known. LSA provides a convenient domain-independent, 
icon-based language that can be used to represent the means by which 
these requirements will be satisfied. We contend that the concept of LSA is 
also particularly useful when designing using available assets. The use of 
LSA at the function level to represent a system provides a convenient and 
consistent approach to identifying and exploring feasible existing concepts 
and components. 

In the following section a conceptual framework for designing when using 
available assets is introduced and defined in terms of the three levels of 
abstraction mentioned (function, concept, and component level). Each of 
these levels is elaborated, including example, in the following sections. The 
use of Decision Support Problems (DSPs) to formulate and solve available 
assets design problems is also discussed. 

2. Design Using Available Assets 

In the context of theory and methodology, design using available assets is a 
current state of research that can be described as a process of configuring 
systems using that which already exists. At a low level of abstraction, design 
using available assets becomes the familiar topic of catalog design: a proce
dure in which a system design is realized by assembling standard components 
selected from catalogs. Selection in design is a process of making a choice 
between a number of possibilities while recognizing a number of measures 
of merit or attributes. Methods including, but not limited to, qualitative 
optimization, interval approaches, fuzzy set theory, stochastic optimization, 
subjective design evaluation, and heuristic approaches have been formerly 
developed to handle various kinds of information in selection (catalog) de
sign problems. Bradley and Agogino have presented a method of qualitative 
optimization using monotonicity analysis for catalog selection (Bradley and 
Agogino, 1991). Wilde (1978), Papalambros and Wilde (1988), and Agogino 
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and Almgren (1987) have extensively discussed monotonicity analysis and 
qualitative optimization. An interval arithmetic method for catalog selection 
has been proposed by Bradley and Agogino (1991). Habib and Ward have 
used labeled interval calculus for inferences on catalogs (Habib and Ward, 
1990). Moore (1979) has dealt with methods and applications of interval 
analysis. Baas and Kwakemaak (1977), Allen et al. (1989), and Vadde et 
al. (1992b) have used fuzzy set theory to solve multiple-attribute selection 
problems under uncertainty. Stochastic optimization in selection has been 
considered by Kahne (1975). Subjective design evaluation with multiple at
tributes was treated by Thurston (1990). Wood (1990) provide a good discus
sion of the use of fuzzy and probability calculus in engineering design. 
Waldron et al. (1986) and Mittal and Arya (1986) have explored the applica
tion of expert systems to component selection. DeBoer (1989) presents a 
review of available selection methods. 

An overview of these methods as applicable to specific selection problems 
and useful in specific situations is presented in Vadde et al. (1992a). Vadde 
and coworkers then suggest that a more general approach is the treatment of 
coupled selection design problems in the framework of the compromise DSP 
(Mistree et al., 1993b). This approach is demonstrated in this chapter. For 
simplicity, the selection of existing components to realize a design is re
stricted to the crisp form (uncertainty is not included) following that of 
Bascaran et al. (1989). 

Design using available assets, then, can be defined at the component or 
detailed level as the familiar topic of catalog design, a procedure in which a 
system is assembled by selecting standard components from catalogs (Vadde 
et al., 1992a). This definition, however, limits the scope of "design using 
available assets." A conceptual framework for designing when using available 
assets is presented in Figure 7 .2. Within this framework the definition of avail
able assets is expanded to include assets other than components in catalogs: 

Design using Available Assets: The use of existing human and physical re
sources, processes, solution principles, abstract and concrete subsystems, living 
and nonliving subsystems, to realize a system configuration. 

Given this definition, three different levels of abstraction, namely, func
tion, concept and component, for modeling and processing different levels of 
information detail define the conceptual framework presented in Figure 7.2. 
Each of these levels, as well as their significance for designing when using 
available assets, are defined and discussed in this section. 

2.1. Levels of Abstraction 
The initial information available for a product to be designed is captured in 
the recognition of need and statement of the problem, as noted in Figure 7.2. 
The representation of a product to be designed begins as a set of functional 
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FIGURE 7 .2. A conceptual framework for designing when using available assets 
incorporating levels of abstraction (Koch et al., 1994). 

requirements and specifications, partitioned from a problem statement of 
requirements for the design, and is transformed into a detailed representa
tion of a physical entity or group of entities. The type of information and 
knowledge generated about a product changes as its design process pro
gresses. As the conceptual design stage is entered and progresses, a system 
modeled as requirements must be represented in terms of the concepts ex
plored to meet the requirements. As the selected concepts are defined in the 
detailed stages, a detailed modeling of the components for realizing the 
concepts becomes necessary. Regardless of the current stage during a design 
process, however, the available information about a product being designed 
can be represented as a system model at different, definitive levels of abstrac
tion. Three such distinct levels of abstraction for modeling systems, defined 
in terms of the class of information represented and processed at each, are 
identified (see Figures 7.2, 7.3): the function level, the concept level, and the 
component level. 

These levels of abstraction are defined in terms of the information 
managed, processed, and represented at each: 

• The function level of abstraction-the level at which design requirements 
and systems are represented generically with no mention of conceptual or 
physical realization. 
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FIGURE 7.3. Layers of information representation for design using available assets. 

• The concept level of abstraction-the level at which systems are mod
eled in terms of possible solution principles for fulfillment of the design 
requirements. 

• The component level of abstraction-the level at which systems are mod
eled in terms of specific, physical entities that may realize the chosen 
concepts and/or fulfill the design requirements. 

Defined as such these levels can be viewed as layers of information repre
sentation as shown in Figure 7.3. As the model of a product being designed 
moves from the function to the concept to the component level of abstrac
tion, the detail of information represented by the model steadily increases 
while the amount of generality and design freedom decreases. When ab
stracting from the component to the concept to the function level in Figure 
7 .3, the level of abstraction or generality increases. 

The representation and processing of information when designing at 
each of these levels is elaborated and discussed through example following 
sections. Before presenting this discussion the conceptual framework for 
designing when using available assets presented in Figure 7.2, as well as the 
transformation of information that occurs at each layer in Figure 7.3, is 
elaborated. 

2.2. A Conceptual Framework for Designing When Using 
Available Assets 
The conceptual framework for design using available assets is defined at each 
of these levels of abstraction in terms of the assets available at each level, and 
the necessary transformation of information at each layer of Figure 7.3 that 
allows the design to be represented using these assets. The assets identified as 
available for designing at each level are presented in Table 7.1. The LST 



www.manaraa.com

7. Configuring Systems Using Available Assets 135 

TABLE 7 .I. Assets available for designing at each defined 
level of abstraction. 

Abstraction level 

Function level 
Concept level 

Component level 

Available assets 

LST icons and representation scheme 
Existing, defined concepts and solution 

principles 
Existing, defined products, components, 

and component assemblies 

icons and representation scheme are used to partition and represent a system 
at the function level of abstraction. At the concept level, existing concepts or 
solution principles (Pahl and Beitz, 1988) are sought to realize the product 
specific functions represented at the function level (for example, a shaft and 
coupling for transferring torque). Existing and readily available physical 
components found in vendor catalogs are defined as available assets for 
designing at the component level of abstraction (existing, standard shafts 
and couplings). 

Using these available assets the layers of information representation 
shown in Figure 7.3 are defined in Figure 7.4 as a transformation of input 
information into the necessary outputs. The foundation of each transforma
tion is the use of the available assets defined at each level of abstraction to 
realize the representation of each layer. Between each layer in Figure 7.4, a 
test of the validity of the information represented is shown that restricts the 
move between layers. 

Given a problem statement containing requirements for the design of an 
engineering system a model of the system is create using the LST icons and 
representation scheme at the function level of abstraction. Thus the inputs at 
this level in Figure 7.4 are the available design requirements; the LST icons 
and scheme are used to transform these requirements into an LSA system 
model (for example, a motor LST subsystem for representing a system mo
tion requirement). After a function level system model has been created, the 
problem statement and available design requirements are reviewed to ensure 
that the system model has captured all the available information at this 
level (completeness and correctness in Figure 7.4) before moving to lower 
levels. 

When confident that the LST system model is complete and correct, a 
designer can move to the next level of abstraction or representation layer. At 
the concept level of abstraction, then, it is possible to define available assets as 
existing groups or categories of solution and working principles (Pahl and 
Beitz, 1988) that have previously been developed and produced and for 
which developed products are known to exist. The system model of function 
and specifications is transformed (Figure 7.4) into a conceptual configura
tion of solution principles. For example, in meeting the system motion 
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requirement modeled as a LST motor icon at the function level, existing 
concepts include levers and linkages, engines and motors, springs and actua
tors, thrust producing combustion concepts (rockets), etc. Working products 
are known to exist for these conceptual components. Before exploring the 
different types of each at a lower level of abstraction, however, a designer is 
able to investigate and evaluate these concepts using the design specifications 
given with the problem statement to reduce the domain of feasible or likely
to-succeed working principles. At this level a test for feasibility allows the 
appropriate proceeding steps to be determined: move to component level, 
seek additional concepts, or return to the function level for more detailed 
partitioning. Three determinants of feasibility are identified: the concepts 
must meet the functional requirements for the design, they must not violate 
any of the constraints or specifications, and they must be compatible with 
one another. If no feasible concepts are known to exist, a designer can 
further partition the system representation at the function level to provide 
more detail. 

Finally, at the component level of abstraction, a designer is able to explore 
the available assets that exist within the groups or categories of working 
principles: products, components, and component assemblies that have been 
previously developed, tested, and marketed, that may meet the functional 
requirements, the design specifications, and the chosen concepts, for the 
design problem at hand. At this level of Figure 7 .4, the feasible solution 
principles discovered at the concept level are transformed into physical real
izations using existing components. For example, for the motion require
ment, if the motor concept is chosen for further exploration, many existing 
electric motors can be found in catalogs defined by size (in terms of input and 
output variables). At the component level, then, a designer explores the 
possibility of using available components for which the product specifica
tions and system performance information is available to realize a concept. 
The output information represented at this layer is one or more possible 
physical configurations. Again a test for feasibility and compatibility of each 
alternative component is developed before selecting among the alternatives. 
If no feasible products are found to exist, the designer can iterate, going back 
to the function level and partitioning further, in more detail, or explore other 
system configurations. 

The foundation for this conceptual framework for design using available 
assets is the transformation (partitioning and modeling) of information at 
the function level of abstraction using the LSA. Through the consistent 
and domain-independent representation of function level information that is 
achieved when using the LST icons, the evaluation and determination of 
feasibility of existing concepts and components is possible. The strength 
of the LSA in providing this foundation includes the capability to model 
existing concepts and components using the same modeling scheme, and thus 
abstract this detailed information to the function level for evaluation and 
comparison. 
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Within this conceptual framework, once types or families of existing com
ponents for physically realizing the feasible concepts are identified, a selec
tion of compatible components or component assemblies must be made. 
The solution method for this selection of existing components is through the 
formulation and solution of the appropriate DSPs. Decision support will be 
discussed in Section 5. In the next section designing at the function level is 
elaborated. 

3. Partitioning at the Function Level of Abstraction 

Designing at the function level of abstraction is defined as a process of 
partitioning and representing. This necessary partitioning is divided into two 
principal partitioning activities, as illustrated in Figure 7.5: (I) the break
down and allocation of requirement information and (2) the decomposition 
of systems. Support for representing partitioned information is provided 
through the use of the LST icons and scheme. In this section, these two 
principal partitioning tasks are elaborated. 

I. Breakdown/Allocation of Requirement Information 

Design Requirements 

~ 
Functional Requirements Specifications 

ll. Decomposition/Modeling of Systems 
(Select, Assemble, Arrange LST icons) 

FIGURE 7.5. Two principal partitioning tasks for designing at the function Level of 
abstraction. 
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3.1. Partitioning Design Requirements 

The term design requirements is employed to encompass the complete body 
of information that governs the realization of a system to be designed. 
Information extracted from a design problem statement for the design of 
a new system can then be classified as either design requirements or other 
information (evaluation of need for a new product, market studies, history, 
etc.). Only the requirements for a product are addressed here. 

Design requirement information can then be classified further as fitting 
into two categories, as illustrated in Figure 7.6, based on what a system must 

do (functions), and how the functions of a system are limited (properties and 
preferences that a system must meet or should possess). The what require

ments have already been defined as the functions a system must perform, or 
functional requirements. Functional requirement information includes not 

only process information (functions) but also information about that which 
is to be processed (flow information). The necessary system properties and 
preferences govern how a function is limited, and provide additional flow 
information. These requirements allow the feasibility of a solution principle 

to be determined, and/or provide the means for comparison of different 
solution principles for a particular function or subsystem. We employ the 
term specifications to represent these governing requirements. 

Design requirements included in a problem statement provide the neces
sary information for the initial development of a system model: the func
tional requirements provide the function and related flow information (pro-

Problem Statement 

~ Other Information 

Design Requirements 
I 

Functional Requirements Specifications 

What infonnation: How infonnation: 

what functions a system bow a system/function is limited 

must perform (properties and preferences) 

T I 

~ 
System Model 

FIGURE 7 .6. Classification of information for the breakdown of design requirements 

(Partitioning task 1). 
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cess and structure) and the specifications provide characteristic information 
linked to a system model that governs the realization of the system. A 
problem statement is first partitioned into a set of functions (functional 
requirements) that the system must meet. The verb/noun function represen
tation employed in much of the literature (O'Shaughnessy and Sturges, 1992) 
may be used as an aid to extract this information, as the necessary functions 
may be given in this format (cut grass, store grass, for example). The initial 
flows (matter, energy, or information) must then be determined. Once the 
functions and flows have been identified, the specifications are then parti
tioned, allocating each to the function(s) or flow(s) that they limit. This 
format of partitioned information will foster the creation of a graphical 
system model using the LST icons. 

3.2. Modeling Systems Using the Living Systems Analogy 
Given the partitioned requirements for a design problem (functions, flows 
and specifications), an initial system model can be created. In defining 
systems and creating a system model, the capability to establish and consis
tently represent hierarchy is essential. Agreement is apparent in the litera
ture, that a system is (l) composed of more than one part and (2) is itself one 
part of larger systems. Without both (1) and (2) a system cannot be defined 
completely. For engineering applications, the breakdown of a system is de
fined in terms of subsystems and/or components (at a lower level of detail). 
For complex systems, this breakdown will likely be in multiple hierarchical 
levels of subsystems. 

In partitioning design requirements the hierarchical structure of the func
tional requirements will, to a certain extent, develop naturally. A list of 
functional requirements will necessarily include an overall function and the 
subfunctions needed to meet the overall function (for example, move system 
and store grass sub-functions of the overall function cut grass for a lawnmo
wer system). The identification of lower level functions defining ambiguous 
or complex sub-functions will guide the establishment of a function hierar
chy for a system. In creating the function hierarchy, a system (model) hierar
chy will be initiated. The system model hierarchy is defined in terms of 
increasing levels of detail (decreasing abstraction) that includes a system 
level and one or more subsystem levels. The position of a particular sub
system in the system model hierarchy will be denoted using a superscript as 
shown in Figure 7.7 (subsystem2 for second level in system hierarchy, for 
example). 

In establishing a hierarchy of the partitioned functional requirements, it is 
essential to maintain the assigned specifications. Given the breakdown of 
design requirements and establishment of hierarchy, the Living Systems 
Analogy can be implemented. The LST icons are employed to create the 
initial system model hierarchy. 

To select the appropriate LST icon, the flow to be processed must be 
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FIGURE 7.7. Levels of detail in a system model hierarchy. 

defined as matter, energy, or information for a particular functional require
ment. The set of possible subsystems then becomes a subset of the twenty 
LST subsystems (eight for matter/energy processing, etc.). The necessary 
process (function) and flow must then be defined clearly. Again, the verb/ 
noun descriptions prevalent in the literature (O'Shaughnessy and Sturges, 
1992) are useful, as both the function and the flow are described. The defini
tions of the LST subsystems within the reduced set are then reviewed, noting 
that subsystems are organized in order from those that process mainly inputs 
to those that process outputs. Given the concise description of a requirement 
and the definitions of the possible subsystems, a match is made, and the 
appropriate subsystem selected. The specifications listed for the functional 
requirement must then be assigned to the selected LST subsystem. 

Once the necessary LST subsystems have been selected, an initial system 
model is created by assembling the subsystem icons. The LST icons are 
assembled through representation of the necessary flows of matter, energy, 
and information. In addition, the established requirement hierarchy fosters 
the creation of the system model, and must be observed. With experience and 
a solid understanding of the LST subsystems and representation scheme, the 
assembling of icons to create the graphical model becomes a natural map
ping of the partitioned requirements, the established hierarchy, and the flow 
information. 

To demonstrate the use of this Living Systems Analogy and partitioning 
support for designing at the function level of abstraction, the example of the 
design of an aircraft evacuation system is introduced. 

3.3. An Example: Function Level Design of an Aircraft 
Evacuation System 
For the design of an aircraft evacuation system, the following problem state
ment is given: 

An emergency evacuation system for a wide body, passenger carrying aircraft must 
be designed. There are typically two types of aircraft emergency incidents: on land 
and on sea. During an emergency, the evacuation system must be capable of safely 
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TABLE 7.2. Aircraft specifications. 

Door dimensions 
Aircraft sill heights 

42" wide by 74" high 
Maximum = 280" 
Normal = 200" 
Minimum = 80" 

TABLE 7.3. Evacuation system specifications. 

I. The total system weight must be less than 170 lb. 
2. When stored, the entire system must fit in a volume no greater than 8.5 ft3 • 

3. The system shall be automatically actuated, completely self contained, and with no form of 
remote control. 

4. The system must be ready for use in no more than 6 s from actuation. 
5. The cost of the system should be kept to a minimum without sacrificing system 

performance. 
6. The system must be capable of supporting passengers evacuating the aircraft at a rate of 

60 passengers per lane per minute without failure at normal sill height. 
7. The system must be capable of properly functioning after being exposed to any temperature 

in the range -40°F to l60°F for a 24 h period. 
8. The system must be capable of operating in 25 knot winds from any direction. 

conveying passengers to the ground or water and providing flotation, if necessary. 
The ultimate goal is to evacuate the aircraft while minimizing the probability of 
passenger injury. 

When not in use the evacuation system must not interfere with the normal use of 
the aircraft. It must not extend past the aircraft fuselage or wing exterior geometry, 
for aerodynamic reasons, or far into the interior of the aircraft for reasons of opera
tion and passenger comfort. Given these basic requirements, the passenger transport 
and/or flotation system must be moved from a stored location to a usable position. 
The system must be completely self contained, and ready for use without remote 
control in no more than 6 seconds. 

The primary design specifications available for the design of the aircraft 
evacuation system are given in Tables 7.2 and 7.3. These specifications in
clude aircraft dimensional information for compatibility (Table 7.2), and 
the specifications limiting the design and operation of the evacuation system 
itself (Table 7.3). 

Given the information included in the problem statement and the design 
specifications for the evacuation system, the requirements for the system can 
be partitioned. The primary functional requirement for this system is to 
evacuate passengers. Two evacuation scenarios are defined for which the 
system must meet the necessary requirements: land evacuation and sea evac
uation. As suggested in the specifications in Table 7.3, this problem requires 
that the system be stored when not in use, and deployed when needed. 
Thus the complete system design includes not only the system for conveying 
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FIGURE 7 .8. Partitioning of initial requirements for the design of an aircraft passen
ger evacuation system. 

passengers to the ground or providing flotation, but also a system for de
ploying the transport/flotation system(s). These two systems thus become 
the primary subsystems of the overall evacuation system. 

For the evacuation of passengers and the two identified sub-functions, 
three primary flows are identified: the flow of passengers when the system is 
in use, the flow of energy when the system is being deployed, and the flow 
of information regarding the necessary use (triggering) of the system. The 
breakdown of available requirements for the initial creation of a system 
model at the function level is shown in Figure 7.8. The specification numbers 
assigned or allocated to the primary and sub-functions refer to the specifica
tions listed in Table 7.3. The specifications for the primary function apply to 
the overall function and thus the entire system. 

It is conceivable that the transport passengers and provide flotation require
ments be considered as separate functions for which individual subsystems 
are designed. Given the space (overall volume) and weight requirements, 
however, it is desirable that a single subsystem meeting both of these require
ments be realized. Thus these functions are grouped in Figure 7 .8, providing 
a starting point for modeling the system at the function level. 

Using the structure of the partitioned requirements, a hierarchical repre
sentation of the evacuation system is established with two discrete levels: 
a system level and a subsystem level. The first pass system level model of the 
evacuation system is represented in Figure 7.9. The borders around the 
motor and storage subsystems signify that these are the two main subsystems 
(as described above) of the overall evacuation system. These subsystems 
must be defined in more detail at a lower level of the system hierarchy. 

At the system level (Figure 7.9), information regarding the state of the 
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FIGURE 7.9. System level representation of the aircraft evacuation system. 

system (storage, activation, deployment) enters the system through an input 
transducer, and is passed to the motor subsystem. This information is pro
cessed to determine the current state of the system. During activation, this 
information signals the motor subsystem to release the necessary energy to 
move the storage subsystem from its stored state within the aircraft. This 
information passes from the system through an output transducer when acti
vation is not necessary. 

The storage subsystem in this model is loosely defined, and thus requires 
further explanation. According to the problem statement the evacuation 
system must provide means of safely conveying passengers to the ground and 
provide flotation in the event of a ditching scenario. As mentioned, these 
requirements have been grouped. This grouping is accomplished through 
specifying that the storage time depends on the specific emergency scenario. 
On land, the time the passengers remain in the system is slight, so the storage 
system virtually becomes a distributor. At sea, the passengers remain in the 
system for an extended period of time and are thus stored within the system. 
Information is passed to the storage subsystem regarding the emergency 
scenario, allowing the storage time required to be determined. 

The remaining icons of the system level representation include an ingest or, 
an extruder, a supporter, and the boundary. The supporter and boundary are 
always present to maintain spatial relations and separate the system and 
environment, respectively. The ingestor and extruder allow passengers to 
enter and exit the system (cross the system boundary). These may actually be 
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FIGURE 7.10. Motor subsystem2 representation for the design of an evacuation 
system. 

a part of the storage subsystem but are shown for clarity in the system level 
representation. 

The lower level representation of the motor subsystem2 (recall that the 
superscript represents the level in the system hierarchy; second level in this 
case) is presented in Figure 7.10. At this level the functional components 
necessary for moving the storage system out of its stored location within the 
aircraft are modeled. Energy is needed for this deployment. Thus energy 
enters the system through an ingestor and is stored within a storage sub
system until it is needed. This ingesting and storing of energy to be used by 
the system would be done during system maintenance or installation, prior 
to operation of the aircraft. 

Information flows from the environment, through an input transducer to 
the distributor regarding this necessity of deployment. When deployment is 
necessary the energy stored within the motor subsystem2 is released by the 
storage device and flows by way of a distributor to the converter. The con
verter changes the energy released from the storage device to the form neces
sary for use in deployment, as in the case of a chemical reaction. This 
energy is transported by way of a second distributor and exists the motor 
subsystem2 through an extruder. 

The energy exiting the motor subsystem2 serves the purpose of moving the 
storage (system level) subsystem from the aircraft. Thus this flow of energy 
ties the two primary subsystems of this hierarchical representation together. 
The subsystem2 level representation of the system level storage system is 
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presented in Figure 7.11. This representation includes two matter/energy 
flows: The flow of energy from the motor subsystem, and the flow of passen
gers through the subsystem2. The energy from the motor subsystem2 enters 
the storage subsystem2 through an ingestor, is distributed or stored (distribu
tor or storage), and leaves the system through an extruder when it is no 
longer needed. At this point it is unknown whether the energy will be stored 
(inflatable device, for example) or will be used and dissipated (unfolding 
stairs), and both options are represented. If this energy does not need 
to be stored (simply used for deployment), it passes directly through this 
subsystem2. 

In Figure 7.11, the passengers enter the storage subsystem 2 through an 
ingestor and are transported by a distributor. Information enters the sub
system2 through an input transducer regarding the evacuation scenario that 
exists. During land evacuation, the passengers are transported by the distrib
utor to the extruder where they leave the system safely. In the event of a 
ditching scenario, the passengers are transported by the distributor to the 
storage device where they remain until they are transported by a second 
distributor and leave the system through an extruder. 

This initial representation for the aircraft evacuation system, presented in 
Figures 7.7, 7.8, and 7.9, captures the information contained in the parti
tioned requirements, and the additional representation information needed 
to partition the subsystems. The possible realization of this system and its 
subsystems using existing concepts and components can now be investigated. 
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In the next section, feasible concepts and components are identified for the 
subsystems of the evacuation system. 

4. Physical System Realization: Increasing 
Detail/Decreasing Abstraction 

We now return to the design using available assets framework presented in 
Figure 7 .2. The capability to configure systems at the function level of ab
straction using the LST icons as available assets has be discussed and illus
trated. In this section we progress through the lower levels of abstraction 
within this framework (concept and component level). In moving to lower 
levels of abstraction, the level of information detail of a design increases and 
this method of design using available assets approaches that of catalog 
design. We elaborate the evacuation system problem for example. 

4.1. Identifying Feasible Existing Concepts 
Once a feasible function level representation has been created for the product 
to be designed, the next step is to explore the different concepts that are 
available to the designers to meet the functional requirements. In taking 
this step, we progress the design from the function level to the concept level 
of abstraction. There are many different ways to perform this exploration; 
in Pahl and Beitz (1988) the following alternatives are offered: literature 
searches, analysis of existing technical systems, brainstorming, and discur
sive methods where checklists (that classify the types of concepts available) 
are used. In a computer environment, a database of existing concepts could 
be developed and classified in a manner consistent with the representation 
scheme of LST, and the search for feasible concept alternatives enhanced. 

To evacuate passengers from an aircraft, various concepts may include 
ladders for transport to the ground, air bags to cushion the passengers' jump 
to the ground, inflatable slide/rafts for the passengers to slide to the ground, 
or a telescoping segmented slide at each exit door. Assume the inflatable 
slide/raft concept (in current use) is chosen for further investigation. Given 
this concept selection, the extruder of the motor subsystem2 must supply 
a flow of air to inflate the slide/raft. There are many ways that this pressur
ized air could be provided; some examples include using compressed air 
cylinders, inducing a chemical reaction, or continuously pumping in external 
air. If the components for more than one of these methods are available, then 
each method could be examined to explore separate feasible alternatives. For 
the purpose of illustration, just one of the alternatives is pursued: supplying 
air in compressed air cylinders. 

If the compressed air is stored in cylinders, then a valve will be needed to 
release this air, along with tubing or pipe to transfer the flow of air to the 
inflatable slide/raft. Reviewing the motor subsystem2 model in Figure 7.10, 
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FIGURE 7.12. Motor subsystem2 using cylinders of compressed air. 

we see that the representation no longer describes the current alternative. 
Modeling a system at the function level using the Living Systems Analogy 
allows the representation to be changed easily to explore different system 
configurations. The new representation, specific to using cylinders of com
pressed air, is shown in Figure 7.12. 

This new representation is realized by creating a compressed air storage 
subsystem that is placed on the motor subsystem2 boundary. This new 
subsystem3 (modeled at the third level), would include the necessary ingestor 
and extruder for adding and removing the air (this simple representation is 
not shown). The valve then becomes the extruder for this subsystem3 • To 
complete the flow of air from its stored state to the slide/raft, a form of 
tubing or pipe (distributor) is needed to transfer the flow of air from the 
valve to the inflatable slide/raft. The compressed air released from the cylin
der(s) serves to simultaneously deploy and inflate the slide/raft. 

The motor subsystem2 representation shown in Figure 7.12 represents 
one concept level configuration (abstracted to the function level). Is this 
corifiguration feasible? At the concept level of abstraction, three deter
minants of feasibility can be identified: the concepts must meet the functional 
requirements for the design, they must not violate any of the constraints or 
specifications, and they must be compatible with one another. Recall that the 
storage subsystem2 must provide passengers an exit to the ground in an 
emergency situation, and also must provide flotation if the aircraft lands on 
water. Reviewing the system model in Figure 7.9, the passenger storage 
subsystem must transport a flow of passengers, and receive a flow of mat
ter/energy for deployment. At this level of abstraction, an inflatable slide/raft 
is feasible. The motor subsystem must receive an emergency signal and send 
a flow of matter/energy to the storage subsystem. The collection of cylinders, 
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tubing, and solenoid valve allows these requirements to be met. Thus the 
concepts meet the functional requirements for the design. 

To the extent that they have been defined, these concepts do not violate 
constraints at this level. Constraints must be reviewed in more detail upon 
moving to the component level, since some of the constraints, such as 
material type, system volume and system weight, air volume and pressure, 
depend on the specific components chosen. Since the hierarchical selection 
of concepts was constrained so that each new concept was chosen based 
on compatibility with the previous choices, the necessary compatibility is 
ensured. Ideally, the lists of concepts for each subsystem, or group of sub
systems as the case may be, would be narrowed simultaneously, taking com
patibility into account, so that the design is not restricted by each concept 
selection. At the concept level of abstraction, the evacuation system design is 
feasible, and the move to the component level is possible. 

4.2. Identifying Feasible Existing Components 
At the component level the available assets become specific components or 
component assemblies that can perform the required subfunctions and for 
which existing physical realizations are readily available. Defining the design 
at the concept level of abstraction focuses and simplifies the search for 
components to those represented by the feasible concepts. For the aircraft 
evacuation system, catalogs or databases of existing components could be 
employed to locate available slide/rafts, pressure tanks, valves, and fittings. 

At the component level, all the information needed to determine feasibility 
is available, and the physical relationships between the components are well
defined. For example, if the evacuation system must be less than a specific 
weight or volume, the total system weight and volume can be computed. 
Also, physical constraints, such as the capacity of the air cylinders and the 
air necessary to inflate the slide to provide sufficient sliding support and 
flotation, can be computed. 

The constraints for the design of a system using available assets, and the 
appropriate design goals, can be formulated mathematically and represented 
by a coupled Decision Support Problem (Mistree and Muster, 1990). The 
solutions of the resulting DSP, if they exist, provide feasible system con
figurations. This formulation and solution of available assets problems as 
coupled DSPs is the focus of the next section. 

5. Decision Support for Formulating and Solving 
Available Assets Problems 

5.1. Coupled Selection of Compatible 
Concepts/ Components 

If a system is realized entirely through the use of existing components and/or 
component assemblies, compatible components for dependent subsystems 
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FIGURE 7.13. Illustration of coupled selection DSPs (Bascaran, et al., 1989). 

must be selected. The selection of components for individual subsystems will 
be coupled through compatibility, flows of matter, energy, and information, 
assembly requirements, and other constraints specific to the problem at 
hand. The coupled selection DSP formulation is an effective method to 
realize a physical system configuration through the entire use of available 
assets. 

In Bascaran et al. (1989) a method of formulating and solving coupled 
selection DSPs in which multiple selection problems are coupled through 
their dependent attributes (characteristics or criteria that apply to more than 
one selection problem) and solved simultaneously, is presented. The coupled 
selection DSP is illustrated in Figure 7 .13. The mathematical formulation of 
the coupled selection DSP, as well as detailed steps for formulating and 
solving this type of DSP, are include in Bascaran et al. (1989). 

5.2. Coupled Selection-Compromise for Detailed 
Configuration Design 

If a system is to be realized through partial use of existing components 
while the remaining subsystems are designed for manufacture, dependence 
or coupling between the individual subsystems, both those selected and those 
designed, will also exist. Again, the selection of components will be coupled 
through compatibility (assembly constraints, for example) and other con-
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FIGURE 7.14. Illustration of coupled selection-compromise DSP. 

straints, and the original design of the remaining components or subsystems 
will be dependent on these selections. The selection of existing components 
may also be dependent on the final design parameters, dimensions for 
example, of the designed components. For this case the coupled selection
compromise DSP, illustrated in Figure 7.14 for the evacuation system prob
lem, is introduced. 

The coupled selection-compromise DSP can support any number of selec
tion problems, coupled through coupling attributes, and components whose 
parameters are to be determined through compromise. The selection and 
compromise problems are coupled through the system variables. The param
eters for a component to be designed influence the selection for an adjoining 
component. Likewise, the selection of an existing component influences the 
outcome of the parameters of a component to be designed. 

The aircraft evacuation example has been formulated and solve as a cou
pled selection-compromise DSP in Koch (1994). Based on the selection of 
the inflatable slide/raft concept, and pressurized air for inflation, component 
alternatives were identified for each concept. For this case, then, the neces
sary selections include the air cylinders for compressed air storage (selection 
among identified existing types, based on size and pressure characteristics) 
and the type of fabric for the slide construction (available fabric types 
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TABLE 7 .4. Selection and compromise problems 
for evacuation system formulation. 

Selection 

Air cylinder type 
Fabric type 

Compromise 

Number of air cylinders 
Dimensions of slide/raft and 

Inflated pressure of slide/raft 

identified; strength, weight, cost influencing selection). The compromise deci
sions include the number of air cylinders necessary, the dimensions of the 
side/raft, and the inflated pressure of the slide/raft. These decisions, listed in 
Table 7 .4, are all interdependent. The type of compressed air cylinder se
lected depends on the inflated pressure of the slide/raft, which is related to 
the slide/raft dimensions, which is affected by the type of fabric chosen. 
Therefore, the aircraft evacuation slide problem becomes a coupled selec
tion-compromise DSP. 

The framework of the coupled selection-compromise DSP (the word for
mulation) is formulated as a single compromise DSP, whose framework is as 
follows (Mistree et al., 1993b ): 

Given: 

Find: 
Satisfy: 

Minimize: 

Assumptions of the model 
Independent system variables 
The value of the system variables and deviation from goals 
System Constraints 
System goals 
Bounds on the system variables 
A deviation function, expressed as the difference between the tar
get values for the goals and the actual achievement of the goals. 

What are the assumptions inherent in this model? The inflatable slide/raft is 
modeled as a single rectangular slab, six feet wide and 39.4 feet long (size 
necessary to meet capacity requirements for sea ditching scenario). Currently 
evacuation slides are constructed from inflated tubes in a complex configura
tion (Fisher, 1984); the rectangular slab is used in this model for simplicity. 
It is also assumed that the stresses in the slide will not stretch the fabric 
significantly; the affects of fabric elongation are not addressed in slide deflec
tion computations. It is assumed (also for simplicity for this case study) that 
minimizing the sum of individual component volumes will accomplish the 
goal of minimizing the system volume. (This will not always be true, 
depending on the geometry of the components.) 

What are the system variables in this DSP? Four alternatives were identi
fied in catalogs for the compressed air cylinder type, and four alternatives 
were chosen for the fabric type. The alternatives and their attributes are 
listed in Tables 7.5 and 7.6. Thus eight system variables for the selections 
exist. The inflated pressure of the slide is also a system variable, as well as the 



www.manaraa.com

7. Configuring Systems Using Available Assets 

TABLE 7.5. Cylinder alternatives and attributes. 

Max. Internal External Weight 
Cylinder pressure (psi) volume (in3 ) volume (in3 ) (lb) 

CYLl 2200 225 290.9 12 
CYL2 2015 943 ll94.6 40 
CYL3 1850 1800 1978.3 18.6 
CYL4 3000 40.8 42.9 1.43 

TABLE 7.6. Fabric type alternatives and attributes for slide/raft. 

Variable Tensile Elongation Density 
Fabric name strength (psi) at break(%) (lb/in.3 ) 

Kevlar49 KVLR49 400,000 2.5 0.05202 
Kevlar 29 KVLR29 400,000 3.6 0.05202 
Nylon NYLON 143,000 18.3 0.04ll9 
Polyester POLYST 162,000 14.5 0.04986 

TABLE 7. 7. Twelve system variables for coupled selection
compromise DSP. 

System variable 

CYLl 
CYL2 
CYL3 
CYL4 
KVLR49 
KVLR29 
NYLON 
POLYST 
NUMCYL 
PRESSR 
AIRTHK 
FABTHK 

Description 

Set equal to I if Cylinder 1 selected; 0 otherwise. 
Set equal to I if Cylinder 2 selected; 0 otherwise. 
Set equal to 1 if Cylinder 3 selected; 0 otherwise. 
Set equal to 1 if Cylinder 4 selected; 0 otherwise. 
Set equal to 1 if Kevlar 49 selected; 0 otherwise. 
Set equal to 1 if Kevlar 29 selected; 0 otherwise. 
Set equal to 1 if nylon selected; 0 otherwise. 
Set equal to 1 if polyester selected; 0 otherwise. 
The number of air cylinders required (integer). 
The inflated pressure of the slide/raft (lb/in. 2 ). 

The thickness of the inflated slide/raft (in.). 
The fabric thickness (in.). 
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number of compressed air cylinders. Since the slide/raft was modeled as a 
single inflated slab with a fixed length and a fixed width, the remaining 
dimensions to be varied become the thickness of the air between the fabric 
layers, and the thickness ofthe fabric. The list of 12 system variables is given 
in Table 7.7. 

Given these system variables, what are the constraints and goals of this 
coupled DSP? Constraints are used to represent what the design must accom
plish, and goals are used to represent what a designer would like the design 
to accomplish. Passenger safety is the primary concern. Three constraints 
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were identified as necessary for the system to function properly and safely 
evacuate passengers: the fabric must withstand the inflated pressure of the 
slide without bursting, there must be enough compressed air in the cylinders 
to inflate the slide to its required pressure, and the slide must not deflect 
(bend under passenger loading) more than a specified value (various limits 
were explored). Four goals were also identified: 

• minimize the overall system weight 
• minimize the overall system volume 
• keep the slide deflection to a very low value 
• and select the fabric with the least amount of elongation at break 

As shown in Figure 7.14, the deviation function to be minimized for this 
coupled selection-compromise DSP is formulated using the preemptive form 
with K priority levels (five levels for the evacuation system formulation). For 
the preemptive form, each goal is given a level of priority or importance 
(level I being most important). The normalized deviation from the goal 
target value for the first priority level is minimized before moving to the 
second level. The second priority level deviation can then only be reduced 
without increasing the deviation values for the first level, and so on. 

For the evacuation system formulation, the system weight goal is placed in 
the first priority level, followed by system volume at priority level 2, slide 
deflection at priority level 3, fabric elongation at priority level4, and the goal 
for the value of NUMCYL (the number of cylinders) to be an integer at 
priority level 5. The constraints and goals for this formulation are identified 
to represent the requirements of the evacuation system problem statement. 
The details of this formulation (equations, derivations, and complete model) 

TABLE 7.8. Initial Starting Points Run on DSIDES for evacuation sys-
tern case study. 

Variable Start Pt. I Start Pt.2 Start Pt.3 Start Pt.4 

KVLR29 0 0 0 
KVLR49 0 0 0 
NYLON 0 0 0 
POLYST 0 0 I 
CYLI 0 0 0 
CYL2 0 0 0 
CYL3 0 0 I 
CYL4 0 0 0 
NUMCYL I I I 2 
PRESSR 20 20 20 20 
AIRTHK 4 4 4 4 
FABTHK 0.005 0.005 0.005 0.005 

Notes: NUMCYL: NUMCYL: Feasible 
integer goal integer constraint Starting Point 



www.manaraa.com

7. Configuring Systems Using Available Assets 155 

TABLE 7.9. Solutions for different starting points run on DSIDES for evacua-
tion system case study. 

SOLUTION SOLUTION SOLUTION SOLUTION 
Variable Start Pt.l Start Pt.2 Start Pt.3 Start Pt.4 

Converged? No No Yes Yes 
Feasibility? No No Yes Yes 
Fabric Nylon Nylon Nylon Polyester 
Cylinder Cyl4 .2Cyl3, Cyll Cyl3 

.8Cyl4 
NUMCYL 5 1 1.55 1.06 
PRESSR 10.39 10.11 10.02 80.0 
AIRTHK 3.129 3.27 3.32 1.63 
FABTHK 0.001 0.1455 0.001 0.00125 

Deviation Function Values: (1: weight, 2: volume, 3: deflection, 4: elongation, 
5: NUMCYL integer) 

Priority Level 1 l.l8 0.808 3.30 3.80 
Priority Level 2 0 0 0 0.265 
Priority Level 3 51.78 47.37 47.04 11.23 
Priority Level 4 18.22 18.3 18.3 14.5 
Priority Level 5 0.861 3.01 1.31 

are included in Koch (1994). The results of this example, summarized in the 
next section, include a feasible component level system configuration that 
employs available (off-the-shelf) assets to realize the design. 

5.3. Representative Results: Feasible Evacuation System 
Configuration 

DSIDES has been used to solve this coupled selection-compromise DSP 
(Mistree et al., 1993c). Since real variables are employed, the selection vari
ables are constrained to take on values of zero or one. The number of 
cylinders was also represented with a real variable, and constrained to take 
on integer values from one to five. 

This model was initially run using four different starting points. These 
starting points are summarized in Table 7.8 and the results from these four 
runs are shown in Table 7.9 (including the deviation function value at each 
priority level). The deviation funtion and priority levels are very important 
concepts. They are explained in detail in Mistree, et al. (l993b). A brief 
explanation is included to facilitate understanding. A value of zero for the 
deviation function is indicative that in addition to the system constraints 
being satisfied all of the system goals have been achieved. A nonzero number 
represnts the degree by which the goal (or a number of goals) at a particular 
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priority level are achieved. In this case, there is only one goal at each priority 
level, for example, weight is at priority level 1, volume is at priority level 2 
and so forth. For solution Start Pt.l, the target value for weight is not 
achieved by 1.18 units, the volume is below the target value, etc. Starting 
points 1 and 2 are identical except the number of cylinders (NUMCYL) 
is forced to an integer value in the formulation using a goal for starting point 
I and using a constraint for starting point 2 (see Notes, Table 7.8). The 
integer goal, which was more successful, is used for the remaining points. 
With all the selection variables initially set to zero (Start Pt. 1), cylinder 4 
was selected and NUMCYL (the number of cylinders) was increased to the 
maximum of five. Additional cylinders would be required to reach feasibility. 
With all the selection variables set to one (Start Pt. 3, an obviously infeasible 
starting point since only one cylinder and one fabric can have a value of one), 
cylinder 3 was selected and feasibility was attained. When starting from 
a feasible point, (Start Pt. 4, see Notes Table 7.8) the solution improved 
slightly. 

In observing the deviation function values for the first priority level (sys
tem weight, see Table 7 .9), the best solution results from starting point 3, but 
this solution has 1.55 cylinders, which is not realizable. If the number of 
cylinders is rounded to 2, the value for the first priority level changes and the 
best solution then results from starting point 4. How good is this solution? 
Rounding the number of cylinders to 1.0 maintains feasibility, and the sys
tem weighs 22.83 pounds. The system volume is 1.17 cubic feet, and the slide 
deflection is 12.23 inches, all well within bounds. To verify these results for 
this simple case, the sixteen possible combinations of the two selections were 
run separately. 

For these additionall6 runs, the selection variables are removed, reducing 
the number of system variables from 12 to 4. The necessary cylinder and 
fabric information is fixed in the model for each case. The variable values for 
the best solution obtained, yielding the lowest value for the first priority 
level, are listed in Table 7.10. For this run, nylon and cylinder 3 were fixed 
as the fabric and cylinder choice. How good is this solution? The system 
weighs 21.37 pounds, has a volume of 1.186 cubic feet, and deflects 16.02 

TABLE 7.10. Best solution for sixteen combina
tion runs. 

Variable 

Fabric type 
Cylinder 
Number of cylinders (NUMCYL) 
Air pressure (PRESSR) 
Air thickness (AIRTHK) 
Fabric thickness (F ABTHK) 

Value 

Nylon 
Cylinder 3 
I 
99.25 
1.006 
.001 
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inches. For practical purposes, this solution and the previous solution 
(starting point 4) are equivalent solutions; both are feasible, both achieved 
convergence, and the goals values for each are nearly identical. The solution 
obtained by running all the sixteen combinations of selections separately 
(listed in Table 7.1 0) appears slightly better than the solution obtained when 
a fabric and cylinder type was also to be chosen (including the two selection 
DSPs). 

Why does this solution appear slightly better than the initial solution 
obtained when including the selection DSPs? Inherent in this model, multiple 
local optima exist. After selecting an initial fabric and cylinder, feasibility 
and convergence are achieved; a satisficing (Simon, 1982) solution is obtained. 
By exploring all selection combinations, a slightly better solution is dis
covered (a global optimum for this formulation). 

6. Closing Remarks 

Our approach to design as described in this chapter can be characterized by 
the phrase "more with less"; that is, we are seeking a systematic design meth
odology that allows new systems to be configured by using that which al
ready exists, available assets. The basis for the conceptual framework for 
design using available assets presented in Section 2 is the capability to parti
tion the requirements for a design and represent the system in terms of these 
requirements. The Living Systems Analogy introduced in Section 1 and 
discussed and illustrated in Section 3 provides the foundation for this de
composition and modeling of information that is necessary to support the 
efficient realization of system configurations using existing solution princi
ples and existing components. 

The capability to identify and evaluate the feasibility and compatibility of 
existing solution principles and components, however, does not depend only 
on the consistency and effectiveness of function level modeling. Support for 
both concept and component level configuration exploration, and the capa
bility to consistently map between function, concept, and component levels 
is necessary. Some open research issues regarding this conceptual framework 
for design using available assets include: 

• What methods for identifying and exploring existing concepts and compo
nents, and assessing feasibility, can be incorporated? 

• Is it possible to classify and store existing concepts and components in a 
manner consistent with the LST representation scheme? 

• If so, how could stored information about existing concepts and compo
nents be accessed and evaluated against a model of system requirements? 

Detailed methods and support for identifying existing concepts and com
ponents is essential to the usefulness of this conceptual framework. Catalogs 
and databases are available to designers to store and retrieve existing compo-
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nents. It may also be possible to store concepts or particular solution 
principles. The primary open issue then becomes the classification of existing 
concepts and components that will allow access and evaluation based on the 
requirements, and will be consistent with the LST scheme. This classification 
and storing of function, conceptual, and physical component information 
would allow system configurations to be quickly arranged and explored. 

To remain competitive in a rapidly changing global marketplace it is 
necessary to concurrently reduce time to market, to reduce cost, and to 
increase quality. The capability to explore system configurations quickly 
supports this demand. Using available assets to configure systems further 
supports this demand, as well as supporting the growing concerns regarding 
recycling and re-manufacture. 
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8 
Group Decision Making in Design 

DEBORAH L. THURSTON 

Abstract. Part 1 deals with the problem of balancing conflicting objectives 
in group decision making. Several methods and their limitations are de
scribed, including matrix, voting, ranking, and rating schemes. Two analy
tic decision tools are presented; multiattribute utility analysis and the ana
lytic hierarchy process. An example illustrates the problem of eliciting and 
aggregating individual preferences for managing a long range, multiple 
product design plan and schedule. The group includes engineering, manu
facturing, marketing and environmental personnel. Part 2 deals with com
munication. Based on cognitive models of communication processes and 
failures, a method is presented for designing not the artifact, but the interdis
ciplinary design team itself. The objective is to minimize the expected effect 
of communication failures through failure modes and effects analysis. 

1.1. Introduction 

A group effort during the design process is both necessary and desirable. 
First, even the simplest design tasks often require input from more than one 
technical specialist. Second, recent efforts towards improving the engineering 
design process stress the importance of considering multiple perspectives, 
including impact of design decisions on the customer, the manufacturing 
process, and the environment. 

The recent emphasis on "concurrent engineering" illustrates the need to 
integrate multiple considerations into engineering decision making. In the 
past, these considerations were ignored until after the design process was 
completed, at which point the design was thrown "over the wall" to be 
evaluated. The manufacturing engineer would report that the design was too 
difficult to form within desired tolerances, the customer would report that 
the product was too expensive, and environmental regulatory personnel 
would report an unacceptable waste disposal problem. The engineers were 
then sent "back to the drawing board" to deal with "the manufacturing 
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problem," "the cost problem," or "the environmental problem." This was 
obviously a very inefficient and ineffective process. 

Design teams now include individuals who bring a diverse range of per
spectives to the drawing board. This chapter does not address how to resolve 
differences of technical opinion such as determining the correct mathemati
cal model of physical phenomenon. Rather, we address group decision mak
ing in the context of interdisciplinary design teams and their conflicting 
preferences. The general group decision-making problem is not a trivial one. 
The problem consists of two parts: (1) aggregation of individual, conflicting 
preferences to determine the best decision for the group and (2) communica
tion between group members during the design process. 

Part 1. Balancing Conflicting Objectives 

1.2. Eliciting Individual Preferences 

Concurrent engineering brings together individuals who might not tradition
ally interact with each other, and who might not view the decision problem 
in the same way or "speak the same language." These individuals might have 
a different set of interests in the outcome of the decision. For example, the 
engineering design group is traditionally most concerned with the quality of 
the finished product, while the marketing group is more interested in main
taining or increasing market share, while the accounting group is most inter
ested in quarterly profits. These parties have focussed on their own interests 
and previous experience, and might be unaware of the implications of their 
decisions on other parties involved in or affected by the design process. 
Hogarth labels these and other decision making biases "selective perception" 
(Hogarth, 1980). 

Popular tools for managing interdisciplinary design include Quality Func
tion Deployment (QFD) (Sullivan, 1986; Hauser and Clausing, 1988) and 
Pugh's method (1981, 1990). Both methods employ a matrix to relate design 
criteria rows to decision element columns. QFD originated in Japan and is 
used to construct a "House of Quality" matrix. The matrix deploys the 
"voice of the customer" throughout the design process by providing a struc
ture within which the relationships between engineering design decisions 
and resulting design performance including customer attributes can be rec
orded. For example, imagine a "House of Quality" for the problem of 
designing an automotive bumper beam. The row categories or customer 
attributes might be (1) reasonable vehicle purchase price, (2) good gas mile
age, (3) no repair required after minor impacts, and ( 4) protection of the car 
body from minor impacts. Their relative importance is indicated on a scale 
such as 1-10. The column headings refer to the engineering characteristics 
such as (1) manufacturing cost, (2) weight, and (3) deflection. Symbols with-
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in the matrix and the "roof" indicate the existence of positive or negative 
relationships (conflicting or non-conflicting) between customer attributes 
and engineering characteristics, and also between engineering characteristics 
themselves. For example, an "X" symbol might indicate a "strong negative 
relationship" (i.e., improvement in one worsens the other) between weight 
and deflection, and a "/" symbol a "strong positive relationship" between 
purchase price and manufacturing cost. Design alternatives, including the 
competitor's, can be compared on the basis of a weighted average of their 
performance with respect to the target set for each engineering characteristic. 
Pugh's method uses "+" and "-" signs to indicate performance relative to 
an alternative selected as the standard. 

At this point, the critical decision as to whether a particular tradeoff is 
beneficial is left to the decision making group. For example, the decision that 
"benefits outweigh costs" for a particular design change is based on discus
sion and debate. As Hauser and Clausing (1988) themselves state, "The 
house relieves no one ofthe responsibility of making tough decisions. It does 
provide the means for all participants to debate priorities." 

Within the business and management science communities, research on 
Group Decision Support Systems (GDSS) has been carried out Nunamaker 
et al. (1988) describe principles for group planning and policy making. Three 
levels are described by DeSanctis and Gallupe (1987): (1) technology-based 
systems which remove communication barriers, such as large screens for 
displaying information, (2) problem structuring techniques, such as project 
scheduling and multi-criteria decision models, and (3) machine-induced 
group communication, whereby information exchange is actively controlled 
and structure. 

Several other researchers have addressed group design. Gebala and 
Eppinger (1991) describe methods for analyzing and managing the design 
process through a matrix which represents information flow. McMahon 
(1991) describes the results of a computer based group design system (GDS) 
used to record the transactions which occur during the group design pro
cess. Krishnan et al. (1991) present a method for cooperative group de
sign through the use of a quality loss matrix. While these methods fa
cilitate communication flow, they provide no formal, explicit procedure for 
using this information to balance individual preferences that are in direct 
competition. 

1.3. Aggregation of Individual Preferences 

In engineering design, attributes are often conflicting; an improvement in 
one leads to a worsening of another. For example, increasing the thickness 
of an automotive body panel improves stiffness but worsens weight. Not 
only are the attribute themselves in conflict, but so are the preferences of 
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individuals. Even when two individuals agree that an attribute is important, 
they often disagree as to its relative importance in relation to other attrib
utes, and differ in their willingness to trade one attribute off against another. 
These conflicts make it difficult to reach a consensus on the best course of 
action. 

Thus, a group of individuals, each with his or her own set of values and 
preferences, must identify the alternative that is "best" for the entire group. 
The problem of combining conflicting individual preferences into a measure 
of overall group preference has proven to be extremely difficult. The central 
issue is the difficulty of defining the criteria for combining the expressed 
preferences of individuals to determine the optimal group choice. Several 
popular and easy to use methods are described in this section, including 
majority rule voting schemes, individual priority rankings of alternatives, 
and rating schemes. Their limitations for engineering design are described. 

1.3.1. Majority Voting 
The simplest method, majority voting, identifies the alternative which re
ceives the most votes as the best alternative for the group as a whole. While 
this might appear to be a logical and fair approach, its limitation for design 
is that it identifies only the most preferred alternative for each individual, 
and provides no information on their preferences among the other alterna
tives. If the decision criterion is to identify the course of action which results 
in the greatest level of satisfaction for the group as a whole, one can easily 
imagine a scenario whereby a simple voting scheme leads to a suboptimal 
group choice. For example, imagine a group of 10 individuals who must 
collectively choose between design alternatives A, B, C and D. Their prefer
ences as expressed in a rank ordering are shown in Table 8.1. 

The winner in a simple voting scheme is Design A, with the greatest 
number of votes, four. However, this is the least desirable option for six of 
the other group members. One could reasonably argue that Design B is a 
better choice, as it is preferred to A by a majority of six individuals, and is 
the second choice (out of four design alternatives) of the remaining four 
individuals. Simple voting schemes do not consider the effect on group mem
bers whose first choice is not that of the majority. 

TABLE 8.1. Individual preferences of a group 
of ten individuals. 

Number of individuals 

four individuals 
three individuals 
three individuals 

Preferences in rank order 

A>B>C>D 
B>C>D>A 
C>B>D>A 
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TABLE 8.2. Rank order preferences of 
design alternatives A, B and C by three 
individuals. 

Individual 

Individual # I 
Individual # 2 
Individual # 3 

1.3 .2. Ranking Schemes 

Preference in rank order 

A>B>C 
B>C>A 
C>A>B 

In design, group members often wish to consider the effect of the group 
decision on members who are not in the majority. One reason is the desire to 
maintain good-will and a willingness to compromise between group mem
bers who will (most likely) continue to interact in the future. After decisions 
are made for one product, the same individuals, or at least representatives 
of the same division within the organization, collaborate again on other 
projects. Therefore, the group has a vested interest in ensuring that all 
individuals are satisfied with the outcome of the decision making process, 
even though their first choice is not selected. 

Suppose then that we attempt to resolve this difficulty through rank or
dering and pairwise voting. It requires each member to indicate their pre
ferences by rank-ordering each alternative. The following example derived 
from Condorcet (1785) and Arrow (1951) illustrates that this approach can 
result in a group rank ordering of alternatives that violates the desired pro
perty of transitivity. For example, say three individuals have expressed pre
ferences among design alternatives A, B, and C as listed in Table 8.2. 

Starting with a pairwise comparison between A and B, A is preferred by a 
majority of two individuals. Comparing the remaining alternatives A and C, 
we find that C is preferred by a majority of two individuals. However, 
comparing B and C reveals that B is preferred to C by a majority of two, 
yielding an intransitive group rank ordering of C > A > B > C. Of course, 
this result is highly sensitive to how the voting procedure is carried out. The 
identification of the best choice depends entirely on the order in which the 
pairwise comparisons are performed. 

1.3 .3. Rating Schemes 
One attempt to resolve this difficulty is by allowing individuals to express 
degrees of preference. For the example in Table 8.2, say individual # 1 had 
a very strong preference for design alternative A over alternative C, and 
individuals # 2 and # 3 each have only a very weak preference for alterna
tive C over A. To maximize total group satisfaction, the group might select 
A as the best alternative for the group as a whole. 
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TABLE 8.3. Individual and total scores for alterna
tives A, B and C. 

Design A Design 8 DesignC 

Individual 1 9 5 1 
Individual2 1 5 2 
Individual 3 6 5 7 

Sum of Scores 16 15 10 

Strength of preference can be quantified by rating schemes. For the same 
group, each individual assigns a score to each alternative on a scale of 
1-10 which reflects its worth to that individual, as shown in Table 8.3. 
One can then define the group decision criterion as the alternative with the 
greatest total score, summed over all group members, shown in the last row. 
Design alternative A has the highest total score of 16, followed by alternative 
B with a score of 15. Alternative Cis least desirable with a score of 10. Thus 
Alternative A might be chosen on the basis that its cumulative score is 
highest. 

However, while this criterion reflects strength of preference for all alterna
tives, it ignores the issue of fairness or equity. Note that individual #I very 
strongly prefers A to C, and less strongly prefers B to C. Thus, the difference 
between individual # 1 's scores for the three alternatives is great, ranging 
from a high of 9 to a low of I. In contrast, it appears that individual # 3 has 
expressed relatively weak preference for Alternative Cover A, and A over B. 

Also note that the difference between the three individuals' scores for 
Alternative A is great, ranging from a high of 9 to a low of I. If the individual 
scores are taken to mean the degree of satisfaction of each group member, 
the selection of Alternative A is not equitable in that Individual # 2 is 
significantly worse-off than Individual # 1. In contrast, there is no difference 
between the three individual scores of "5" for Alternative B. Design alterna
tive B might reasonably be deemed more desirable than A because the distri
bution of scores between individuals is more equitable, and each individual is 
equally well-off. 

The method of summing individual rating scores thus makes no provision 
for consideration of equitable distribution between individuals, although it 
implicitly assigns equal importance to each group member's preferences. 

1.3.4. Efficiency vs. Equity 
This brings us to a critical problem in group decision making; interperso
nal comparison of preferences or degrees of satisfaction. Extensive research 
has been performed in economic analysis of group (or social) welfare. Re
searchers have shown that it is not possible to develop a mathematical 
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formulation for a group welfare function which maximizes both the sum of 
individual welfare and equity. A general interpretation of Arrow's Impossi
bility Theorem (1951) is that given a set of reasonable conditions, there is 
no procedure for combining the rankings of alternatives by several members 
of a group into an overall group ranking that does not directly or indirectly 
include comparison of preferences between individual members. Kirkwood 
(1979) showed that strictly "efficient" methods, ones which have Pareto 
optimality or maximization of total welfare as the sole objective, are incom
patible with methods which include consideration of equity or "fairness.'' In 
group decision making, pareto optimality is achieved when it is not possible 
to increase the degree of satisfaction of any individual without decreasing the 
satisfaction of another individual at the same time. 

So, the "bad news" is that there is no mathematically sound method for 
aggregating the preferences of individual group members into a group pref
erence function to determine the optimal or "best" decision for the entire 
group. The good news is that several well-established methods do exist 
that are a significant improvement over simple voting, ranking and rating 
schemes. These methods, described in the next section, help groups attack 
decision problems in a structured, analytic manner. The problem of efficiency 
vs. equity is dealt with indirectly by requiring that the group reach consensus 
on disaggregated components of the decision problem. 

1.3 .5. Group Decision-Making in the Iterative Design 
Process 
Another weakness of voting, ranking or rating methods is their limited 
usefulness in the iterative design-evaluate-redesign process. None of the 
methods provides any information that the designer can use during the 
redesign stage after the "best" design alternative is identified. The reason 
is that the individuals are not required to describe their reasons for their 
voting, ranking, or ratings. The designer does not know what features of a 
particular alternative make it more desirable than another, and so cannot 
predict whether or not design modifications would be desirable. 

1.4. Analytic Methods for Evaluation of Conflicting 
Preferences 

In spite of the impossibility of formulating a normative group welfare func
tion, two well-established methods do exist that are a significant improve
ment over the methods described above. These two methods help groups 
attack decision problems in a rigorous manner; multiattribute utility analy
sis (MAUA) developed by von Neumann and Morgenstern (1947), Savage 
(1954), Luce and Raiffa (1957), Keeney and Raiffa (1976), and others, and 
the analytic hierarchy process (AHP) developed by Saaty (1980). 
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It is important to note that neither MAUA nor AHP was specifically 
developed for group decision making. They do not resolve the impossibility 
of interpersonal comparison of utility, nor do they solve the problem of 
efficiency vs. equity discussed earlier. For example, using MAUA or AHP to 
determine individual scores such as those shown in in Table 8.3 would not 
resolve the difficulty of selecting between design alternative A and B. How
ever, both methods contribute significantly to group decision-making in 
design by providing a forum for communication, a structured procedure 
for eliciting their preferences, a rigorous methodology for converting their 
expressions of preference into a quantitative measure of the relative merits of 
design alternatives, and a framework for analyzing possible courses of action 
and negotiating tradeoffs during the iterative design process. 

1.4.1. Analysis of Design Decision Problem 

Both MAUA and AHP solve a complex decision problem by disaggregating 
it into a set of subproblems, solving or reaching group consensus on each 
one, then reassembling them to obtain a solution to the larger decision 
problem. A correct and thorough application of either method to design 
problems has the following features: 

0. Overall goal-An overall goal of the design process is established, such 
as "Design the best vehicle in the domestic mid-size sedan market 
segment." 

I. Decision makers-A clear identification of the individuals or perspectives 
to be included in the group is made. 

2. Design alternatives-A set of design alternatives is developed, most often 
from previous, similar applications. 

3. Multiple attributes-Multiple attributes, subgoals or decision outcomes 
that are deemed to be important to one or more individuals are enumer
ated. 

4. Constraints-A clear distinction is made between attributes with a de
fined range of acceptability, and those which are binary constraints. For 
example a deflection constraint would be "The beam MUST deflect EX
ACTLY 2 inches in response to load Fin order to be considered feasible." 
The deflection attribute would be "We are willing to consider alternatives 
which deflect between I and 3 inches in response to load F." 

5. Relative value of achieving levels within each subgoal-A procedure exists 
which can be used to model non-linearity of preference over the accept
able attribute range, if necessary. For example, the benefit gained from 
improving deflection from 3 to 2 inches might not be the same as that 
from improving deflection from 2 to I inch. In utility analysis, this is 
reflected in the degree of non-linearity over the single attribute utility 
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function for deflection. In AHP it is reflected in the relative priority 
of achieving various levels within each subgoal. 

6. Tradeoffs-A measure of the relative value or importance of attributes, 
or a measure of the decision-makers' willingness to make tradeoffs be
tween attributes is made. In utility analysis, tradeoffs are reflected in the 
scaling constants, and in AHP they are reflected in the relative priority or 
importance of each subgoal. 

7. Overall worth-A mathematical procedure is carried out for combining 
the information obtained through features 1-5 above into a single numer
ical quantity which represents the overall utility or worth of a particular 
decision alternative. 

1.4.2. Multiattribute Utility Analysis 

Multiattribute utility analysis determines the worth of a design as a com
bination of attributes. Thurston (1991) describes how to formulate a multi
attribute design evaluation problem and use the results to quantify beneficial 
attribute tradeoffs. Conflicting design attributes should be defined in such a 
way as to accurately reflect preferences while exploiting conditions of prefer
ential and utility independence. These conditions do not refer to indepen
dence between the attribute levels but rather to the relative worth a designer 
places on individual attribute levels. For example, total manufacturing cost 
is clearly related to and dependent on weight, but the utility independence 
condition is satisfied if the relative worth to the designer over the range of 
acceptable levels of weight alone is independent of cost. This means that the 
general shape or degree of nonlinearity of the utility function is not altered 
by changes in levels of another attribute Y. The less restrictive preferential 
independence condition means that if a lower weight design is preferred to a 
higher weight design when the cost for both is Yl, then the lower weight 
design will still be preferred to the higher weight design when the cost for 
both is some other value Y2. These conditions are easily satisfied for design 
problems with proper definition of the attributes and their range of accept
ability. 

If the independence conditions are tested and satisfied, the number of 
preference statements required in the assessment procedure is minimized. In 
addition, the multiplicative multiattribute utility function in equation (I) is 
valid [Keeney and Raiffa (1976, pp. 290-291)], which permits calculation of 
a measure of the overall worth of a design, U(X), ass a function of a set or 
combination of performance attributes: 

(8.1) 
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where 

U(X) = overall utility of set of attributes X 

X; = performance level of attribute i 

X= set of attributes at levels (x 1 , x2, ... , xn) 

k; = assessed single attribute scaling constant 

U;(x;) = assessed single attribute utility function 

i = 1, 2, ... , n attributes 

K = scaling constant. 

The constant K is obtained by normalizing U(X) between 0 and 1 in the 
standard way: 

n 

• + K = n <• + Kk;). (8.2) 
i=l 

where the more restrictive additive independence condition described by 
Fishburn (1965) is also satisfied, the scaling constants k; sum to 1 and the 
utility function reduces to the additive form: 

n 

U(X) = L k; U;(x;). (8.3) 
i=l 

Each assessed single attribute utility function U;(x;) is scaled so that where 
the attribute is at its worst (but acceptable) level, U;(x;w) = 0, and at it best 
level, U;(x;b) = 1. They can reflect nonlinearity of preference over the accept
able attribute range. The scaling constants k; reflect the acceptable tradeoffs 
between attributes and, combined with K, scale U(X) between 0 and 1. 

Figure 8.1 shows two standard "lottery" questions to determine k; and 
U;(x;) for weight. The decision makers are asked to imagine two alternative 
designs, each alike in every respect except the attribute levels of the alterna-

To Determine k i 

Would you prefer 
( 1 Olb, $90) 
for certain? 

or 

101b. 

y$10 

~401b. 
$90 

To Determine Ui (Xi) 

Would you prefer 
251bforcertain? 

FIGURE 8.1. Lotteries to assess scaling constant k; and utility function lf;(x;) for 
weight. 
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design in which there is uncertainty as to the attribute level(s). To determine 
ki, subjects are queried as to whether they prefer 10 lb at a cost of $90 for 
certain, or a 60% probability p that weight will be 10 lb and cost will be $10, 
with a complementary probability (1 - p) of 40% that weight will be 40 lb 
and cost will be $90. The value of p at which the subjects are indifferent 
between the "certain alternative" on the left and the uncertainty on the right 
is obtained by iteration between extreme values of p. The multiattribute 
utility when all attributes are at their best levels, U(Xb), is set equal to 1, 
and where they are at their worst levels, U(Xw), set equal to 0. By definition, 
the value of ki is equal to the multiattribute utility where xi is at its best 
level, xib• and all of the other attributes are at their worst levels. Since 
U(x1w, ... ,xib• ... ,x,.w) = ki, the value of ki is determined by 

U(xlw• ... ,xib• ... ,x,.w) = pU(Xb) + (1- p)U(Xw), 

U(x1w, ... ,xib, ... ,x,.w) = pU(10 lb, $10) + (1- p)U(40 lb, $90), 

U(lO lb, $90) = p(l) + (1 - p)(O), 

ki=p. 

(8.4) 

To determine the single attribute utility function ~(xi) for weight, subjects 
are queried as to whether they prefer 25 lb for certain, or a 60% probability 
p that weight will be 10 lb and probability (1 - p) of 40% that weight 
will be 40 lb. When the probability p at which the subject is indifferent 
between these two choices is determined, the utility of 25 lb, which represents 
one point on the single attribute utility function, can be calculated: 

~(xi) = p~(xib) + (1 - p) ~(x1w), 

~(x,) = p~(10 lb) + (1 - p) ~(40 lb), 

~(25lb) = p(l) + (1 - p)(O), 

~(25lb) = p. 

(8.5) 

The conventional mechanical engineering design approach to multiple 
attribute design evaluation is to determine a "Figure of Merit" (FOM), 
which is essentially a weighted sum of each attribute level a design alternative 
exhibits. Each attribute's weighting factor is intended to reflect its relative 
importance. Utility analysis is superior to simple linear weighted average 
methods, as demonstrated by Thurston (1991). Utility analysis can more 
accurately measure designers' preferences over an acceptable attribute range, 
and allows for the possibility that preferences might not be linear with 
respect to attribute level. As a result, it can more accurately reflect the 
trade-offs between attributes the decision maker is willing to make. The 
FOM approach assumes linear preferences with respect to attribute levels 
and constant trade-offs, and can lead to erroneous results when used to 
rank alternatives and quantify desirable attribute tradeoffs. 
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Another advantage of utility analysis is its ability to explicitly model 
the decision-maker's attitude towards risk and uncertainty, and include the 
effect of uncertainty on the desirability of design alternatives. Decision aids 
for design that include manufacturing cost estimation uncertainty in calcula
tions of expected design utility are found in Thurston and Liu (1991). Utility 
analysis is compared to fuzzy set analysis for design evaluation in Thurston 
and Carnahan (1990). They conclude that fuzzy set analysis is more appro
priate at the very earliest stages of preliminary design, while utility analysis 
should be used as the design progresses to the stage where tradeoffs are to be 
evaluated. 

1.4.3. Analytic Hierarchy Process 
The Analytic Hierarchy Process (AHP) was developed by Saaty (1980). 
Compared with utility analysis, AHP's distinguishing features are that it 
structures the decision problem as a hierarchy of goals which each contrib
ute to some overall goal (although hierarchies can also be used in utility the
ory), elicits preferences through qualitative pairwise comparisons, and uses 
the eigenvector of the pairwise comparison matrix to determine overall 
priorities. 

A five-point (1, 3, 5, 7, 9) scale is used the describe intensity of relative 
importance. The decision-makers' priorities are elicited through indications 
of the relative importance of achieving each subgoal through a set of direct 
pairwise comparisons. For example, comparing profit to quality, 1 indicates 
equal importance, 3 indicates moderate importance of one over another, 
through 9 indicating extreme importance of one over another. Even numbers 
(2, 4, 6, 8) indicate intermediate values between the two adjacent judgments. 
Reciprocals of these numbers indicate reversal of relative importance. Pair
wise comparisons are elicited for each possible pair at each level in the 
hierarchy. This set of pairwise comparisons forms a matrix shown later in 
Figure 8.5. Then, each design alternative is specified in terms of its impact on 
each of the sub-goals. The principal eigenvector is computed and used to 
provide a priority ordering of alternatives according to dominance, while the 
eigenvalue provides a measure of consistency of responses to the pairwise 
comparisons. 

1.4.4. AHP vs. MAUA 
There is a long-running and sometimes heated debate over the relative merits 
of classical utility analysis and AHP. Both camps have their dedicated fol
lowers. The literature is extensive, but summarizing positions have have 
been put forth by Dyer (1990a, 1990b), Saaty (1990), Harker and Vargas 
(1990), French (1986, pp. 357-361), Watson and Buede (1987). Summarizing 
this debate, much less trying to resolve it, is beyond the scope of this chapter. 
However, it is fair to say that the central issue for engineering design is 
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disagreement over the proper degree of normative vs. descriptive roles of 
analytic decision-making tools. Some researchers have noted that utility 
analysis can sometimes fail as a descriptive decision aid under certain circu
mstances. That is, it does not always mimic the steps of the current decision 
making process nor accurately predict the decision maker's unaided choice. 
One example is "real-time" or emergency situations (Klein and Calderwood, 
1991). 

The criticism of AHP most relevant to engineering design is in regards to 
the assumption that qualitative indications of the "relative importance" of 
two attributes can be interpreted on a numeric scale of 1 to 9 to determine 
the ratio of the weights of the two attributes. For example, the statement that 
"weight is moderately more important than cost" is interpreted to imply that 
wweightfwcost = 3. This in turn implies that one unit of weight (say lib) is three 
times as significant as one unit of cost ($). This is an especially important 
consideration for engineering design, when designer might wish to use the 
results of the analysis to calculate beneficial tradeoffs to guide the iterative 
design process. While AHP can contribute significantly by disaggregating a 
decision problem to enable consensus reaching for group negotiations, de
signers should be extremely careful if they wish to use the results to quantify 
beneficial tradeoffs. 

However, judging a decision-aiding tool by whether or not it accurately 
describes the actual behavior and choices of human beings is not the appro
priate question. Rather, one should ask "Does the tool help designers make 
better decisions?" If humans were always successful in instinctively making 
optimal decisions on their own, there would be no need for formal decision 
theory. The emergence of "design theory and methodology" as an important 
area of research is evidence that designers are indeed not satisfied with their 
current design decision-making methods. 

1.4.5. Implementation Issues-Benevolent Dictator and 
Negotiation and Consensus 

As mentioned earlier, neither MAUA nor AHP explicitly solves the problem 
of efficiency vs. equity. In practice, one of two approaches is commonly 
taken; assigning the "benevolent dictator" role to a group leader, or group 
negotiation and consensus. The first approach assigns the task of aggregating 
individual preferences to a third party such as a decision analyst or group 
leader who assumes a "benevolent dictator" role. The leader is benevolent in 
that he or she seeks to identify the course of action that is in some way the 
overall best choice for the group as a whole, and is not biased for or against 
any individual. The leader is a dictator, in that while individual preferences 
are elicited and used in the decision-making process, no group member(s) 
has veto power. 

In group negotiation and consensus, group members first agree on the 
decision making procedure to be used. By disaggregating the decision prob-
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lem and focussing attention on manageable sub-problems, either method 
provides an excellent forum for communication between individuals within a 
group and for enabling consensus-reaching. After consensus is reached on 
each sub-task, each method provides an explicit procedure for combining 
those results to compare each design alternative on the basis of its total 
relative merit to the group as a whole. By engaging individuals in the steps 
required for formulating the decision problem, practitioners have found it 
much easier to achieve consensus. For example, Sycara and Lewis (1991) use 
utility analysis as the basis of a method for negotiation in product design. 

1.5. AHP Example: Group Decision-Making for 
Design Project Scheduling 

1.5.1. Long-Range Planfor Project Scheduling 
This section summarizes an application of AHP to group decision making 
in design project scheduling, where designers are only one part of a group 
comprised of design engineering, manufacturing, marketing, accounting and 
other sectors of the organization, as described by Thurston and Tian (1990). 
Deciding which family of products to design and when to introduce them to 
the marketplace is extremely important. This task is a multidisciplinary 
team effort, requiring the input of diverse parts of the corporation which 
have distinct and sometimes conflicting priorities. 

The automotive, consumer electronics and other industries introduce new 
product features each year. These features are often modifications or addi
tions to existing base products. In the automotive industry, even minor 
product modifications require large capital expenditures and several years of 
coordinated effort on the part of large engineering design teams. Each team 
consists of subgroups, such as powertrain or electrical system specialists. 
Orchestrating the engineering design process for each engineering specialty, 
for each planned modification, and for each product is a complex scheduling 
task. A long-range plan (LRP) specifies a schedule for product design, 
allocating manpower and capital resources to each project to ensure comple
tion by the planned launch date. 

The long-range plan must often be changed in response to the marketplace 
or actions by the competition. However, moving the launch date up on one 
design project can require delays in other projects due to manpower and 
capital resource constraints. This has different impacts on different parts of 
the organization. Launching a product earlier might prevent the engineering 
design group from achieving a quality goal. However, the marketing group 
might prefer to introduce the product as-is in order not to lose market 
share; they know from historical data that once market share is lost, it is 
extremely difficult to regain. In addition, a delay in a low-mileage, high 
volume vehicle might prevent compliance with regulatory corporate average 
fuel economy (CAFE) standards. 
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Design project managers need a method by which they can facilitate com
munication across disciplinary boundaries within the organization. How
ever, it is not enough just to break down communication barriers so that the 
interests and preferences of each sector of the organization can be known. 
There is also a need for a method to integrate this information into design 
project management in a meaningful and fruitful way. 

1.5.2. Hierarchy 
The overall goal here is to minimize the total detrimental impact of necessary 
changes to the long range product design plan. The hierarchy is shown in 
Figure 8.2. Each of the six major factors represents the primary interests of 
one part of the group, who have not traditionally worked closely together at 
the decision making level. The reason that each major factor occupies the 
same (first) hierarchical level is that the corporation is trying to break down 
traditional organizational barriers between these groups. 

The structure is intended to stimulate input and encourage interaction 
between groups by making it clear that no group is "more important" than 
another. Members of these groups would be sensitive to implications of a 
"chain of command" if their major factor, such as "regulatory compliance," 

FIGURE 8.2. AHP hierarchy for design project delay impacts. 
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Quality Profit Mkt Shr. Manufg. Environ. Regulat. 

Quality 1 2 5 6 7 9 

Profit 1/2 1 2 5 7 8 

Mkt Shr. 1/5 1/2 1 2 3 5 

Manufg. 1/6 1/5 1/2 1 2 3 

Environ. 1/7 1/7 1/3 1/2 1 2 

Regulat. 1/9 1/8 1/5 1/3 1/2 1 

FIGURE 8.3. Pairwise AHP comparison matrix. 

appeared in a lower level of the hierarchy. In order to gather input from each 
group literally on its own terms, impacts were not converted to some com
mon metric such as indirect cost. Figure 8.3 shows the pairwise comparison 
matrix. For example, market share loss was deemed to be "moderately more 
important" than environmental impact, so a value of 3 was entered in row 3, 
column 5 of the matrix. The following factors reflect the major interests in 
the group decision-making process: 

1. Quality-Design engineers are most concerned with the overall quality 
of the product they produce. The time and resources allocated to the design 
task determine the degree to which they are able to achieve their goals. These 
goals might be in the area of using the Taguchi method to develop robust 
designs which are affected as little as possible by uncontrollable deviations 
in the manufacturing and assembly process, or in improving component 
tolerancing and "fit and finish" after the assembly process. 

2. Profit Loss-Accounting is most concerned with the expected loss in 
short term profit due to delaying the launch date of a particular project 
by one time period, or l/2 year. Units of measurement for expected profit 
loss are dollars, ranging from a worst case scenario of 1 billion dollars to a 
best case scenario of no profit loss due to the ability to continue sales of the 
"old" product. 

3. Market Share Loss-Marketing is more concerned with longer term 
impacts; uninterrupted product availability can be an important factor in 
maintaining corporate image in a market segment and customer brand loy
alty. Being "out of market" for even a short time can have a long term 
detrimental effect on the overall market share for that model. The detri
mental effect of a project delay on market share is defined as the expected 
loss in market share for that particular model due to a 1/2 year launch date 
delay. Units of measurement are percentage of total market share, ranging 
from a worst case loss of 1% of the total market share to a best case of no 
market share loss. 

4. Manufacturing Impact-Manufacturing is concerned with production 
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plant capacity utilization. The worst case scenario is a total plant shutdown, 
and the best case is no negative effect on plant utilization. A "minor effect" 
is characterized as one or more of the following: some layoffs, some down
time, and/or a 2 week shutdown for inventory adjustment. A "moderate 
effect" is characterized by a layoff of 1 shift, a 2 week downtime period, the 
addition of robots, and/or a small facility readjustment. A "major effect" is 
characterized by a 25% decrease in capacity utilization, up to a 12 week 
downtime period, or the addition of a second body shop. 

5. Environmental Impact-This attribute includes the environmental im
pact throughout the product's manufacture, consumer-use and disposal life
cycle. The manufacturing process generates byproducts that are harmful to 
the environment, such as air emissions, wastewater, and solid, toxic and 
hazardous waste. During the useful life of the product, more waste might be 
generated during operation, such as vehicle emissions. At the end of the 
useful life of the product, it must be disposed of. 

6. Regulatory Compliance-The regulatory group is concerned with sat
isfying a diverse set of federal regulations for both individual vehicles and 
the entire fleet. These include Corporate Average Fuel Economy (CAFE) 
standards, Federal Motor Vehicle Safety Standards (FMVSS) and vehicle 
emissions standards. Noncompliance can result in fines and/or harm to cor
porate image. While the corporation does not deliberately plan to violate 
regulatory requirements, non-compliance might occur due to unforeseen 
circumstances. With this category in the hierarchy, the impact of potential 
noncompliance is included in the group decision-making process. 

1.5.3. Integrating AHP Results into Design Project 
Scheduling 
The AHP analysis results in a score for each project that reflects the prefer
ences and priorities of each member of the decision-making group. The 
higher the score, the greater the overall detrimental impact to the group that 
would result from a delay of the desired launch date of that product. The 
project scheduling problem is formulated as an integer program with linear 
constraints. The objective function is the minimization of the detrimental 
impact of all project delays as shown in equation (8.6). The AHP scores serve 
as the objective function coefficients C11 , the total overall group impact of 
delaying the launch date of project j for body style i for one time period. 
Binary decision variables (D111 , D112 ) permit the option of delaying any pro
ject j for any body style i for either one or two time periods. (D111 , Dil2 ) = 
(0, 0) corresponds Ko no delay, (1, 0) corresponds to a 1 time period delay, 
and (1, 1) corresponds to a 2 time period delay. See Thurston and Tian 
( 1990) for details on formulation of the constraints on manpower and capital 
resources in each engineering group: 

z n 

minimize L L CiJ(D111 + DiJ2 ), 
j;l j=l 

(8.6) 
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where 

and 

Cii = delay index; the overall impact of delaying the launch data of 
projectj for body style i for one time period 

Dill = 0 if project j for body i is not delayed first time period 

= 1 if project j for body i is delayed first time period 

Di12 = 0 if project j for body i is not delayed second time period 

= 1 if project j for body i is delayed second time period 

i = 1, 2, ... , z body styles 

j = 1, 2, ... , n proposed project for a particular body style 

1.6. Discussion 

This section has described a tool for group decision-making across tradi
tional disciplinary boundaries. AHP provides a forum for design engineers 
to interact directly with personnel from marketing, accounting and other 
parts of the organization. The analysis is structured to reflect issues of con
cern to each constituency, and permit the direct use of terminology normally 
used to discuss possible ramifications of delaying particular projects. Partici
pants gain a better appreciation for each other's priorities and concerns, and 
are better able to reach consensus. Design quality is considered alongside 
profit margin, market share and environmental impact. 

This is not intended to be a descriptive decision-aiding tool. Our goal is 
not to replicate past choices; a primary motivation for the project is that the 
decision-makers are not satisfied with the results of their ad hoc or non
existent group decision-making procedures, and do not wish to replicate 
them. AHP allows us to determine the diverse effects of project delays, and 
for the first time quantify them with a single parameter. Without AHP, the 
modeler might be forced to assume that the impact of delaying a project 
is the same for all vehicle types and project categories. 

Part 2. A Communications-Based Method for Design 
Team Management 

2.1. Communication in Interdisciplinary Engineering 
Design Groups 

It has been estimated that 50% to nearly 100% of design failures are attrib
utable to commonly understood mechanisms (Marriott and Miller, 1981). 
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This suggests that many failures are due not to a lack of expertise in the 
design team, but rather to nonrepresentation of existent expertise at key 
decision points. Interdisciplinary teams are desirable because of resource 
additivity, where group performance increases with the sum of combined 
member abilities (Hill, 1982; Shaw, 1976). However, barriers to coordination 
(Allen, 1986) of a pool of specialists exist. Nonadditivity has been explored 
by Steiner (1972) and Hackman and Morris (1983) under the label process 
loss. Steiner proposed that process loss always occurs in real groups, and 
stems from informational, behavioral, and organizational factors. 

The design team manager defines, assigns, and coordinates tasks 
{Thamhain, 1983). Task definition partitions the project into a number of 
simpler subtasks. Task assignment is the appointment of individuals or sub
groups to each subtask. Task coordination is the management of the ex
change of information to ensure that the necessary design information is 
represented at the proper decision points. Coordination can become exceed
ingly difficult in an interdisciplinary project. The manager may have only 
limited ability to understand, communicate with, or control personnel of 
diverse expertise and rank (Thamhain, 1977, 1983). Faced with the difficulty 
of communication and control during the design process, the manager should 
"design in" a resistance to coordination difficulties during the Task Defini
tion and Assignment (TDA) stage before the design process begins. 

On what criteria should the manager make TDA decisions? Engineering 
design has been shown to be more susceptible to communication variables 
than research or technical service efforts (Allen, et al. 1980). Task achieve
ment is related to communication, particularly in complex tasks (Bales and 
Slater, 1955; Hare, 1976). The TDA imposed on a group determine effective
ness of communication, and hence the effectiveness of the design team. The 
nature of the task affects the communication skills required to solve the 
problem (Barge and Hiokawa, 1989; Fiedler, 1967). The modes of communi
cation required for problem solving will affect the group's ability to commu
nicate (Carzo, 1963; Chapanis, et al., 1972). Changes in the information to 
be communicated has been shown to influence choice of communication 
channels (Wolek, 1970), which display varying probabilities of communica
tion error (Chakrabarti et al., 1983; Mehrabian and Reed, 1968). 

Traditionally, team building techniques have addressed either the charac
teristics of the artifact, or the psychological needs of design personnel, but 
not both. A common artifact basis is the division of tasks for minimum 
interdependence (Steward, 1981). However, full independence of tasks is 
seldom possible (Finger and Dixon, 1989), and this in reality is an indirect 
attempt at evading communication rather than treating it directly. Tools that 
attend to personnel needs (Kiggundu, 1983; Roby and Lanzetta, 1956) are 
aimed toward optimization of job satisfaction, motivation, or other person
nel-related variables. Some investigators have noted that design techniques 
that are successful in continuous solution spaces fail at disciplinary discon
tinuities (Ullman, 1989), presumably because of coordination difficulties at 
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interdisciplinary boundaries. For this reason some tools are domain specific, 
limiting their usefulness across interdisciplinary projects. 

The remainder of this chapter presents a tool for managing interdisciplin
ary engineering design teams which is communications-based. A cognitive 
model for design communication is presented which is used to develop 
strategies for defining and assigning design tasks. These strategies are then 
incorporated into an extension to Failure Mode Effects Analysis (FMEA) to 
minimize the effect of communication errors in the design process. An exam
ple of the design of a program for computer-assisted instruction is presented. 

2.2. Cognitive Model of Engineering Design 
Communication 

2.2.1. Lexicon 
Cognitive models of design describe the mental processes of the designer 
(Finger and Dixon, 1989; Perlman, 1989). Here we define a lexicon of design 
information processing which provides the basis for our cognitive model. 
Figure 8.4 illustrates the following concepts. Design is an activity of informa
tion processing for the purpose of decision making: 

Engineering design is a process performed by humans aided by technical means 
through which information in the form of requirements is converted into information 
in the form of descriptions of technical systems (Eder, 1989). 

The design process is essentially an information processing activity, usually under
taken by a team of people, with its progression depending on the decisions made 
(Wallace and Hales, 1989). 

Information is knowledge of any design-related objects or events and their 
relationships that is pertinent to the making of any design decision (Eder, 
1989; Stomph-Blessing, 1989). Thamhain (1983) used the term technical 
expertise: 

-...-. K: v= o-: --Callalp••••:ll• ..... Caolal--llkrl 

1\~b-<-~= k--. (IIIIIJOollodl 

DETERioiiNANIS - -OFFAIIIJRE 

=-~ 
Caotal--

l<~allfOII.<IIaw --ollodl 
IIIIIJOollodl Nol--

DEIERMINNIISOF EFfECT DETERIINNIIS OF SEVERIIY 

FIGURE 8.4. Detailed model of design information processing. 
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Technical expertise ... includes an understanding of the technology and underlying 
concepts, theories, and principles, the design methods and techniques, and the 
functioning and interrelationship of the various components which make up the total 
system. 

. . . It is necessary not only for proper analytical and development work, but 
equally important for evaluating technical solutions and tradeoffs, to communicate 
effectively within the engineering team, assess risks, participate in search of integrated 
solutions, and make tradeoffs among various alternatives. 

The information sphere is where information resides. Spheres can include 

fields of physical knowledge, experience, and cognitive fields (skills), or any 

other knowledge source. For example, mechanical engineers use primarily 

visual and spatial reasoning in conceptualizing their designs (Earle, 1985). 

Information processing is the generation, access, transfer, and application 

of information to the making of decisions. It consists largely of transferring 

information between information spheres and decision points. 
Communication is the exchange of information between people, defined by 

the presence of an encoder (sender), a decoder (receiver), a channel (means 

of transmission), a referent (topic), and a message (Mehrabian and Reed, 1968). 

Information availability does not refer to the existence of information 

in the team, but to the ability of decision makers to retrieve it. Engineers 

waste large amounts of time tracking down design information, a search 

which may inflate design costs. Some personnel may simply proceed without 

adequate information rather than expend the effort to find it (Liker and 

Hancock, 1986). 
Information error is erroneous or incomplete information at a decision 

point. 
Availability and communication errors are errors that arise from informa

tion unavailability. Some examples are the use of tenuous information due to 

anticipation of difficulty in obtaining more complete information, or the lack 

of important information because the decision maker did not know it to exist 

or know its significance. A communication error is the event in which the 

decoded meaning does not match the encoded meaning. 
Information error effects. We distinguish between the occurrence of an 

information error and the resulting effect: 

• Micro Information Error Effect-the temporary, unexpected symptom 

that serves to flag the error during the design process, and thereby prompts 

corrective effort. An example is the nonfit of a prototype part that was 

dimensioned incorrectly. 
• Macro Information Error Effect-the effect on either the design process or 

the artifact, expressed through two types of corrective action cost (Ireson 

and Coombs, 1988): 
• Corrective Effort-If a micro error effect occurs, its correction entails the 

expense of corrective effort. For example, if a transposed digit in the value 
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of pi is not discovered until after it has been used to build a model of a 
circular gear, the macro error effect is the cost of rebuilding the model 
correctly. The cost of corrective effort during early design of concept, 
development, and pre-production are relatively small. 

• Product Flaw-If an information error did not cause a visible micro effect 
during design, or it went uncorrected, a product flaw might emerge. For 
example, inadequate information about ergonomic requirements might 
result in a passenger compartment with insufficient leg-room. Costs asso
ciated with product flaws include redesign, erosion of product reputation, 
etc. The cost of correcting product flaws increases exponentially during 
the later design stages of production and field service. 

2.3. Task Definition and Assignment (TDA) Strategies 

This section presents strategies for defining and assigning design tasks to 
improve communication. They reduce the risk associated with information 
errors by controlling communication accuracy, information availability, er
ror detection and corrective effort. 

2.3.1. Control of Communication Accuracy 
Mehrabian and Reed (1968) proposed hypotheses that relate communica
tion accuracy to attributes of the communicator, addressee, channel, mes
sage, and referent. We describe them here, along with corresponding TDA 
strategies. 

Decentering Hypothesis: Communication accuracy is directly correlated 
with the communicator's or addressee's ability to explain their body of 
knowledge in "layman's term." Strategy: Assign critical tasks to members 
who have displayed decentering ability, or define critical tasks so as not to 
require communication between dissimilar fields 

Cognitive Similarity: Accuracy is correlated with the degree of similarity 
between the communicator's and addressee's coding rules and modes of 
cognition (Rinkel, 1959). Strategy: Assign critical tasks to team members 
who are cognitively similar. 

Rate Hypothesis: Accuracy is inversely correlated with the rate of informa
tion processing. Strategy: Assign critical task to team members with similar 
information processing capacities, or define individual tasks so as not to 
require excessively high information processing rates. 

Rate Control Hypothesis: Accuracy is correlated with the degree to which 
the rate of transmission can be modified by the decoder. Strategy: Assign a 
critical task so that communication rates are likely to be controllable by the 
decoder (e.g., interpersonal communication). 

Channel Availability Hypothesis: Accuracy in decoding increases with the 
degree to which all of the communication channels used by the encoder ate 
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made available to the decoder. Strategy: Assign a critical task to individuals 
who have equal access to available communication channels. 

Habitual Channel Hypothesis: Accuracy is correlated with the degree 
to which the communication channels typically employed by the encoder 
for that kind of communication are available. Strategy: Assign tasks to 
individuals who habitually use similar channels. 

Feedback Hypothesis: Accuracy is correlated with the degree of feedback 
available to the encoder. Strategy: Assign critical tasks for maximal feed
back in information exchange. 

Message Complexity Hypothesis: Message accuracy is inversely correlated 
with the degree of complexity of the message. Strategy: Define critical tasks 
in such a way that messages between individuals will be minimally complex. 

Organization Hypothesis: The accuracy of a message is directly correlated 
with its degree of organization. Strategy: Assign critical tasks such that 
organization of information is improved, or define a critical task so that 
information that is likely to be communicated is highly organized. 

Objectivity Hypothesis: Accuracy is directly correlated with the degree of 
objectivity of the message. Strategy: Define and assign critical tasks so that 
communicated information is objective, leaving exchange of subjective infor
mation to occur between cognitively similar members. 

Ambiguity Hypothesis: Accuracy is directly correlated with the degree to 
which the coding rules for the referent are well defined. Strategy: Define and 
assign tasks in such a way that referents that are likely to require communi
cation are concrete and unambiguous. 

Referent Complexity Hypothesis: Accuracy is inversely correlated with the 
complexity of the referent. Strategy: Define and assign tasks in such a way 
that only simple referents are likely to be involved in communication events. 

2.3.2. Control of Information Availability 

Information availability depends on the relationship between the location of 
the information and location of the requestor. 

Member Centrality. Centrality (Carzo, 1963, p. 400) is indicated by the 
total number of communication links needed to interact with all other mem
bers (Bavelas, 1948, 1950), and is a convenient indicator of the member's 
information availability (Leavitt, 1951). The lower the number of links, the 
more available the information possessed by other group members. Groups 
which have the fewest communication links between the point at which 
information is received and the actual decision point exhibit the best perfor
mance (Roby and Lanzetta, 1956). One might assign a critical task to a 
person in a highly central position in the team structure, or adjust the team 
structure so that this person has high centrality. 

Information Centrality and Initiation. Alternatively, increasing the amount 
of information initially possessed by a member, independent of the actual 
position in the communication net, has an effect on performance similar to 
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that of increasing centrality (Shaw, 1954), by reducing the role of error· 
prone external communication links. If the decoder has some personal 
knowledge of the subject matter, availability of the information is facilitated. 
Availability errors arise from ignorance of the need for certain pertinent 
information, and/or non· use of the information due to difficulty in obtaining 
it. One might assign a critical task to a person who has expertise broad 
enough to complete the task independently, or to recognize the need for 
information and know where to obtain it. 

2.3.3. Control of Error Detection 
Very little research has been devoted to communication error detection in 
design. What does exist (Gilchrist et at., 1954; Leavitt, 1951; Shaw, 1954) 
describes it only as a dependent variable of the communication net, although 
other factors might affect it. Intuitively, error detection depends on the 
receiver's knowledge of the subject matter and a clear understanding of the 
relationship between the information error and its effect on the artifact. 

Suppose that the value of pi is communicated to a decoder who will use it 
to fabricate a prototype. In the encoding process, one of the digits is trans· 
posed. The use of this erroneous value may not display a micro effect until 
far down the design process, perhaps when prototype parts are first assem· 
bled. But if the receiver had personally known the value of pi and the fact 
that the message was supposed to represent the value of pi, the error would 
have been more likely to be detected and corrected on receipt. If it had not 
been corrected on receipt, the error effect still would be quite salient on 
application, providing another means of detection. One might assign a critical 
task to an individual or small group of similar expertise so that they are likely 
to mutually understand the purpose, meaning, and significance of messages 
they exchange. Or one may define a critical task to encourage salient applica· 
tion of externally communicated information, or define it in such a way that 
erroneous critical information will result in a salient micro error effect. 

2.3.4. Control of Corrective Effort 
Research on corrective effort in design is sparse. The severity of corrective 
effort depends on the amount of work that must be done to replace errone· 
ous information with correct information. Replacement may call for rede· 
sign of the component, as well as other components designed after it. Hence, 
the extent of corrective effort is determined by the nature and sequence of the 
tasks that make up the design project. One strategy recognizes that detection 
is facilitated by the appearance of a micro error effect. The sooner the error 
effect appears, the less severe the effort of correction. One might define a 
critical task so that application of externally communicated information, 
and hence a micro error effect, is likely to occur soon after reception. 
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2.4. Extension of FMEA to Design Team Analysis 

This section presents a method for designing the design team itself to mini
mize the effect of communication errors. The cognitive model and TDA 
strategies are integrated into a tool which is traditionally used to evaluate the 
physical design artifact, Failure Modes and Effects Analysis (FMEA) (Ireson 
and Coombs, 1988). FMEA focuses on weaknesses in the artifact and makes 
them the object of design modifications. A full understanding of potential 
physical failure mechanisms of the artifact is required. Here, communication 
failure mechanisms are the object of FMEA. First, we must develop a func
tional concept of component that simultaneously represents both the team 
members and the artifact. 

2.4.1. Definition of Component 

Information components are defined as pieces of information that must 
be represented at design decision points. A piece of information always 
concerns some referent, sender and receiver, so a physical artifact and one or 
more team members are included. An information component fails when it 
is not represented at the decision point, or represents erroneous information. 

Identification of significant components. Many information exchanges are 
only momentary and leave no physical evidence. Some important informa
tion might be transmitted subliminally, or might represent common domain 
knowledge between design participants and thus need not be explicitly ex
changed. The importance of such information might not be obvious if the 
information does not travel along observable communication channels. One 
might notice them by the effect of their failure on the system (Blakar, 1973). 
Functional FMEA has been used to identify critical components as evi
denced by their failure. This relieves us from exhaustively identifying all 
possible information components. 

Reduction in number of components. Rather than attempting to exhaus
tively enumerate all information exchanges, we treat similar messages as 
units which have the same likelihood of information error and detection, and 
severity of effect. Referent, message, encoder, decoder, channel, and avail
ability are constant. For example, the information needed by a structural 
engineer in determining the type of steel to fabricate a beam includes the 
strength-stiffness ratio of several different grades of steel. This information 
would likely come from the same source, arrive via the same communication 
channel, occur between the same encoder and decoder, and comprise infor
mation of equal complexity. By applying a TDA strategy to one specific 
information component in a class, all other components in its class should 
also experience reduced risk of information error. 
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2.4.2. Definition of Evaluation Function 
The Risk Priority Number (RPN) reflects the detrimental effect of informa
tion errors. It is a function of the likelihood of the error and its detection, 
and the severity of corrective efforts or product flaws, as shown in equations 
(8.7) and (8.8). For information errors that are detected and require correc
tive effort during the sign process: 

RPNce = LIE x LD x SCE. (8.7) 

where 

RPNce = risk priority number associated with corrective effort 

LIE = relative likelihood of information error, represented on a 1-9 scale 

LD = relative likelihood of detection of information error, 1-9 scale 

SCE = severity of corrective effort, 1-9 scale. 

For information errors that are undetected and result in a product flaw: 

RPNpr = LIE x LND x SPF (8.8) 

where: 

RPNpr = risk priority number associated with product flaw 

LND =likelihood ofnondetection of information error, 10- LD 

SPF =severity of product flaw, 1-9 scale 

In standard FMEA it suffices to estimate the severity of component failure 
on the performance of the artifact. In design team analysis, we are also 
concerned with the severity of mid-course corrective efforts. Table 8.4 shows 
subjective estimates for Likelihood of Information Error (LIE), Likelihood 
of Detection (LD), Severity of Corrective Effort (SCE) and Severity of Prod
uct Flaw (SPF) on a 1-9 adapted from Bajaria (1983) and Kapur (1988): 

TABLE 8.4. Scales for likelihood of information error and detection 
and severity of corrective effort and product flaw. 

Scale LIE&LD SCE SPF 

1 Extremely rate No effect No degradation 
3 Not likely Some backtracking User annoyance 
5 50/50 chance Significant delay User dissatisfaction 
7 Likely Redesign lnoperation 
9 Certain Scrap project Safety hazard 
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2.5. Example: Design Team for Computer-Assisted 
Instruction (CAl) 

We illustrate the technique by analyzing an interdisciplinary team which 
designs software for computer-assisted instruction (CAl) programs on conic 
sections in analytic geometry, and dimensional analysis in chemistry 
(Safoutin, 1991). Three distinct sources of expertise are required; a classroom 
instructor, a CAl specialist and a computer programmer. The instructor 
contributes knowledge of the subject matter, and provides input at the begin
ning of the project, periodic review during the design process, and occasional 
consultation on details of the subject matter. The CAl specialist provides 
expertise in techniques for student interaction and presentation of material 
in a computer-based learning environment, which are very different from 
those of classroom instruction. A computer programmer determines the 
practicality of implementing the techniques developed by the CAl specialist 
and writes the computer code. The programmer has had informal exposure 
to CAl design principles, and feels comfortable with the task of instructional 
design and topic selection. Design is joint by review, where a preliminary 
design is conceived and implemented by the programmer, then evaluated by 
the CAl specialist and less frequently the instructor. It is assumed that the 
programmer will initiate a search for CAl methods and subject matter infor
mation when needed. The worksheet depicted in Figure 8.5 helps to elicit and 
organize information used to analyze a design team configuration. 

A potential product flaw is first selected for analysis: the student cannot 
exit the computer interaction routine without providing the correct answer, 
a very frustrating experience if the student does not know the correct answer. 

PRODUCT FlAW: SllJCI conno< .,, ·~~~ou~ e11.1t rtteracuon routine WI answem; correc 

PROOOCT COMPONENT CONPONENT F\ICl1(Jj INFORIIATOI CONPONEN" M'ORIIATOI FUNCTlON POSSIIIl£ WCRIIATOI 
ERROR 

PresentaDon technloue Feet lhat lhe sa~dent Doslaner olln!OniC<iYe 
wil bea)me frusnted doH no< 
without an exit ootion 

·--.cllho -· ~ ol an exit ootion 

COMMUNICATION ACCURACY 

Rol- loloosiQO e.- Docodot ChiMII 
AVAILABILITY 

Studonr Eli!oodon Is CAidesianor I l'rooratrYne< ExtenW Low. l.hde modvation on Datt 

interaction - .. of Prootarnmet 10 Mek INs ......,_ 
-=-~~us- infonnalion. linle Ukelihood of 
lion volunteer until ntvlfl'lf. 

FIGURE 8.5. FMEA table for design team analysis. 
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The component function whose loss or degradation causes the flaw is then 
identified: the segments of computer code, procedures, algorithms, and pre
sentation technique. In column 3 the most important information compo
nents are listed. Entered in column 4 is the function of the information 
which, if not fulfilled, results in physical component failure. The possible 
failure modes (information errors) are listed in column 5. 

In the "Communicaton Accuracy" section the existing communicaton 
environment is described. The referent is the topic of the information com
ponent, in this case the relationship between the student and the interaction 
routine. The message is specific information about the referent, here that the 
student should have a means of exiting the interaction routine short of 
answering correctly, or he or she might become frustrated. The encoder is the 
team member who initially possesses the information, the CAl specialist. 
The decoder, the programmer, requires the information. The channel is 
the internal or external channel along which the message is likely to be 
exchanged. 

Blocks to availability of the information component are recorded in 
"Availability" column. Currently the programmer is the initial designer of 
the presentation technique. Information must be obtained from the CAl 
specialist, and there are several obstacles. The CAl specialist is not always 
available for immediate consultation, and is not likely to offer CAl expertise 
unless the programmer-designer recognizes a need and requests information. 
The programmer's limited understanding of CAl design principles can im
pair the ability to recognize when CAl knowledge is called for before he or 
she has created a preliminary design. The programmer might not know or 
believe that an exit option is always important no matter how simple the 
question, and will likely proceed with a design based on incomplete or 
incorrect information which will not be corrected until review. 

These observations are used to indicate in the next column that availability 
of expertise, initiation of information search, referent ambiguity and low 
message objectivity are likely error mechanisms. The referent is ambiguous 
because it involves the relationship between a hypothetical average student 
and an interaction routine, subjects that are somewhat ambiguous them
selves. The message that the student will become frustrated without an exit 
option is subjective. It involves the personal perceptions of the student as 
envisioned by both the CAl specialist and the programmer, perceptions 
which are likely to be somewhat different. The CAl specialist is trained in the 
reasons why a student would become frustrated, but the programmer might 
not expect or believe that frustration would be significant. A programmer 
might object that an exit option makes the question too easy, or is not really 
necessary because the question seems simple enough to answer. 

In the next block of columns, estimates for the likelihood of information 
error, detection, and the severity of corrective effort and product flaw are 
entered. Then, Corrective Effort Risk, RPNce is calculated using equation 
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(8.7) and Product Flaw Risk, RPNpr is calculated using equation (8.8). Only 
the first figure of an RPN is significant and should be used only for compara
tive purposes in evaluating one information error against another. The ana
lyst has made estimations that compute to RPNce = 60 and RPNpr = 210. 

In the strategies column, TDA strategies as defined earlier that can reduce 
corrective effort risk and product flaw risk are identified. Corrective effort 
risk can be reduced by decreasing the likelihood of an information error 
(LIE) or the severity of of corrective effort (SCE). Product flaw risk can be 
reduced by decreasing the likelihood of an information error (LIE), its non
detection (LND) or the severity of the product flaw (SPF). 

The communication failure is that provisions might not be specified for the 
student to be able to exit an interaction routine without answering correctly. 
To prevent this flaw, the designer must know that the student will experience 
frustration if the correct answer is required for exit but is unknown. If this 
fact is not known to the designer, it is assumed that he or she will not provide 
an exit option. 

Review and detection is the most likely means by which CAl expertise will 
make its way into the design. Error detection is estimated to be not likely (at 
3). The analysis has revealed that reliance on detection is not wise given the 
current TDA. Rather than rely on periodic review, one should strive to 
decrease the relatively high (at 5) likelihood of information error LIE and 
increase likelihood of detection LD by modifying the TDA. 

When an information error is detected, the corrective effort required 
depends on the amount of time and work that proceeds past the point of use 
of the erroneous information. Currently, severity of corrective effort is esti
mated at 4. To decrease this measure our only means is to define the task or 
make an assignment so that application of externally communicated infor
mation is likely to occur soon after reception. 

It had been believed wise to assign the design of the presentation technique 
to the programmer. Our analysis shows that representation ofCAI expertise 
in the presentation technique is very tenuous, relying too heavily on error 
detection. If the design of the presentation technique was instead assigned 
explicitly to the CAl specialist, CAl expertise would be more available. A 
CAl specialist directly designing the presentation technique is more likely to 
give full credit to the importance of an exit option. This assignment would 
also reduce losses due to referent ambiguity and message objectivity. 

If the CAl specialist explicitly specifies that the presentation technique 
include an exit option, the programmer provides one. However, if there is 
only a recommendation that an exit option be included, the programmer 
might decide that the extra programming effort is not justified by the benefits 
(which he perceives to be minimal). Upon review, the programmer might be 
instructed to add the option, but this entails corrective effort. Accurate 
receipt and implementation of the message would no longer depend on its 
interpretation by the programmer. 
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Risk Reduction. Formerly, 

LIE x LND x SPF = RPNpf 
5 X 7 X 6 = 210 • 

With the new assignment, the analyst estimates that LIE = 2 and LND = 3, 
significantly lowering RPNpr to 36. Similarly, RPNce would change. For
merly, 

LIE x LD x SCE = RPNce 
5x3x4= 60" 

With the new assignment, LIE = 2 and LD = 10 - LND = 7, lowering 
RPNce to 56. 

2.6. Discussion 

When all TDA modifications have been specified, the analysis can be re
peated until RPNs have been reduced to an acceptable level. Even if TDA 
adjustment proves impractical, high risk areas can be identified for increased 
monitoring during the design process. The analysis pointed out inadequate 
availability of CAl expertise and an over reliance on error detection. One 
might naturally suspect that a programmer without formal CAl training 
might not be adequate to ensure a quality presentation technique. However, 
it might also seem apparent that periodic review by a CAl specialist would 
uncover and correct any such deficiency. We saw that this was not the case. 
Our analysis broke the problem down into distinct components relating to 
the likelihood of an information error, its detection, the severity of the effort 
spent to correct the error during the design process and the seventy of a 
product flaw if the error goes undetected. The example leads to the conclu
sion that assignment directly to a CAl specialist is more effective because it 
reduces reliance on detection, increases availability, and increases communi
cation accuracy. 

3. Summary 

Group decision making is difficult because of problems of communication 
between individuals, and because individuals often have conflicting interests. 
All of the methods presented in Part 1, including voting and ranking 
schemes, provide a forum for helping individuals communicate their interests 
and preferences to one another. Multiattribute utility analysis and the ana
lytic hierarchy process also provide a structured procedure for eliciting pref
erences, and a rigorous methodology for converting expressions of prefer
ence into a quantitative measure of the relative merit of design alternatives. 
While these methods do not resolve the impossibility of interpersonal com-
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parison of utility, they do provide a framework around which individuals 
can provide input, express preferences, analyze possible courses of action 
and negotiate tradeoffs. 

Part 2 presented a technique for interdisciplinary design team manage
ment which focuses on communication errors. Mechanisms of information 
processing errors and their role in requiring corrective effort during the 
design process and causing product flaws were identified. We have employed 
this understanding toward a new methodology for analyzing the effective
ness of design teams which focuses directly on task definition and assignment 
strategies. It pinpoints the location, nature, and prevention of information
related sources of design error and over-reliance on error detection. It also 
provides documentation of potential sources of error and a means of remedy 
where only gut feelings existed before. 

Each of the methods presented here disaggregate a previously intractable 
problem into subproblems on which team members can communicate and/or 
reach consensus. These approaches are normative in that they are intended 
to indicate how design teams should make decisions, rather than automate 
their current decision making processes. The analyst must think hard about 
which aspects of current procedures should be retained, and which should be 
replaced with methods which are intended to improve the outcome of the 
decision making process. 
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9 
Routineness Revisited 

DAVID C. BROWN 

Abstract. In the current research literature on the use of artificial intelli
gence (AI) in design, we find many terms for types of design. In particular, 
the term routine design is often used, with a variety of definitions. The goal 
of this chapter is to discuss routine design, and to contrast it with some of the 
other types of design. We will attempt to clarify the definition of routineness, 
and point out what is missing from existing definitions. We will also consider 
definitions of, and comments about routine design from other authors, as a 
contrast to our definition. In conclusion, we relate the notion of class 1, 2, 
and 3 types of design, introduced by Brown and Chandrasekaran (1985), to 
ideas presented in this chapter. 

9.1. Introduction 

In books and papers about design problem-solving we find many terms for 
types of design [for example, see AAAI (1990) and Finger and Dixon (1989)]. 
These include preliminary, conceptual, functional, innovative, creative, routine, 
embodiment, parametric, detailed, redesign, nonroutine, and configuration. 

The goal of this chapter is to discuss routine design and to contrast it with 
some of the activities suggested by the other terms given above. 

As Gero (1990, p. 34) says, "There seems to be a general acceptance of the 
classification of design into routine, innovative, and creative (Brown and 
Chandrasekaran, 1985) .... "Unfortunately, many people have used the term 
routine in slightly different ways, often without understanding the key points 
of the original description. In this chapter we will try to point to the sources 
of confusion, and will try to clarify the definition of the term. 

9.1.1. Three Classes of Design 
Let us start by considering the following passages from Brown and 
Chandrasekaran (1985): 

195 
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Class 1 Design 

The average designer in industry will rarely if ever do class 1 design, as we consider 
this to lead to major inventions or completely new products. It will often lead to the 
formation of a new company, division, or major marketing effort. This is extremely 
innovative behavior, and we suspect that very little design activity is in this class. 
For this class, neither the knowledge sources nor the problem-solving strategies are 
known in advance. 

Class 2 Design 

This is closer to routine, but will involve substantial innovation. This will require 
different types of problem-solvers in cooperation and will certainly include some 
planning. Class 2 design may arise during routine design when a new requirement is 
introduced that takes the design away from routine, requiring the use of new compo
nents and techniques. What makes this class 2 and not class I is that the knowledge 
sources can be identified in advance, but the problem-solving strategies, however, 
cannot. 

Class 3 Design 

Here a design proceeds by selecting among previously known sets of well-understood 
design alternatives. At each point in the design the choices may be simple, but overall 
the task is still too complex for it to be done merely by looking it up in a database of 
designs, as there are just too many possible combinations of initial requirements. The 
choices at each point may be simple, but that does not imply that the design process 
itself is simple, or that the components so designed must be simple. We feel that a 
significant portion of design activity falls into this class. 

Class 3 Complexity 

While class 3 design can be complex overall, at each stage the design alternatives are 
not as open-ended as they might be for class 2 or 1, thus requiring no planning during 
the design. In addition, all of the design goals and requirements are fully specified, 
subcomponents and functions already known, and knowledge sources already iden
tified. For other classes of design this need not be the case. 

9.1.2. The Key Points 
Let us now discuss the key points of that definition, and add some of the 
refinements which appeared in that paper and in subsequent papers. 

The main point (due mainly to Chandrasekaran), which is often over
looked, is summarized in the following table: 

Class 1 
Class2 
Class 3 

Knowledge sources 

Not known 
Known 
Known 

Problem-solving strategies 

Not known 
Not known 
Known 
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For class 3 design, this means that everything about the design process, 
including the knowledge needed (i.e., knowledge sources), must be known in 
advance. Note that this does not mean that the specific design (i.e., the 
solution) is known in advance. Nor does it mean that the pattern of use of 
the knowledge (i.e., the design trace) is completely known in advance. 

9.1.3. "Known" Knowledge 
There is some ambiguity in the use ofthe word Known in the above table. We 
will discuss this in terms of knowledge sources, with obvious extension to 
problem-solving strategies. 

By referring to a knowledge source as "known", we mean: 

• that it is known in advance that the knowledge source will be needed to 
make that decision or set of decisions, and 

• that the knowledge source is "immediately available" for use-that is, 
it does not have to be reasoned out or transformed from some other 
knowledge. 

9.1.4. The Implications for Class 3 Design 
The implications for class 3 design are: 

• Use of a fixed set of well-understood design plans. 
• No planning is required, only plan selection. 
• Plan selection is fairly simple, with known criteria. 
• Plans are probably not very long, or they would not be easily remembered. 
• Possible problem decompositions are known in advance, while the actual 

decomposition to be used is not. 
• Dependencies between subproblems are known and, for the most part, 

can be compensated for in advance. 
• Subproblems can usually be solved in a fixed order with little or no 

backtracking, due to the anticipated dependencies. 
• All possible subcomponents of the object being designed are known in 

advance. 
• The particular configuration of subcomponents chosen for a design in 

response to a given set of requirements is not known before the design 
activity starts. However, that configuration of subcomponents is a previ
ously known configuration (i.e., the designer could identify it as a candi
date solution for that type of design problem). 

• All attributes or parameters (e.g., length) of the design of a subcomponent 
are known (i.e., their names, not their values). 

• The knowledge needed to calculate or select a value for each attribute is 
known in advance. 

• Appropriate ranges of values are known for most attributes. 
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• There exist "expectations" about a typical value for an attribute in a 
particular design situation. 

• The types of requirements given for a design problem are all known in 
advance. 

• Many common failures during the design process will be recognizable. 
• There exist suggestions about how to make changes to parameter values 

in order to fix failures. 

9.1.5. AIR-CYL 
The AIR-CYL system (Brown and Chandrasekaran, 1989) that designed air 
cylinders is an example of a class 3 design system. The possible configura
tions are known in advance and are selected at run-time as a side-effect of 
plan selection; the possible plans for each subproblems are all available; and 
the parameters to be given values are all known in advance, as is the knowl
edge used to produce those values. 

The system, written in DSPL, a language for constructing design expert 
systems, also satisfies all of the other criteria in the list above. AIR-CYL is a 
system that does routine design. DSPL has been used to build systems for a 
variety of domains, such as operational amplifiers, gear pairs, distillation 
columns, and commercial buildings. 

In the following sections we will attempt to clarify the definition of rou
tineness, and point out what is missing from the presentation above. Then we 
will consider definitions of and comments about routine design from other 
authors, as a contrast to the definition presented here. 

9 .2. A Second Axis 

The author's recent work (Brown, 1991) addresses a form oflearning known 
as compilation, in which knowledge is transformed and reorganized in order 
to produce more efficient problem-solving. 

The thesis that underlies the work in knowledge compilation during design 
is that design tasks become routine due to learning. This learning is brought 
about by repetition of similar problem-solving. That is, routineness is a 
direct reflection of experience. Routine designs are done more efficiently. 

In order to avoid unwanted connotations, we will use the term nonroutine 
as the opposite of routine. The level of experience with a certain type of 
design will be reflected by a position on a routine ..... nonroutine axis-with 
"very experienced" at one end and "inexperienced" at the other. 

As this axis has nothing to do with what is being decided, this suggests the 
need for another axis that describes what sort of decisions are being made at 
various points during a design. We will use a conceptual.._. parametric axis 
for that. The intuition is that the axis shows the abstractness of the decisions 
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being made, and reflects the notion that more constraints are added to the 
solution as the design activity progresses. 

By conceptual design we mean that the kind of things being decided at that 
point in the design are abstract (conceptual). For example, that the design 
requirements can be satisfied by a design that provides a particular function, 
or by one that has a particular pattern of subfunctions. 

This is quite compatible with Dixon's very useful taxonomy of design 
problems (Dixon et al., 1988). His levels are named functional, phenomeno
logical, embodiment, attribute, and parametric. Clearly, these levels corre
spond to portions of the conceptual -+ parametric axis, even though this axis 
is less specific about the content of the decisions being made. 

Dixon goes further, and states that "conceptual design is often used to 
describe the Embodiment of a design from Function" (p. 43). He considers 
preliminary design to be an extension of conceptual design to another of his 
levels of specificity, i.e., to artifact type. 

By parametric design we mean that the things being decided are values for 
a prespecified set of attributes, and that providing values for these attributes 
fully specifies the design. In Dixon's terms, the design goes from artifact type 
level to the artifact instance level. 

For many design problems, the conceptual-+ parametric axis represents 
the flow of time during the design activity, with earlier decisions falling 
toward the left and later decisions falling toward the right. 

However, not all design problems have to begin with vague functional 
requirements and conclude with a fully specified design. For example, Dixon 
et al. (1988) point out that a design activity can start at any level of abstrac
tion and finish at any one of the more specific levels. 

9.2.1. Four Categories of Design Activity 
We consider the routine -+ nonroutine and conceptual-+ parametric axes to 
be orthogonal (see Figure 9.1). 

The space produced is naturally divided into four categories of design 
activity. They are represented by the four extreme points at the limits of the 
axes: 

RC routine, conceptual design 
RP routine, parametric design 
NRC nonroutine, conceptual design 
NRP nonroutine, parametric 

These will each be discussed below, in Sections 9.3 and 9.4. 

9.2.2. Concerns About the Analysis 
At this point it is appropriate to discuss several concerns about this two-axis 
analysis. 
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Non-Routine 

.NRC .NRP 

Conceptual Parametric 

Routine 

FIGURE 9.1. Orthogonal axes. 

Relative measure: As already stated, the routineness of a particular design 
problem depends on the experience of the problem-solver. Therefore, rou
tineness is a relative measure. What is routine for one designer is not routine 
for another. What is routine for a designer today, may not have been two 
years ago. Routineness is in the brain of the beholder. It is an individuafs 
standard. 

In addition, there is also a community standard. The professional engineer
ing design community may consider a design problem routine-meaning 
that there is an expectation that the problem will be routine for each member 
of the community. This may be because the specific knowledge and problem
solving for that problem is taught in college. 

This community standard is probably easier to see at the Nonroutine end 
of the axis. Suppose we associate Nonroutine design activity with "innova
tion." It is easy to see that the community standard for a particular design 
problem is represented by the existing design solutions. Thus, a design can be 
innovative relative to that pool of existing designs. 

Of course, it is perfectly possible for a design to be innovative relative to 
the individual's standard, but not innovative relative to the community stan
dard. Design problems by themselves are not innovative, only in context. 
This demonstrates some of the danger in using the term innovative design. 

The routineness axis: First, as routineness is expressed on an axis, with the 
possibility of different degrees of routineness, one should not assume that 
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there are only four categories of design activity (i.e., it is closer to being contin
uous than discrete). Routine and nonroutine are the extremes. We will try to 
restrict our focus to the extremes of both axes, in order to simplify the analysis. 

What was learned: The routine -+ nonroutine axis is supposed to reflect the 
level of experience with a particular type of design. The more routine a 
problem is, the more knowledge is already "known" and is ready for imme
diate use. In the table at the beginning of the chapter we separated what 
could be known in advance of carrying out a design into knowledge sources 
and problem-solving strategies. The routine -+ nonroutine axis is concerned 
with how much is known, but does not distinguish between these two types of 
knowledge. A more refined analysis probably should make this distinction. 

Subproblem type: Up to this point we have assumed that all subproblems 
of a design problem are of the same class. This is not always realistic. In 
complicated problems some subproblems will be quite new, and will be 
nonroutine, whereas other subproblems will lead to very well-known compo
nents needing routine design, or even merely selection from a catalog. 
Clearly, this makes any model of design more complex. 

Nonlinear progress: The reader should not assume that the nice, linear 
progress through a design problem that is "suggested" by the conceptual-+ 
parametric axis is correct. Different subproblems can be at different points 
on the axis at any point in time. Problem-solving can jump from one point 
on the axis to another-for example, when a decision about using a certain 
type of component suggests a simplification of the functional design (perhaps 
through function sharing). Also, failures during design, due perhaps to in
compatible choices, can lead to redesign (making changes to something 
already designed) or to re-design (doing whole portions of the design again 
from scratch). Nonlinear progress should not affect the arguments presented 
in this chapter. 

Other axes: This two axis analysis ignores other dimensions. Several peo
ple, such as Chandrasekaran (1990), Brown (1992), and Hayes-Roth (1990), 
have discussed the need for multiple mechanisms, or methods, for design 
tasks. For example, the use of constraint satisfaction or case-based reasoning 
to produce a design candidate. Our analysis does not reflect that dimension, 
and does not require it. The analysis also ignores the effect of the Domain 
(e.g., mechanical versus electrical) on the design activity [for example, see 
Brown (1990) or Waldron (1990)]. 

In the next two sections we will examine the four extreme categories of 
design activity (RC, RP, NRC, and NRP), giving examples of each. 

9.3. Routine Design 

In this section we will examine two of the four extreme points defined 
by the two axes. They are at the routine end of the routine -+ nonroutine 
axis. 
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9.3.1. Routine, Parametric Design 

At the RP point the designer is deciding values for parameters (parametric), 
and has well-formed methods for deciding them (routine). 

This is a typical routine situation, where a designer uses well-known meth
ods to decide values for parameters. Several existing knowledge-based sys
tems are capable of doing this category of design activity, such as AIR-CYL 
(Brown and Chandrasekaran, 1989), and PRIDE (Mittal et al., 1986). 

9.3.2. Routine, Conceptual Design 

At the RC point the designer is making very abstract decisions (conceptual) 
and has well-formed methods for deciding them (routine). 

This category of design is done by a designer who often designs complex 
things given a rich but fixed set of requirements. For example, the designer 
of low-cost office buildings needs to decide which of a standard set of designs 
to use, and what type of structural system to use, given the type of equipment 
and numbers of people to be placed in the building. He or she also needs to 
consider the geological information about the site, as well as other factors 
such as the weather. The decisions made are not final values of parameters, 
but rather attributes of the design that will allow a list of parameters to be 
formed so that parametric design can be done. 

The best known knowledge-based system that is close to this kind of 
design is HI-RISE (Maher and Fenves, 1985). HI-RISE acts as an assistant 
to a designer for the preliminary structural design of high-rise buildings. It 
generates "feasible alternatives for two functional systems," in the form of 
structural systems. As these functional systems are known in advance, and 
the methods for selecting and checking the compatibility of the structural 
systems are also known in advance, then the system is doing routine design. 
As many of its decisions are fairly abstract, such as "braced frame" versus 
"shear wall" construction, the system belongs toward the conceptual end of 
the conceptual --.. parametric axis. 

A correction: In Section 9 .1.4 we presented a list of implications of the 
earlier definition of class 3 design. Unfortunately, a few of the points refer to 
"subcomponents." The RC category of design activity need not decide sub
components. Consequently, those points should be changed to include more 
abstract decisions, such as "subfunctions." 

9.4. Nonroutine Design 

In this section we will examine the other two of the four extreme points 
defined by the two axes. They are at the nonroutine end of the routine --.. 
nonroutine axis. 
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9.4.1. Nonroutine, Conceptual Design 
At the NRC point the designer is making very abstract decisions (conceptual), 
and does not have any well-formed approach to making them (nonroutine). 

This is the aspect of design about which we know the least. It is easy to 
think of the most abstract decisions being nonroutine. A typical early design 
task might be deciding the full functionality of the object to be designed 
given the requirements. Those aspects of design that we normally consider 
to be most creative are precisely those in the NRC category. This is the sort 
of activity we associate with the initial stages of architectural design, for 
example. 

There have been some attempts to produce design systems in this category 
[see Gero and Maher (1989) and Joskowicz et al., (1992)]. For example, 
Ulrich and Seering (1989) describe a system that generates graphs of func
tional elements (i.e., schematic descriptions) that produce a required rela
tionship between a given input and a given output. They call this process 
schematic synthesis. The descriptions consist of idealized elements, such as 
pumps, or springs, which contain no information about geometry or mate
rials. Descriptions can then be used to generate a physical description. 

9.4.2. Nonroutine, Parametric Design 

At the NRP point the designer is deciding values for parameters (parametric), 
and does not have any well-formed approach to making them (nonroutine). 

One can easily imagine a new designer in industry being given the final step 
of a design project, where the rest had been completed by a senior designer. 
It is clearly possible for the naive designer to know all of the parameters to 
be decided, but not know how to go about deciding them. This would result 
in nonroutine behavior, such as analyzing the dependencies between the 
parameters in order to determine an appropriate order in which to decide 
them, or searching textbooks for appropriate methods or equations. 

Another more complex example can be found in the task of designing hulls 
for racing yachts, as described by Gelsey in Joskowicz et al. (1992, p. 44). 
The hull's shape can be described by a grid of planar panels. The problem 
can be viewed as that of finding sizes for those panels, i.e., finding values for 
parameters. In actual fact, the grid may need to be changed, in order to 
improve expected performance. That sort of change will produce a new set of 
parameters. Producing this new set is not a parametric design task. 

The statement in Section 9.2 that "routineness is a direct reflection of 
experience" is not meant to imply that all problems can produce the same 
degree of routineness with experience. For example, some problems have 
a dependency structure that is much too complex to be properly analyzed 
by the designer. Even if the dependencies were known a priori, the ordering 
of the tasks may not be, as in the tasks Balkany et al. (1991) label as 
Type 2. 
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Such complexity might lead to use of the iterative refinement approach to 
parametric design (Orelup et al., 1988; Ramachandran et al., 1988). One can 
argue that this is not routine design, as it is not possible to anticipate the 
order of decisions, therefore preformed plans cannot exist and cannot be 
used. In addition, an iterative refinement approach will decide the value of 
some parameters more than once, nudging them gradually to their final 
acceptable position. 

9.5. Related Work 

In this section we will consider some recent definitions of, and comments 
about, routine design from other authors. This is by no means an exhaustive 
review. It does not concentrate on definitions that we consider to be totally 
wrong. It is merely intended to show the range of variation in the literature. 
Many authors use the term routine with no associated definition. 

Gero (1990) proposes a model of design based on the retrieval and 
instantiation of "design prototypes" that bring "all the requisite knowledge 
appropriate to the design situation together in one schema." This knowledge 
includes function, behavior, structure, relational, qualitative, computational, 
constraints, and context. 

"Routine design can be defined as the design that proceeds within a well
defined state space of potentials designs. That is, all the variables and their 
applicable ranges, as well as the knowledge to compute their values, are all 
directly instantiable from existing design prototypes" [p. 34]. 

On the surface this appears to be quite compatible with our definition. 
However, he also states that "instances are refined in two ways. The first way 
is by pruning the set of variables to the applicable set through a specification 
of applicable functions, structures, or behaviors and propagating this specifi
cation. The second way is by determining the values of the applicable set of 
variables using the available knowledge." 

This "second way" is clearly routine, but the "first way" implies that the 
set of variables to be given values needs to be determined via propagation. 
This would mean that neither the variables nor the methods for giving them 
values are "known," in the sense already defined. Consequently, there is 
some conflict here with our view. 

Tomiyama (1990) lists classes of design as "Creative, New, Combinatory, 
Routine, Parametric, and Redesign." Although he avoids the confusion be
tween routine and parametric, the relationship between routine and the other 
types is unclear (especially for "New"). 

Tomiyama also presents "Attribute Modeling," where design objects only 
have attributes/parameters, design objects do not change their structure, and 
"Well Formalized" design processes act on attributes. This, he claims, is 
used to deal with "Routine-Type Design." However, "constraint solving" is 
allowed as a design process. If this were to be done by the usual constraint 
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satisfaction methods this would not be routine given our definition, as plans 
are not available and some search is required. 

Agogino, in her presentation at a recent AAAI workshop (Joskowicz et 
al., 1992), argued that routine design introduced "no new variables," while 
in nonroutine design "new variables are created." This definition is in terms 
of the conceptual -+ parametric axis, and not strictly in terms of routineness. 

Snavely et al. (1990) present four "mutually exclusive types of design," 
called invention, innovation, routine, and procedural. For them, routine 
design "is the process of filling the slots of a fixed topology (or predeter
mined set of fixed topologies) with catalog entries." A "catalog" is a data
base with multiple levels of abstraction, with the lowest being typical part 
catalog entries (e.g., a particular spring). As they allow a catalog entry to be 
a "dimension," this appears to overlap parametric design. Although one 
could argue that the topology is "fixed" because it is "known" to be the 
solution, that does not appear to be their claim. Their main criterion for 
distinguishing between their types is the variability of the topology-the 
higher the variability, the more inventive. 

Sriram and Tong (1990) provide a formal definition of design as (S, C, A, 
K, ~). where S is the set of solutions, C is the set of constraints that need to 
be satisfied, A is the set of artifacts, K is the knowledge used to develop S, 
and ~ is the set of transformation operators. They list "design activities" as 
creative, innovative, and routine. They distinguish between them by which 
of the ingredients of the formal definition are known. Thus, their definition 
is one of the few that have activities arranged solely along the routine-+ 
nonroutine axis. 

9.6. Summary and Confusion 

Where do the three classes presented in Section 9.1.1 fit into this new two 
axis analysis? As the classes are concerned with how much is already known, 
as opposed to what is decided, it is clear that they are positioned along the 
routine-+ nonroutine axis (see Figure 9.2). 

The figure is not intended to be taken too literally. The rectangles repre
senting the classes are put in representative places. Class 3 covers all the 
routine cases. Class 1 covers all the nonroutine cases. Class 2 is between 
them. Where exactly are the boundaries? This isn't clear. Does class 2 cover 
the rest of the space? Yes, if these are really supposed to cover all the 
possibilities. 

One could even propose a new class, perhaps Class 2a, with knowledge 
sources "not known" and problem-solving strategies "known" -where the 
approach to solving the problem was known in advance but the knowledge 
to be used wasn't. It isn't clear that this situation would often occur. As 
exactly what (i.e., knowledge vs. strategy) is known is yet another dimension, 
class 2 and 2a would occupy approximately the same position in Figure 9.2, 
as in both cases only one of the two types of knowledge is known. 
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CLASS I 

CLASS 2 

CLASS 3 

FIGURE 9.2. Three classes of design activity. 

9.6.1. Confusion 

At the start of this chapter it was pointed out that there has been some 
confusion about routine design. The most common confusion is that routine 
design equals parametric design. One major reason for this is that it is very 
likely that parametric design problems are routine. This is not merely be
cause they usually represent the most "automatic" aspects of design (i.e., the 
use of equations to produce values). Another reason is due to the following 
argument. 

As stated earlier: "For many design problems, the conceptual -parametric 
axis represents the flow of time during the design activity, with earlier deci
sions falling towards the left and later decisions falling towards the right." 
Because of the impact of experience, repetition of the design problem with 
similar but different requirements will cause the amount of reasoning needed 
to be reduced. 

Thus, conceptual design effort will gradually be reduced, and will become 
unnecessary, as it will be the same or similar for every design with similar 
requirements. Eventually, all that will be required is parametric design, and 
that will become routine. 

Thus, in this situation, design problems will gradually take less time and 



www.manaraa.com

9. Routineness Revisited 207 

will require less reasoning. Consequently, it is natural to associate routine
ness with parametric design, just as it is natural to associate nonroutineness 
with conceptual design. This is the source of the confusion. 

9.6.2. Summary 
In this chapter we have examined routineness, have provided a cleaner 
definition, have introduced four extreme categories of design using two 
orthogonal axes, have related this analysis to the three classes of design, and 
have explained a source of confusion. 
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10 
A Comparative Analysis of 
Techniques in Engineering Design 

SRIKANTH M. KANNAPAN AND KURT M. MARSHEK 

Abstract. This chapter describes the application of seven approaches to 
support three basic task types of design (design selection, parametric design, 
and design synthesis). The specialization of these approaches to practical 
design techniques is analyzed and illustrated with examples. 

1. Introduction 

The engineering design process critically influences factors of lead time and 
cost in product development; factors that frequently determine the profit
ability of products in competitive markets. To reduce the lead time and 
cost of product development, it is important to first characterize the design 
process so that new technologies and methodologies can be developed to 
improve its efficiency. 

Characterization of the design process requires both a natural process view 
of design and an artificial process view of design (Kannapan and Marshek, 
1992a). The natural process view emphasizes cognitive and social processes 
such as identification of customer needs, and team design with multiple 
perspectives. The artificial process view emphasizes symbol representation 
and manipulation processes such as modeling, computation, and reasoning. 
Development of design methods, tools, and environments to aid design 
teams require careful attention to how the two views interact and comple
ment each other. 

In this chapter we focus on basic task types in design from an artificial 
process view and analyze the application of alternative approaches to sup
port the tasks. The organization of the chapter is as follows. Section 2 
characterizes task types of design selection, parametric design, and design 
synthesis. Section 3 summarizes alternative approaches to support these 
tasks. Sections 4, 5 and 6 analyze and compare specializations of these 
approaches into practical design techniques. Selection of mechanical trans
missions, parametric design of a relief valve, and synthesis of a rotary actua
tor are used as illustrative examples. Section 7 summarizes the analysis. 

209 
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2. Basic Task Types in Design Activity 

Three basic task types in design are identified here (Kannapan and Marshek, 
1992a). The overall goal of the three tasks is as follows: given a description 
of a design (requirements), produce new descriptions of the design (imple
mentations) by making decisions that ultimately reduce the space of possible 
realizations of the design. The task types are illustrated in Figure I 0.1 and 
characterized below: 

Design Selection 
This task involves selecting a design object that satisfies design requirements 
from a specified set of alternatives. Design selection requires the knowledge 
of attributes of the alternatives, attributes defining requirements, and choice 
criteria to define optimality in selection. The term design object is used in a 
general sense, covering, for example, the selection of a working principle for 
a device, a material type for a component, a functional module, or a com
pleted design. 

alternatives 
Al A2 
rm~ 
WJ ~ 

required 
attributes 

A2 

selected 
object(s) 

~ 

behaviors and attributes 
of design objects 

Bl,Al B2,A2 
r7>t. r;rp 
V.P WI 

parametric model 

R(P,d, ... ) 

A 

required 
behavior and attributes 

BO,AO 

behavior and attributes 
of structure 

BO,AO 

~ 

required 
parameter-values pairs 

P=20 

design 
parameter-value pairs 

d = 5 

FIGURE 10.1. Basic design task types illustrated with a beam cross-section example; 
A's are attributes; P,d are parameters; R is a relationship; B!s are behaviors. 
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Parametric Design 

This task involves determining values or sets of values for a specified set of 
variables, called design parameters, that define a design (geometry, material, 
etc.) so as to achieve optimal values for parameters that represent design 
requirements (behavior, cost, etc.). Values for design parameters must satisfy 
constraints among variables arising from specialized engineering and other 
disciplines. The form of the constraints varies in complexity from heuristics, 
to logical relations, to partial differential equations. 

Design Synthesis 

This task involves configuring entities such as geometric primitives, machine 
components, lumped parameter models, or abstracted principles of a domain 
to define a system structure that satisfies design requirements. Design re
quirements specify the required behavior of the design, and criteria for evalu
ation of optimality (such as minimum cost) of a system structure. Knowledge 
of previous designs and principles from engineering and other disciplines 
specify realizability constraints for behavior and structure. 

Design synthesis is distinguished from parametric design in that parametric 
design only permits variation of values for a prespecified set of variables. In 
design synthesis, introduction of new entities and variables are permitted 
in defining a configuration of entities. (We use "configuration" and "struc
ture," and "design synthesis" and "configuration design" synonymously.) In 
effect, a synthesized configuration defines the space of parametric design 
variation. 

Real-world design activity usually involves multiple instances of all three 
task types at different levels of abstraction and decomposition, with complex 
interactions among them. For example, in designing an automobile, the 
headlights might be selected from vendor catalogs, the engine and transmis
sion might be selected from manufacturing lines of different manufacturing 
divisions, wheel hubs and bumpers might be parametrically redesigned, while 
a new anti-lock brake might be synthesized using first principles and knowl
edge of previous designs. Wheel hub design and brake design interact strongly 
in this case. 

3. Approaches to Design 

Table 10.1 summarizes a variety of approaches for supporting design pro
cesses in general; independent of the types of tasks described in the previous 
section. The following three sections analyze how these approaches can be 
combined and specialized to produce practical techniques for supporting 
tasks of design, selection, parametric design, and design synthesis. 
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TABLE 10.1. Approaches to supporting design processes, and theories and techniques 
offered (Kannapan and Marshek, 1992a). 

Approach Theories and techniques offered 

Algorithmic Finite deterministic processes: 
-equation solving 
-optimization 
-grammars and language compilation 

Axiomatic Axiomatization of general intuitively powerful design guidelines; 
proof of design theorems. 

Database Logically centralized design models and a collection of design 
processes: 

-relational, hierarchical and network data models 
-object hierarchy, methods, inheritance 
-blackboards, demons, message-passing 

Machine learning Knowledge acquisition from instruction, examples, analogy, 
observation, and experimentation: 

-inductive generalization 
-explanation-based generalization 
-case-based reasoning 

Problem solving/planning Knowledge representation; reasoning: 
-recursive problem decomposition 
-state-space search, search control strategies 
-rule-based and model-based reasoning 
-constraint reasoning 
-blackboard systems 

System science Identification and modeling of system, environment and 
interactions: 

-black box theory, state theory, component integration theory 
-decision theory 
-task planning 
-hierarchical control 

Transformational Language transformation and translation: 
-logical expressions and inference rules 
-algebraic expressions and rewrite rules 

4. Design Selection 

The basic mechanism needed for design selection is that of attribute match
ing. A design is selected when the attributes of a design in a design library 
match the required attributes optimally, according to specified criteria. The 
deeper issues in supporting the executive mechanism are (a) how design 
objects and their attributes are represented and organized in the design 
library, and (b) what processes are used to partially or totally match required 
attributes to the attributes of stored objects. 

We will use an organization of rotary power transmissions (Kannapan, 
Marshek, and Gerbert, 1991a) as an illustrative example. Figure 10.2 shows 
an hierarchic organization of classes of transmissions organized on the basis 
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FIGURE 10.2. A classification of rotary power transmission systems. 

of physical principles, working principles, application principles, design prin

ciples, and structure types. 
Developing such an organization of objects requires detailed knowledge of 

engineering principles and prototypical artifacts of a domain as well as the 

choice of bases for classification. For example, in Figure 10.2, the term form 

conditioned refers to cases where the working principle for transmission of 

mechanical power relies on the physical form of the transmission compo

nents, and the load normal to their contact surface. The term force condi

tioned refers to cases where the working principle for transmission of me

chanical power relies on the sliding friction or fluid force arising as a result 

of the load normal to the contact surface between transmission components. 

This distinction is useful in correlating structural properties with behavioral 

properties of mechanical transmissions. 
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FIGURE 10.3. Attributes of classes of rotary power transmissions. 

Design object hierarchies like Figure 10.2 provide a framework for attach
ing attributes of function, performance, and cost to design objects. Figure 
10.3 shows some of the attributes of rotary transmissions attached to corre
sponding nodes of the class hierarchy in Figure 10.2. To associate attributes 
to design objects, modeling decisions must be made as to what attributes are 
of interest that cover a range of requirement descriptions at an appropriate 
level of abstraction. For example, an important behavior characteristic of 
hydraulic/pneumatic physical principles that must be represented is that 
almost any speed ratio of rotary motion within some range can be achieved 
because of the ease of storage of the intermediate fluid energy and control of 
the fluid pressure and flow rate by means of valves. 

There is a disadvantage in representing design alternatives as class hierar-
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chies with associated attributes as in Figures 10.2 and 10.3. The represen
tation is biased towards a selection process that considers attributes in a 
specific order starting from the root of the class hierarchy. For example, 
speed ratios must be considered before speed loss, and physical principles 
must be selected before working principles. Biases can be avoided by repre
senting alternatives simply as flat structures as in a relational database, 
but at a cost of reduced search efficiency where the bias is appropriate. 
Representation of multiple class hierarchies on top of flat representations 
retain advantages of both but at the cost of additional storage and mainte
nance requirements. 

The question now is how required attributes can be matched to attributes 
of design objects to enable selection. Class hierarchies described above can 
be used to incrementally narrow the space of alternatives in all the tech
niques described below. 

Decision Theory 

A decision problem (system science approach) can be posed and solved by 
weighting the relative importance of required attributes, evaluating alterna
tives by ranking their degree of acceptability with respect to each attribute, 
and computing their cumulative rankings by a formula such as a weighted 
sum. See Kuppuraju, Ittimakin, and Mistree (1985), for example. If the 
design objects are hierarchically organized as described above, design objects 
can be searched incrementally starting from the root(s) of the hierarchy. For 
example, using Figure 10.3, a large input-output distance may be ranked as 
the most important attribute to consider for an application which may nar
row possibilities to hydraulic/pneumatic drives. Next, no-slip requirements 
may limit selections to hydrostatic drives. Evaluation of alternative structure 
types of hydrostatic drives by weighted attributes of speed and torque ranges, 
cost, and reliability may result in the selection of geared hydrostatic drives. 

The computation of a cumulative ranking for an alternative is simple by 
this technique and works well with qualitative information. However, this 
technique typically presumes independence between attributes and relies on 
designer intuition in assignment of weights and ranks, although methods 
exist for normalizing weights and eliminating biases when ranking alterna
tives on multiple attributes. 

Classification Rules 

Techniques from expert diagnostic systems (problem solving/planning ap
proach) can be used in design selection. One technique is to encode classifica
tion knowledge as "if-then" rules. See Sim and Chan (1991), for example. 
Activation of the rules with respect to a class hierarchy of design objects 
incrementally reclassifies the requirements so that it migrates from the most 
general to the most specific subclass that satisfies the requirements. 
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Domain-specific rules can be organized by attaching sets of rules relevant 
to a subclass to the corresponding object in the class hierarchy. For example, 
from requirements for a rotary transmission with a tolerable speed loss of 
0.5%, the activation of a rule attached to the class of mechanical physical 
principles, such as "if speed-loss tolerance is < 1 %, then reclassify as 
form-conditioned drive," can reclassify the requirements under the form
conditioned subclass. 

Another technique is to implement explicit choice rules which "rule-in" or 
"rule-out" design objects on the basis of their attributes. See McDermott 
(1978), for example. An example of a choice rule for transmissions is "if 
input-output axis angle= 90 deg, then rule-in worm-gear pair." Rule-based 
selection techniques successfully encode selection knowledge of specialized 
design domains, although the acquisition of the rules can be laborious and 
their ranges of validity tend to be narrow. 

Query Languages 

Query languages (database approach) can be used to select objects from 
relational, object-oriented, and network data models. For example, it is 
possible to query a database for rotary transmissions that have attributes of 
speed-ratio in the range 10 to 20 and have power losses less than 5%. See 
Eastman and Bond (1991) for an example of a design data model. Query 
languages provide means for indexed retrieval of design objects but do not 
reason with selection knowledge. Also, query operations are mathematically 
well founded and closed only for relational data models. 

Index-transformation and Analogy 

When design requirements do not exactly match an index, rules of index 
transformation (machine learning approach) can be used to reformulate the 
design requirement into other requirements that can be exactly matched by 
indexes. For example, if no transmission fits in the available space for an 
application, an index transformation rule for space partitioning may result in 
the selection of a piston pump at the input and a axial-flow motor at the 
output by instantiation of objects under different subclasses. See Hundal 
(1990) and Navinchandra, Sycara, and Narasimhan (1991) for examples of 
this technique. 

Instead of transforming the index, analogical reasoning provides a means 
of associating terms used across different design contexts, and analyzing a 
causal explanation of required functions so as retrieve a design whose func
tion is "close" to what is required. For example, knowledge of the context 
and manner of use of a transmission for a hand-drill suggests attributes of 
low input power and short distance power transmission, thus eliminating 
hydraulic/pneumatic transmissions. See Dyer, Flowers, and Hodges (1986) 
and Goel and Chandrasekaran (1990) for examples of this technique. 
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The ability to select design objects by transformed indexes and by "close" 
matches is potentially of great value since design objects exactly matching 
the requirements might be unavailable. Furthermore, requirements them
selves might be negotiable or subject to change. However, rules for index 
transformation and "closeness" tend to be domain- and context-specific. 

Interval and Qualitative Reasoning 

Interval reasoning (algorithmic) and qualitative reasoning techniques (prob
lem solving/planning) can be used to represent sets of design alternatives 
concisely. For example, requirements on operating speed and power may be 
specified as intervals such as [100, 2000] rpm and [50, 500] W that implicitly 
represent sets of relevant design objects in a library of transmissions. The sets 
of alternatives can be incrementally narrowed either by specifying intervals 
on additional attributes or by computing tighter intervals on attributes by 
functional composition. See Ward (1989) for an example of this technique. 
Alternatively, qualitative representation of machine behavior together with 
simplification and abstraction operators can dynamically classify designs for 
selection based on their behavior properties (Joskowicz, 1990). For example, 
simplification and abstraction of configuration space representations of the 
kinematics of transmissions can be used to dynamically create an equiva
lence class of self-locking transmissions. 

The advantage here is that requirements can be specified and interpreted 
at varying levels of abstraction. However, interval representations are direct 
only when attributes can be modeled as variables with ordered values such as 
real numbers; while qualitative representations of sets of values may not 
narrow alternatives sufficiently for selection. 

5. Parametric Design 

The abstract formulation of a parametric design task follows a familiar 
pattern: 

1. a symbolic model of a prespecified design configuration is created where 
parameters defining the design, the design requirements, the context of 
use, and other attributes of interest in the product life cycle are identified; 

2. constraints and goals from domain theories and processes of manufac
turing (and other product life-cycle concerns) applicable to the compo
nents and subsystems are used to derive a mathematical model; 

3. from known parameter values representing design requirements, the 
mathematical model is solved to determine optimum or acceptable values 
for unknown parameters defining the design, its behavior and its attrib
utes. In special cases, parameters defining the design are directly comput
able, while in most cases they have to be estimated initially, and iteratively 
improved by evaluating its effects against requirements. 
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FIGURE I 0.4. Schematic and selected parameters of a relief valve design. 

We will use a problem of relief valve design (Lyons, 1982) as an example 
to illustrate the application of alternative approaches to the above formula
tion of the parametric design task. Figure 10.4 shows a schematic of the relief 
valve configuration. When the pressure of a fluid at the inlet of the valve 
equals or exceeds a specified "cracking" pressure, the fluid pushes open the 
poppet valve and flows to the outlet while holding the valve in force equilib
rium against a helical compression spring. At pressures below the cracking 
pressure, the valve is pressed against a seal by the spring and fluid flow is cut 
off. 

The first step of formulation of the parametric design problem for the 
relief valve identifies parameters defining the design (e.g., geometry and 
material properties), the context of use (e.g., specific gravity of fluid, flow 
rate, acceleration due to gravity), requirements (e.g. , cracking pressure, fac
tor of safety), and behaviors of interest (e.g., natural frequency of valve 
vibration). Some of the parameters are shown in Figure 10.4. 

The second step in this case uses domain theories of fluid mechanics and 
solid mechanics to develop a mathematical model that constrains the param-
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eters through relationships. In general, a variety of models can be developed 
at different levels of abstraction and approximation of the domain theories 
with consequences on the tractability of the solution process and the accu
racy of results. The key to this choice is to develop the most efficient model 
(in terms of cost and time for model creation and solution) that validates the 
achievement of requirements within an interval of tolerance and confidence. 
This process in practice is based on specialized human expertise, experience 
and intuition. Development of computational tools for modeling is an area 
of research-see Falkenhainer and Forbus (1991) for example. Once a math
ematical model is formulated, a variety of techniques may be applied as 
described below. 

Analytical/Numerical Methods 
A direct algorithmic approach can be applied where all the constraints are 
collected and unknown parameter values are solved from given parameter 
values based on standard analytical (e.g., algebraic manipulation, substitu
tion) and numerical methods (e.g., gradient methods, finite difference, and 
finite element methods). 

However, four issues need to be addressed in scaling up such direct 
solutions: 

1. the intractability of simultaneously satisfying multiple goals and solving 
large numbers of constraints of varying form and complexity (some may 
be as simple as rules of thumb and curve-fitted data while others may be 
partial differential equations that require specialized solution techniques); 

2. the distributed nature of specialized knowledge on parametric models and 
solution methods; creation of a centralized collection of parameters, con
straints, goals, and solution methods is impractical; 

3. the need to solve problems in parallel to reduce design time; 
4. the need for design decisions; when context and domain information does 

not fix a sufficient number of parameters and leads to under-constrained 
formulations with large solution spaces. 

Task Decomposition 

Intractability of simultaneous solution of constraints can be avoided by 
problem decomposition (problem solving/planning approach). Subproblems 
are defined on the basis of clustering of goal and constraint knowledge in the 
domain. For examples, see Brown and Chandrasekaran (1983), Kannapan 
and Marshek (1992b), and Bowen and O'Grady (1990). 

In relief valve design, clustering of constraint knowledge corresponds to 
subproblems of valve-flow, valve-cracking, helical-spring, and pipe-enclosure 
design when patterned after different chapters in a relief valve design hand
book (Kannapan and Marshek, 1992b; Lyons, 1982)-see Figure 10.5. In-
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FIGURE 10.5. Relief valve design problem decomposition. 
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teractions between subproblems are represented by shared parameters. To 
handle underconstrained subproblems, parameters that are decided by hu
man designers according to typical design procedures are identified, and 
preferred values encoded as default values or utility functions (Kannapan 
and Marshek, 1992b ). 

An execution scenario that solves the valve-flow subproblem first, then the 
pipe-enclosure subproblem in parallel with the valve-cracking and helical
spring subproblems results in values for parameters shown in Figure 10.5 for 
a representative design. The arrows indicate directions of data flow. The 
subproblem solution processes themselves can take a variety of standard 
forms (e.g., symbolic algebra, numerical methods, constraint propagation) 
and are not considered here. 

One issue that arises here is that of planning and controlling an efficient 
execution order for subproblem solutions. Search techniques from problem
solving/planning approaches, task management techniques from system sci
ence (e.g., PERT, CPM), and optimization techniques such as dynamic pro-
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gramming are applicable. As an alternative to pre-planning the order of 
solution, blackboard systems can be used to execute design processes oppor
tunistically when triggered by value binding events of parameters. See Sriram 
et al. (1991) for an example. 

Another issue that arises in managing solution processes is conflict detec
tion and resolution. The individual decisions made by designers in this exam
ple lead to conflicts in values for the parameters D1 and D0 • One possible 
protocol to negotiate such conflicts is to propagate utility functions on deci
sion parameters to the conflict parameters, and to propose agreement values 
based on the propagated utility functions and axiomatic theories of bar
gaining-Kannapan and Marshek (1992b) contains details. The resolution 
of conflicts by negotiation can also be formulated and solved as case-based 
(machine learning) or rule-based inference (problem solving/planning). See 
Sycara (1990), Klein (1992), and Lander (1989) for examples. 

Optimization 

A variety of multi-objective optimization techniques can be applied by 
associating objective functions to individual subproblems, and ranking or 
weighting the relative importance of objectives. For example, the objective of 
maximizing the factor of safety for the helical-spring may be ranked higher 
than the objective of minimizing the external diameter D., of the pipe-enclo
sure. See Gero (1985) and Karandikar et al. (1989) for example techniques. 

Qualitative reasoning and monotonicity analysis can be combined with 
optimization techniques to guide the search for improved objective function 
values. For example, we can determine by qualitative reasoning and mono
tonicity analysis of constraints and utility functions that both the helical
spring solution process and the pipe-enclosure solution process drive the 
value of the shared parameter D1 in the same direction (Kannapan and 
Marshek, 1992b). We can then reason with their active constraints to deter
mine that the corrosion resistance constraint for the pipe-enclosure deter
mines the optimal value of D1• See Agogino and Almgren (1987) for an 
example of this technique. 

Optimization techniques work well for linear objectives and constraints 
but find it difficult to search beyond the neighborhood of point design solu
tions when nonlinearities are involved. Techniques like simulated annealing 
attempt to "jump" beyond local optima but their processes and results are 
probabilistic. 

Coordinated Subspace Optimization 

Optimization methods can be combined with system science techniques to 
coordinate the solution of coupled subproblems. Subproblems interacting 
through shared parameters can be coordinated with the solution of the 
global problem by exchanging parameter sensitivity information through 
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penalty functions. For example, if a goal of the pipe subproblem is to mini
mize the external diameter of the valve, and the spring subproblem has a 
goal of keeping the spring index (C = D/d) close to 9, a penalty function 
for the spring subproblem incorporates the sensitivity of the spring index 
to the diameter of the valve. Terms can also be added to the constraints of 
the spring subproblem to incorporate penalties for violating constraints of 
the pipe subproblem, and vice versa. These penalties include coefficients 
modeling the responsibilities and trade-offs of different subproblems in 
achieving objectives and satisfying constraints. The responsibility and trade
off coefficients are themselves optimized using sensitivity information from 
the subproblems. See Sobieszczanski-Sobieski (1988) for an example of this 
technique. 

An alternative to using penalty functions is to coordinate solution pro
cesses by hierarchic model-based or feedback control: (a) input parameters 
and default values for control variables of the solution processes are used to 
initiate subproblem optimizations, (b) outputs and process variables are 
sensed, and (c) control variables are updated by a control law that uses 
sensed information or models of the process. For example, the shared vari
able D0 may begin with a default value, then the pipe enclosure design and 
spring design subproblems optimize on their local goals. After a specified 
threshold of resource usage or objective improvement rate is sensed, the 
sensitivities of the objectives with respect to D0 are estimated. A control law 
updates the value of D0 using, for example, an average value of the sensitiv
ities so as to initiate another cycle of subproblem optimizations. See Bell, 
Kannapan, and Taylor (1992) for an example. 

While the basic limitations of optimization techniques still hold, tech
niques for coordinated subspace optimizations handle subproblem interac
tion effectively, and permit parallel subproblem solution. If the dynamics of 
solution processes are analyzed and possibly predicted, control loops can 
maintain process stability and improve process efficiency. 

Set-based Reasoning 

An alternative to propagating values and utility functions is to propagate 
sets of values between subproblems either as intervals or fuzzy sets. For 
example, Wood and Antonsson (1990) propagate imprecision (uncertainty 
in choice of values) in parameters based on a numerical method (fuzzy 
weighted average algorithm), while Ward (1989) develops a labeled interval 
propagation calculus for propagating value intervals through functions. For 
relief-valve design, by these techniques, the effect of choosing different mate
rials for the spring wire on the outside diameter of the valve (D1) can be 
represented by computing a set of values forD; from a set of values for spring 
wire strength. 

Propagating sets of values has advantages of being able to compactly 
represent and reason with a subspace of instantiated designs, although some 
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approximations have to be introduced into constraint reasoning. On the 
other hand, value and utility propagation do not introduce approximations 
but are only capable of reasoning in the neighborhood of a point design 
solution. 

Constraint and Rule-based Reasoning 

Instead of an optimization formulation where subproblems are completely 
formulated before solution, a "least commitment" style of design can be 
supported using a problem-solving/planning approach by handling interac
tions between subproblems as constraints to be formulated and propagated 
(Stefik, 1981; Sussman and Steele, 1980). For example, with the given param
eter values in Figure 10.5, if constraints of different subproblems are intro
duced incrementally, constraints may be evaluated to either determine some 
parameter values from givens, or to symbolically manipulate, propagate and 
simplify other constraint expressions. When constraints can no longer be 
propagated, the location and ordering of design decisions that will restart 
constraint propagation can be precisely identified. 

However, this technique becomes infeasible when constraint expressions 
are too complex to symbolically propagate through other constraints. Where 
constraint propagation is infeasible, parametric design heuristics can be en
coded as implementation rules or sensitivity rules using a problem-solving/ 
planning approach. For example, an implementation rule for designing the 
orifice of the relief valve may be encoded as "if sharp-edge orifice is selected 
and pressure-ratio< 0.9, then set orifice coefficient (Cf) = 0.65." Alterna
tively, a sensitivity rule can specify that a certain fractional change in orifice 
coefficient is expected to result in a certain fractional change in pressure 
ratio. For examples of these techniques see Dixon and Simmons (1984) and 
Dixon et al. (1987). Heuristic implementation rules tend to have limited 
ranges of validity and unforeseen interactions with other heuristics and 
constraints. 

Rule Generalization and Process Replay 

Machine learning techniques can be used to generalize implementation rules 
acquired through experience, and to adapt and replay existing design process 
plans. 

Deductive generalizations of implementation rules are based on a formal 
explanation of how the implementation (the "then" part) satisfies the re
quirements (the "if" part). The generalized "then" part comprises those 
preconditions that must be met for the explanation to hold. The generalized 
"if" part comprises the specification explained by the generalized "then" 
part together with preconditions for proper component behavior. An ex
ample of generalization of "if sharp-edge orifice is selected and pressure
ratio < 0.9 and flow rate < 500 gal/min, then set orifice coefficient ( Cf) = 
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0.65" would be to replace the flow rate condition to that of "laminar flow." 
Such a generalization would be valid if a formal explanation of how the 
choice of Cf = 0.65 satisfied requirements only assumed that the flow was 
laminar and not necessarily that the flow rate < 500 gal/min. See Mitchell, 
Mahadevan and Steinberg (1985) for an example of this technique. 

Histories of parametric design processes can be stored as a sequence of 
decisions that resulted in a successful design starting from requirements. 
Parameters for variation in such a process are those parameters that do not 
affect the acceptability of a stored decision sequence. Parametric design with 
new instantiations of these parameters then simply corresponds to a replay 
of the process history. For example, if a process history for relief-valve 
design corresponds to a sequence of valve-flow design, valve-cracking design, 
helical-spring design, and pipe-enclosure design, assumptions in the models 
may indicate that variation in the flow-rate within the laminar range does 
not affect the sequence. The process history can therefore be replayed with 
changed flow-rate requirements. See Mostow and Barley (1987) for an exam
ple of this technique. 

6. Design Synthesis 

Design synthesis is the task of configuring entities of a domain to construct 
a realizable system structure that satisfies design requirements. A variety of 
design situations are covered by defining entities in the domain at different 
levels of abstraction (e.g., geometric objects, lumped parameter models, 
functional modules, and physical principles) and decomposition (e.g., air
planes, device level artifacts, material, and chemical structures). "Original 
design" is subsumed by design synthesis when original designs are viewed as 
non-obvious combinations and utilizations of known objects, models, or 
principles (Kannapan and Marshek, 1991). (The discovery of new objects, 
models, or principles is not considered part of a design process.) In addition, 
design situations where a faulty or suboptimal subsystem of an existing 
system must be replaced by an improved one are covered by redefining the 
scope of the task to synthesis of the subsystem. 

Since a synthesized configuration defines the space for parametric varia
tion, it represents a substantial commitment to the cost and performance 
targets achievable when the design is completed. However, this task is the 
hardest to support by traditional applications of symbolic and numeric pro
cessing techniques. An exception is the field of digital electronics (VLSI 
design) where substantial progress has been made in developing synthesis 
techniques and tools. Although synthesis techniques for digital electronics 
are candidates for generalization to other domains, many of the inherent 
advantages of this domain are difficult to find in other domains of physical 
systems. Inherent advantages in the domain of digital electronics are: the 
number of component types are small (in fact a NAND gate by itself is 
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functionally complete), relationships between components are simple (e.g. 
wires), behaviors are easily representable (e.g., boolean functions with time 
delays), many implementation side-effects can be controlled (e.g., by keeping 
wires sufficiently apart), and functional modularity is feasible and acceptable 
(e.g., separate implementation of memory and processing functions) . Some 
of the techniques applicable to synthesis of physical systems beyond VLSI 
are described in this section. 

Consider the task of synthesizing a configuration of mechanical parts to 
gradually actuate a flap on the wing of an airplane from a high-speed motor 
(MacDonald, 1973). The kinematic behavior requirement may be expressed 
as that of constant ratio input-output rotation between fixed angles with 
respect to a fixed reference frame of a housing. The MacDonald device 
(Figures 10.6 and 10.7) is used here as an example of a design configuration 
that can be synthesized to satisfy requirements. The MacDonald device uses 
a sliding joint between the actuator and the housing, and a helical spline 
between the actuator and an output member to convert rotary motion of a 
threaded shaft to slower rotary motion of the output member between fixed 
angular ranges (MacDonald, 1973)-see Figure 10.7. In what follows we 
neglect the fixed angular range requirement. 

Four types of knowledge are involved in such a design synthesis task: (1) 

.13 

FIGURE 10.6. Schematics of MacDonald rotary actuator (MacDonald, 1973). 
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FIGURE 10.7. Structure of MacDonald rotary actuator. 

knowledge of design requirements, (2) knowledge of previous successful and 
failed designs, (3) principles of relevant engineering and other disciplines, 
and (4) how to use the knowledge in (1), (2), and (3) to construct structures 
that satisfy design requirements. In the following discussion, we focus on 
techniques for (4) with only indirect reference to representation issues in (1), 
(2), and (3). We do not discuss control strategies required in (4). 

Structure Enumeration 

A direct algorithmic technique to support a synthesis task of this type is to 
generate structures and test them for acceptability. First, a set of component 
types and component relationship types are selected from a library and a 
fixed number of instances of the selected types are created. Second, the 
instantiated components and relationships are used to exhaustively generate 
all structures feasible by engineering principles. Third, the generated struc
tures are evaluated with respect to design requirements. See Buchsbaum and 
Freudenstein (1970) for an example of this technique. 

An alternative to this technique is to define a grammar that represents 
component types as terminal symbols of a language, and systems of compo
nents as non terminal symbols of the language. Productions of the language 
(typically context-free) can be used to generate a space of allowable configu
rations of components and relationships. See Mullins and Rinderle (1991) 
for example. 

For the problem of rotary actuation, a space of possible structures that 
contains the MacDonald device structure can be generated by selecting a few 
instances of rigid members and sliding, revolute, threaded, and helically 
splined pairs. Configuring the instances of rigid members and kinematic 
pairs in all kinematically feasible ways, and analyzing the resulting structures 
determines if any of them can be used for rotary actuation. 

The advantage of this technique is that the feasibility of a structure is 
tested during generation. But there are two important disadvantages in this 
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technique. First, the generative process is not directed by the goal of sat
isfying design requirements; although attribute grammars can help in testing 
preconditions before activating productions (Rinderle, 1991), and optimiza
tion methods can progressively eliminate redundant components of a struc
ture after it is generated (Topping, 1983). Second, the types and number of 
instances of components to be used must be selected at the beginning of the 
synthesis process thus a priori limiting the space of structures generated. 

Function/ Structure Variation 

One way to avoid these disadvantages is to begin with functional require
ments, and combine system science and database approaches to convert the 
synthesis task to selection and variation tasks. First, a design library is 
created where designs are represented hierarchically as functional block dia
grams. Components are associated with the functional blocks. Second, a 
system satisfying requirements is selected from the database if possible. 
If this is not possible, the technique resorts to the user for interactive 
construction of a system from available functional blocks and associated 
components. 

Selection or construction of one design satisfying requirements affords 
possibilities for synthesis of other designs by function and structure varia
tion. Function variation systematically replaces one or more functional 
blocks by others of identical function, while structure variation replaces one 
or more components in the structure by others of identical function. For 
example, from the MacDonald device, other devices may be generated by 
exchanging functions of the sliding and helically splined pairs, or by choos
ing different bearing types and spline profiles. See Hundal (1990) for an 
example of this technique. 

The space of structures that one can generate by this technique is limited 
by the initial configuration that is selected or constructed as well as the 
functional blocks represented in the library. Opportunities for implementing 
several functional blocks with one component (function sharing) are difficult 
to exploit unless they are already implicit in the function block definition. 
Also, physical realizability of a generated configuration cannot be ensured. 

Case Adaptation 

The need for exact matching of requirements in function/structure variation 
can be relaxed by retrieving partial matches and "close" matches as de
scribed earlier for design selection. A retrieved design case can then be 
adapted if possible to satisfy requirements. 

When multiple component selections are made through index transforma
tion rules, the unification of index variables in rules implicitly determine how 
selected components can be configured and adapted. For the rotary actuator 
synthesis problem, if indexed retrieval of rotation-to-rotation conversion 
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fails, transformed indexes. of rotation-to-translation conversion and transla
tion-to-rotation conversion implicitly specify a rigid connection between the 
output of the threaded pair and the input of the helically splined pair. 
See Navinchandra, Sycara, and Narasimhan (1991) for an example of this 
technique. 

When design objects are retrieved by analogical reasoning, the differences 
between the requirements and the capabilities of the retrieved design can be 
analyzed on the basis of functional and causal representations of the design 
and its behavior. Results of this analysis are used to augment or mutate the 
design using context specific plans and domain specific rules. For example, it 
is possible to reason that rotation-to-rotation conversion is "close" to exist
ing capability of rotation-to-translation conversion by means of a threaded 
pair. Augmenting a threaded pair to satisfy requirements in this case involves 
detecting that a translation-to-rotation conversion is also required, selecting 
the helical-spline for this purpose, and adding it to the threaded pair with 
appropriate interfaces. See Dyer, Flowers and Hodges (1986), Goel and 
Chandrasekaran (1990), and Murthy and Addanki (1987) for examples of 
this technique. 

Adaptation techniques exploit knowledge of past designs without necessi
tating initial selection by exact matching. However, the emphasis remains on 
reusing known designs and not on synthesizing new designs using task and 
domain knowledge. 

Task Decomposition 
Task and domain knowledge can be exploited by using a problem-solving/ 
planning approach. The overall synthesis task is recursively decomposed into 
primitive tasks that are directly solvable, and the overall solution is com
posed from the primitive solutions. The decomposition is on the basis of the 
structure of task knowledge represented as goals, constraints, and rules. 
Plans are associated with tasks at each level of decomposition to control the 
execution of its sub tasks. 

Execution of a top-level plan applies the task knowledge of rules and 
constraints by means of rule-based inference engines or constraint propaga
tion tools. The primitive subtasks select design objects from a library, or 
parametrically redesign models of prototypical artifacts. The design objects 
and models themselves may be organized separately as class hierarchies. 

The results of executing lower level plans are composed by higher level 
plans while incorporating constraints that incorporate intertask couplings at 
each level of decomposition. In special cases it may be possible to order 
subtasks that extending partial design configurations so that little or no 
backtracking is necessary (McDermott, 1982). In general, plans may fail. 
When a plan fails, attempts are made to repair the plan, or alternative plans 
are explored by backtracking. Kota and Lee (1990b) and Maher and Fenves 
(1985) are examples of this technique. 
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For example, based on task knowledge, one decomposition of the task of 
synthesizing a rotary actuator that corresponds to the MacDonald device is: 
input-rotation-support, rotation-to-translation-conversion, translation
to-rotation-conversion, output-rotation-support. Plans associated with 
each of these subtasks may select bearings, threads, helical splines, and so 
on, while the top-level plan enforces constraints on the connections between 
the selected components to produce the structure of the MacDonald device. 

Task decomposition and functional decomposition (used in function/ 
structure variation and adaptation techniques) tend to be complementary; 
one exploiting knowledge of previously known design artifacts and the 
other exploiting both declarative and procedural designing knowledge. Task 
decomposition techniques are also goal directed and begin with design 
requirements. 

Graph Transformation and Augmentation 

Relying on task or functional decompositions implicitly limits the space of 
exploration to previously known decompositions of the task for which plans 
succeeded, or to variations and adaptations of known designs. An alterna
tive is to modify the structure enumeration technique described earlier to 
make it begin with graph representations of behavioral design requirements. 

The first step is to express (a) behavior requirements and primitive behav
ior fragments of an implementation domain as graphs (e.g., bond graphs, 
constraint nets) and (b) rules of graph transformation that encode properties 
of graph well-formedness and knowledge of the domain. The second step is 
to apply transformations to the requirement graph so as to enumerate all 
transformed and augmented graphs that retain the intent of the original 
requirements. Transformations match and replace subgraphs, while augmen
tations introduce new nodes or new paths between nodes. 

The third step is to match subgraphs of the transformed and augmented 
graphs to behavior fragments that correspond to components and compo
nent relationships stored in a library. The connectivity among matched be
havior fragments specify a configuration of components and relationships. 
The graph corresponding to this configuration is further augmented by the 
unused behaviors of the selected components so as to consider possible 
side-effects. The final step is to determine if the generated graph satisfies be
havior requirements. If it does not, a rule-based (problem solving/planning) 
technique can be used to debug the design by substituting faulty fragments 
of the structure by other fragments. 

The above steps can of course be interleaved to varying degrees depending 
on the control strategy. See Ulrich (1988), Prabhu and Taylor (1989), Finger 
and Rinderle (1989), and Williams (1989) for varieties of these techniques. 

The rotary actuation design requirement can be represented as a con
straint graph; where nodes are rotation velocity variables of the input, out
put, and housing, and a hyperedge is a relation of constant velocity ratio 
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between input and output relative to the housing. This graph can be trans
formed by replacing the constant ratio rotation-to-rotation conversion re
quirement by fragments of behavior that convert rotation to translation and 
vice versa. Augmentations introduce nodes for translation velocity variables 
for the reference frame, input, and output; and introduce hyperedges to 
establish equality relationships between translation velocities. Such transfor
mations and augmentations permit matching of subgraphs to behaviors as
sociated with rigid members and bearing components, as well as threaded, 
helical-splined, and sliding relationships. Connecting components by rela
tionships as specified by the behavior graph produces the structure of the 
MacDonald device. 

The main advantage of graph-based techniques is that the space of struc
tures explored is not limited by existing functional or task decompositions 
even though it is directed by behavioral design requirements from the start. 
Thus opportunities for exploiting and sharing functionality of components 
can be detected and realized. The costs of creating these advantages is the 
possibility of reinventing designs that are previously known, or designs that 
can be more efficiently created from known decompositions of task or arti
fact knowledge. Also, only main signal and power flows of required behavior 
are considered for structure generation in graph transformation and aug
mentation; many generated designs may be later found unacceptable due to 
destructive side-effect behaviors of selected components, or nonbehavioral 
design requirements. 

Algebraic and Logical Transformation 

Transformations and augmentations of graphs tend to be local in effect 
whereas transformations of symbolic expressions can make it easier to recog
nize and replace patterns that are noncontiguous. 

Given a behavior requirement as a symbolic expression of a language, 
algebraic manipulation rules can be used to repeatedly transform the expres
sion. The intent of the transformations is to enable subexpressions of the 
requirement to be matched to behaviors of components and relationships in 
a library. 

Kota (1990a), for example, uses matrices to represent and transform quali
tative behaviors. Application of such a matrix algebraic method to the rotary 
actuation example will express the design requirement as a conversion of 
input rotation to output rotation by means of a motion transformation 
matrix concatenated to constraint matrices on the forms of motions to be 
transmitted (e.g., one-way or reversible). The motion transformation matrix 
can be rewritten by rules for row /column manipulations and decompositions 
to match the motion transformation matrices of rigid members, and threaded, 
helically splined, revolute, and sliding pairs creating the structure of the 
MacDonald device. 
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Unlike graph-based and algebraic languages, predicate logic provides 
a basis for expressing conjunctive, disjunctive, conditional, and negated 
behaviors as well as type information on behavior variables in a natural 
manner. Inference rules provide a formal mechanism for reasoning either 
in the forward direction by producing new expressions from expressions 
known to be true, or in the backward direction by reducing a goal expres
sion to expressions known to be true. A variety of sound and complete 
inference rules exist such as modus ponens, resolution, and natural deduc
tion that apply to different forms of expressions. Other inference techniques 
such as abduction are also relevant to design processes since they allow the 
hypothesis of a design that logically implies the design requirement but 
is not logically equivalent to it. See Dietterich and Ullman (1987), Kannapan 
and Marshek (199lb), and Takeda, Tomiyama and Yoshikawa (1992) for 
examples. 

Application of predicate logic-based methods to the rotary actuation ex
ample begins with the definition of a vocabulary of predicates that represent 
primitive behaviors of a domain. For example, kinematic behaviors of rigid 
members and bearing components, as well as revolute, threaded, helically 
splined, and sliding relationships can be defined as predicates that relate 
translation and rotation velocities. Logical equivalences and implications are 
defined to formally encode (a) composability of behaviors (e.g., bearing 
behavior logically equivalent to a conjunction of revolute and rigid behav
iors), (b) domain theories (e.g., translation velocities add when reference 
frames change), (c) properties of the language (e.g., conjunction is symmet
ric), and (d) mathematical properties of terms (e.g., transitivity of = ). A 
library of components and relationships with associated behaviors is defined 
to enable reuse of previously known designs. 

Now, the required behavior is defined as a logic expression, in this case as 
a predicate prescribing constant ratio of rotation velocity between input and 
output relative to the housing. A successful sequence of applications of 
selected inference rules to the required behavior produces a transformed 
behavior expression that is a conjunction of behaviors of rigid members and 
bearings configured as in the MacDonald device using threaded, sliding, 
and helically splined relationships. Opportunities for sharing functionality 
of components can be exploited in this process (Kannapan and Marshek, 
199lb). 

Properties of algebraic and logical transformational techniques are very 
similar to graph augmentation and transformation techniques. One differ
ence is that algebra and logic provide a richer language for representation 
and reasoning but at the cost of less tractable means for controlling the 
reasoning process. For logic-based languages, the existence of mathematical 
foundations for truth (model theory) and logical entailment (proof theory) 
bring problems offormally dealing with time, uncertainty, and monotonicity 
of inferences to the fore. 



www.manaraa.com

232 Srikanth M. Kannapan and Kurt M. Marshek 

Variable Expansion and Optimization 

Representation and reasoning with languages based on graphs, algebra, and 
logic is difficult when models of physical phenomena lead to complex mathe
matical expressions that require numerical methods for their solution. 

Symbolic and numerical methods can be used to evolve structures from 
prespecified physical domains by introducing new design variables and opti
mizing over them. A boundary variational technique is developed by Bend
soe and Kikuchi (1988) for structural design where the design synthesis 
problem is posed as the determination of the optimum distribution of holes 
in a structural material. Cagan and Agogino (1992) show how by optimiza
tion on an expanded domain of variables structural changes in the design 
can be obtained. It is unclear how these techniques would apply to synthesis 
of the MacDonald device; but see Gupta and Jakiela (1992) on how new 
variables can be introduced to simulate kinematics and generate shapes by 
discretizing geometric boundaries. 

Variable expansion and optimization techniques address the need to repre
sent and reason with complex behavioral expressions and geometric detail 
when required. One disadvantage is that the methods are sensitive to the 
types of domains (e.g., solid mechanics, kinematics) to which they are ap
plied. The other disadvantage is shared with methods of structure enumera
tion described earlier: a structural domain from which the design is to be 
created (e.g., a block of material) has to be specified beforehand. 

7. Summary 

This chapter focused on three basic types of design tasks (design selection, 
parametric design, and design synthesis) and seven approaches to support 
these tasks from an artificial process view. The specialization of these ap
proaches into techniques to support each task were analyzed, compared, and 
illustrated with examples. A summary of the techniques applied to each task 
is given below: 

Design Selection Techniques 

• decision theory 
• query languages 
• interval and qualitative reasoning 
• classification rules 
• index transformation and analogy 

Parametric Design Techniques 

• analytical/numerical methods 
• optimization 
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• set-based reasoning 
• rule generalization/process replay 
• task decomposition 
• coordinated subspace optimization 
• constraint and rule-based reasoning 

Design Synthesis Techniques 

• structure enumeration 
• case adaptation 
• graph transformation/augmentation 
• variable expansion/optimization 
• function/structure variation 
• task decomposition 
• algebraic/logical transformation 
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A Data Representation for 
Collaborative Mechanical Design 

RICHARD L. NAGY, DAVID G. ULLMAN, AND THOMAS G. DIETTERICH 

Abstract. Collaborative design projects place additional burdens on design 
documentation practices. The literature on group design has repeatedly doc
umented the existence of problems in design decision making due to the 
unavailability of design information. This paper describes a data representa
tion developed for collaborative mechanical design information. The data 
representation is used to record the history of the design as a sequence of 
design decisions. The resulting database records the final specifications, the 
alternatives that were considered during the design process, and the de
signers' rationale for choosing the final design parameters. It is currently 
implemented in a computerized data base system under development by the 
Design Process Research Group (DPRG), at the authors' institution (Ore
gon State University). 

1. Introduction 

The data representation described in this chapter was developed to record 
design information from collaborative mechanical design projects. This data 
representation is implemented in computerized design history tool (DHT). It 
is the authors' opinion that mechanical design practice is moving toward 
collaborative design efforts involving interdisciplinary design teams. A con
sequence of this shift toward collaborative design is an increase in the prob
lems associated with managing the information generated in the design 
process. Problems in managing design information for collaborative design 
projects have been identified in other design process research efforts. Several 
examples from the literature are 

The three most salient problems found across different design projects, were: 
1. the thin spread of application domain knowledge 
2. fluctuating and conflicting design requirements. 
3. communication and coordination breakdowns (Curtis 1988) 

The rationale and context for key design decisions and assumptions becomes lost and 
confused, both over time and between development groups (Curtis 1988). 

237 
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Critical errors are commonly made in the formulation and resolution of design 
decisions (Yakemovic 1989). 

A substantial portion of design related information from group meetings is not easily 
shared with other members to aid in decision making or problem solving (Morjaria 
1989). 

The above quotations are not all from research directly related to mechanical 
engineering design. However, it seems reasonable to assume that collabora
tive design projects in general will share the type of problems identified in the 
above quotations. It is the opinion of the authors that, with the exception of 
the problem concerning "the thin spread of application domain knowledge," 
these problems demonstrate an ever-increasing need for information man
agement tools to aid designers in collaborative design projects. Information 
management tools can aid designers by organizing design documentation, 
including new types of design information not traditionally recorded, and 
integrating all recorded information in a shared database. 

The traditional methods of recording mechanical design information are 
in design drawings, plans, and specification sheets. These recording methods 
do not represent the decision process, and only the end result of design 
decisions are recorded. Other traditional forms of recorded design informa
tion, such as design notebooks, logbooks, meeting notes, and revision draw
ings, often exist, but this information is generally not available to all the 
design participants, nor is it in a form easily shared between design groups. 
The alternative proposals considered during the decision process and the 
reasons for rejecting the alternatives and accepting a particular proposal are 
either not recorded or that information is difficult to access. 

For recorded design information to be useful during the design process, it 
must be readily accessible to the designers. It is the opinion of the authors 
that a computer database is currently the most suitable tool to organize 
design process information. The traditional methods of recording design 
information are too poorly integrated to serve effectively as a shared data
base for collaborative design. This chapter describes a data representation 
developed for collaborative mechanical design information. The data repre
sentation is used to record the history of the design as a sequence of design 
decisions. The resulting database records the final specifications, including a 
three-dimensional rendering of the design. The database contains informa
tion on the alternatives that were considered for each design parameter 
during the design process. This includes the arguments for and against the 
alternate proposals and the designers' rationale for choosing the final design 
parameters and rejecting the alternatives. 

Section 2 of this chapter summarizes research related to this topic; Section 
3 describes the data representation; Section 4 briefly describes the implemen
tation of the data representation in a computer database; and Section 5 
states some conclusions drawn from current implementation. 
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2. Background 

2.1. Related Internal Research 
The context of the research described in this chapter is the ongoing effort at 
the authors' institution to understand and develop tools to support the 
mechanical design process. As part of this effort a model of the mechanical 
design process was developed based on studies of single engineers perform
ing novel (nonroutine) mechanical designs of moderately complex compo
nents (Ullman et al., 1988). This model is referred to as the task/episode 
accumulation model. 

A conclusion, drawn from the model and analysis of the protocol data, is 
that the temporal history of a mechanical design process can be mapped by 
recording the individual episodes as a sequence of decisions. A computerized 
DHT was developed based on this model, which is capable of recording 
design process information from individual design projects (Chen, 1990). 

2.2. Related External Research 
The collaborative design history data representation developed in this re
search, as well as several other recent efforts to develop design history tools, 
is based on the IBIS (Issue-Based Information System) method. IBIS was 
developed by Horst Rittel for organizing the deliberation process that occurs 
during complex decision making (Rittel et al., 1973). The IBIS method orga
nizes the deliberation process into a network of three data elements: issues, 
positions, and arguments. An issue is an identified problem to be resolved by 
deliberation. Each issue can have many positions that are proposed solutions 
developed to resolve the issue. Each position can have any number of argu
ments that support or oppose that position. Using the IBIS model, a deliber
ation is started when someone creates an initial data element and others 
respond with additional data elements based on one of the defined legal 
inter-element relationships. Figure 11.1 is a network diagram of the IBIS 
method with data elements depicted as network nodes and relationships 
depicted as arrows. IBIS is a general model of the deliberation process. It 
does not directly provide a way to indicate a successful issue resolution or, 
which position was finally accepted by the participants in the deliberation 
process. Nor does it incorporate a method of representing the temporal 
sequence of the deliberation process. 

One computer application based on the IBIS model is giBIS (graphical 
IBIS}1 (Conklin and Begeman, 1988). The giBIS tool was developed as 
a computer aided design tool to capture design histories and support 

1 giBIS was developed at Microelectronic and Computer Technology Corp. 
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FIGURE 11.2. giBIS network. 

computer-mediated teamwork (groupware). Groupware refers to "computer
based systems that support two or more users engaged in a common task, and 
that provide an interface to a shared environment" (Ellis et al., 1988). The 
giBIS system uses an extension of the IBIS model, developed by Collin Potts, 
that includes artifacts and steps (see Figure 11.2) . .Artifacts represent what
ever documents and standard notations are used to represent the steps and 
steps represent the changes that are made to artifacts to revise them toward 
correctness or completeness. The giBIS system employs a commercial rela
tional database system (that supports report generation) as the output inter
face, and it uses a unique hypertext input interface. The hypertext system 
supports multiple users, via a computer network. In the giBIS system the 
latest agreed-upon position to resolve a particular issue is marked. By 
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recording the current accepted position on each issue of a design process, the 
giBIS system can identify the current state of the design, but it does not 
record the temporal history of the design process. 

Another computer-aided design history tool based on the IBIS method is 
the MIKROPLIS hypertext system. MIKROPLIS is a computer program 
for managing textual design information, representing designers' reasoning 
(McCall, 1989). It is based on PHI (procedural hierarchy of issues), de
veloped by Raymond McCall, and it is an extension of Rittel's IBIS system. 
PHI extends IBIS's network structure by allowing each primary structure to 
be decomposed as subissues, subpositions, and subarguments to any level of 
granularity. PHI imposes a quasihierarchial structure on the recorded infor
mation, as opposed to the IBIS multilinked network. Whereas IBIS supports 
several inter-issue relationships, PHI connects issues only by a serve relation
ship. Issue-2 serves Issue-1 if answering (resolving) Issue-2 is useful for an
swering Issue-1. This simpler structure alleviates some problems in retrieving 
information from large, complex databases. Like giBIS, MIKROPLIS rec
ords only the current state of the design process and does not record the 
temporal history of the design process. 

2.3. Data Source 
The design process data representation was developed by the author based 
on both a review of related research, and by examining videotaped protocol 
data of engineers doing mechanical design. The protocol data used in this 
research is from three sources. One source was the protocol data recorded 
earlier by researchers at the authors' institution. This data is of five individ
ual professional designers performing mechanical design, and includes all 
phases of the design process: conceptual, layout, and detail design. 

The other two sources of videotaped protocol data are from outside re
searchers, which record students performing collaborative design. 2 One set 
of data recorded at Stanford University, involved group design sessions 
recorded to understand collaborative workspace activity (Tang and Leifer, 
1988). The video data from the University of Queensland was recorded to 
support developing statistical methods to quantify the quality and effec
tiveness of mechanical designs (Radcliffe and Lee, 1989). These three sources 
of protocol data were studied to determine the kinds of information, gener
ated in mechanical design processes that the design history representation 
would need to embody. As the representation evolved it was continually 
tested using design episodes from this protocol data. The tests were con
ducted by entering a representation of design episodes into a computer 
database. 

2 The author is indebted to Dr. John C. Tang, currently at Sun Microsystems, Inc., 
and Drs. Tat Y. Lee, and David F. Radcliffe from the University of Queensland, 
Australia, for the Joan of video tapes of collaborative, mechanical design sessions. 
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3. Design Process Data Representation 

3.1. Data Elements 
The objective of this research was to develop a data representation for 
collaborative mechanical design. The data representation is used to represent 
design information in the DHT computer database. The representation de
veloped in this research is composed of four data-elements: issues, proposals, 
arguments, and decisions (see Figure 11.3). A design process history is rec
orded in the database by representing the actual design process with these 
four data-elements. The representation is based on an idealized four-step 
model of mechanical design. In the first step designers identify a design issue 
or issues. During the second step proposals are developed to resolve particu
lar design issues. In the third step the designers formulate arguments either 
supporting or opposing specific proposals, and in the fourth step a design 
decision is made to accept or reject the proposals. 

The data representation is developed to record the results of the creative 
design activity. It does not represent the creative process itself, which is 
internal to the designer's mind, and not articulated during the design pro
cess. Although developed to record collaborative design processes, the data 
representation is also suitable to record the design history of individual 
designers. In this report the use of the words group or designers should, in 
general, be interpreted as meaning one or more participants in a particular 
design process. 
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"'"'~··-'" 
PROPOSAL I 

~!:; 
~-AR-G_UME_NT _ _, 

Rejects. Accepts 
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FIGURE 11.3. Data representation network. 
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The four principle data-elements are linked to form compound networks 
that serve to organize the design history data in the computerized database. 
The design process data-elements and networks used in this representation 
are described below. 

A design issue is any question or problem identified by a designer or design 
team, that will need to be resolved to complete the design process. An issue 
may be the desire to satisfy a design requirement, the need to establish the 
value for some design object parameter, or any other design related question 
or requirement identified by a design participant. 

A proposal is a suggested addition or change to the current design, de
veloped by a designer or design team to resolve a particular design issue. Any 
number of proposals may be developed to resolve the same design issue. 

An argument is the designers' rationale for either supporting or opposing 
particular proposals. Arguments identify the relative merits or demerits of 
proposals. A design argument is a comparison, which can be either absolute 
or relative (Ullman, 1991). In an absolute comparison, there is only one 
proposal being focused on, and it is directly compared to a set of require
ments defined by the given design specifications and the results of previously 
accepted proposals. A decision may evaluate only one proposal based exclu
sively on absolute type arguments. In a relative comparison, there is a set of 
proposals being focused on, and the ability of each proposal to satisfy the set 
of requirements is compared relative to the other proposals. 

A design decision is a continuous segment of the design process in which 
the participants evaluate a proposal or proposals to resolve a particular 
design issue by weighing the arguments supporting or opposing the pro
posals. The result of a decision (if it is concluded) is either to accept or reject 
the proposals. The evaluation may be based on an informal consensus or on 
a formal method such as Pugh's method of concept selection. A decision also 
may be suspended without accepting or rejecting any proposal, as when the 
designers that feel additional information is required or that no satisfactory 
proposal is currently available. In this sense a proposal can exist in the 
database in one of three states: accepted, rejected, or proposed. When a 
proposal is accepted, it effects the current state of the design. A rejected 
proposal has been determined to be unacceptable for the current design 
(it may have been previously accepted), and does not effect the current 
state of the design. A proposal that is simply proposed was part of a sus
pended decision process and also does not effect the current state of the 
design. 

3.2. Example 1 

The following is a hypothetical example of design history data of a cantilever 
beam design problem (see Figure 11.4) organized using the four data-elements 
of this representation. For this problem Table 11.1 lists the given specifica
tions. This simple example is only meant to clarify how the data-elements are 
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P (load) 

~ t H (height) -L (length) W (width) 

FIGURE 11.4. Cantilever beam. 
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FIGURE 11.5. Design process diagram. 

TABLE 11.1. Given specifications. 

l. Beam is made out of aluminum. 
2. Allowable stress is 2000 psi. 
3. Beam length is 12 in. 
4. End load is 10 lb. 
5. Beam cross-section is rectangular. 
6. Minimize production cost. 
7. Minimize beam weight. 

used in the representation. The statements recorded in the outline are para
phrased from what the designers articulated during the design process. 

Figure 11.5 is a diagram of the data-elements that represent this particular 
segment of the hypothetical collaborative design process. Each of the data
elements of Figure 11.5 is summarized in Outline- I. In this design process 
segment the design issue (I-1) was the need to establish the cross-section 
dimensions for a cantilever beam. Two alternative proposals were developed 
to resolve this issue by different team members (P-1 and P-2). Argument A-1 
represents the designer's reasons for supporting proposal (P-1). Argument 
(A-2) represents a second designer's rationale for supporting proposal (P-2) 
and opposing (P-1 ). Decision (D-1) represents the evaluation process of 
weighing the arguments and accepting a particular proposal. In this case, the 
evaluation process was a unanimous group consensus that favored accepting 
proposal (P-2) and rejecting (P-1 ). Outline- I is not a complete example of all 
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the information recorded in the current implementation. Other information 
such as a time and date stamp and additional inter-object links are not show 
in this example. The reader is referred to (Nagy, 1990) for a detailed descrip
tion of the current implementation of the data representation in the DHT. 

Outline-] 

Issue-1: (I-1) 
Description: We need to establish the cross-section dimensions for the 

cantilever beam. 
Decisions: Decision-1 
Source: Designer-1 

Proposal-]: (P-1) 
Issue: Issue-I 
Description: Let the beam width= 0.50 inches, and the beam height= 

1.00 inches. 
Source: Designer-1 

Argument-]: (A-1) 
Supported Proposals: Proposal- I 
Opposed Proposals: none 
Rationale: Using the proposed cross-section dimensions, the calculated 

maximum stress for this cross-section, based on d.nax = Mcfi, is 1440 psi. 
This is well below the maximum allowable stress. In addition, as 
1/2" x 1" is a standard stock size, it will keep production cost low. 

Source: Designer-1 

Proposal-2: (P-2) 
Issue: Issue-1 
Description: Let the beam width = 0.45 in., and the beam height = 

0.90 in. 
Source: Designer-2 

Argument-2: (A-2) 
Supported Proposals: Proposal-2 
Opposed Proposals: Proposal-I 
Rationale: If we keep the height to width ratio 2: 1, we can reduce beam 

weight by letting maximum stress equal allowable stress, and then 
solve for a minimum cross-sectional area. The proposed values are 
rounded to the nearest 1/20 in. I believe the resulting 19% reduction 
in weight is more important than the possible additional production 
cost. 

Source: Designer-2 
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Decision-]: (D-1) 
Issue: Issue-1 
Arguments: Argument-1, Argument-2 
Accepted Proposals: Proposal-2 
Rejected Proposals: Proposal-1 
Evaluation: unanimous consensus 
Source: Designer-1, Designer-2, Designer-3 

The above outline of a naive collaborative design secession is meant to 
demonstrate how design process information is recorded using the four data
elements. In order to organize the data within the database the four data
elements are linked to form higher-level data-structures. Four such linked 
networks are implemented: the decision-chain, which is used to record the 
chronological history of the design process; the decision-process, which is 
used to record the evolution of one issue's resolution; and the issue
decomposition and issue-network, which are used to represent the intercon
nectivity of the design-issues. These four network structures are described 
below. 

3.3. Decision-Chain 
The method used in this representation to record the temporal history of 
a design process is to form a chronological sequence of decisions, called a 
decision-chain (see Figure 11.6). As defined above, an individual decision is 
a continuous segment of the design process where proposals on a particular 
issue are evaluated. However, individual segments of a design process on a 
particular issue will not always conclude with accepting or rejecting a pro
posal. A decision may be suspended without acting on any proposal, or 
designers may move from one issue to another without evaluating or even 
identifying any proposals. This is likely to occur during the conceptual de
sign phase where the main focus may be in identifying the design issues. 
Because the temporal history of the design process is recorded as a sequence 
of decisions, a decision data-element is used to record each continuous seg
ment of the design process where a different issue is considered. A decision 
data-element is created even if no proposals or arguments are developed, or 
an argument evaluation is not carried out. For example, consider the case 

Design Process History 

Time .-------> 
I Decision-11---..1 Decision-21---..1 Decision-31 

FIGURE 11.6. Decision-chain. 
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where a designer identifies several design issues, such as the need for a 
particular part to be both thermally conductive and electrically nonconduc
tive, without proposing any solutions. Two issues have been identified but no 
additional design work on those issues takes place at that time. This design 
process segment would be recorded as two issue data-elements each encapsu
lated in a separate decision data-element. In this case these decision data
elements only serve to record the chronological sequence of the design pro
cess and are not "decisions" in the normal sense of the word. The evolution 
of any particular issue's resolution during the entire design project is rec
orded as a network of decision data-elements described below. 

3.4. Decision-Process 

The process of resolving a particular issue may be addressed any number of 
times during a design project. In collaborative design projects, individual 
designers or separate design teams may even make independent decisions on 
the same design issue. At a later point in the design process, the separate 
groups may get together to resolve any conflicts in the previously accepted 
proposals. This merging and re-evaluation of previous decisions is modeled 
by linking the decisions concerning one issue into a decision-process network. 
A decision-process can be considered as a meta-decision on a particular 
issue, which evolves during the course of the design process. Each re-evalua
tion process is represented as a new decision with pointers from any previous 
decision that the designers were aware of when making the re-evaluation. 
The resulting network of linked decisions forms a tree that grows from the 
root (see Figure 11.7). At the end of the design process all decisions that 
focus on a particular design issue would normally be merged at design group 
meetings into a single composite design-process with one final root decision. 

Figure 11.7 is interpreted as follows. The six decisions (Dec-1, Dec-2, 
Dec-13, Dec-35, Dec-62, Dec-87) represent all those segments of the design 
project where Issue-1 was considered and, hopefully, finally resolved. When 
decision Dec-2 took place the participants were aware of the proposals, the 
arguments, and the evaluation associated with decision Dec-1. This could 
have been the same group or a different group who had access to a design 

Design Process History 

Time > 

FIGURE 11. 7. Decision-process. 
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history that included decision Dec-1. Decision Dec-13 took place shortly 
after Dec-1 and without knowledge of what transpired in decision Dec- I. 
Decision Dec-35 was a continuation ofDec-13, again without knowledge of 
decisions Dec-1 or Dec-2. The participants in decision Dec-62 were aware of 
all the previous decisions as were the participants of the final decision, 
Dec-87. 

3.5. Issue-Decomposition 
A third data-element network implemented in the representation is the issue
decomposition. The issue-decomposition represents the breakdown of an issue 
into subissues. It is used in the database to organize the total set of identified 
issues into hierarchies based on the concept of connected issue resolution. It 
is therefore used to define whether a particular design issue is currently 
resolved. The relation between a parent issue and its child subissues is based 
on an issue's resolution. A parent issue is not defined as "resolved" unless all 
of its immediate subissues are resolved. As subissues also may be decom
posed, the issue-network can have any number of levels (see Figure 11.8). 

Child issues are connected by "and" links to form a decomposition of the 
parent issue analogous to a table decomposed into a top and four legs. Just 
as the table is complete only if each of its parts is complete, a parent issue is 
resolved only when each subissue, connected by an "and" link, is resolved. 
Any proposal developed directly to resolve a parent issue must resolve all the 
immediate "and" linked child subissues. 

3.6. Issue-Network 
The fourth data-element network, called an issue-network, is composed of 
issues and proposals (see Figure 11.9). As described above, an issue is not 
resolved unless its "and" linked subissues are also resolved. An additional 
requirement for issue resolution involves the "or" linked child issues. Sub
issues are connected by "or" links to a parent issue through the proposals 
developed to resolve that parent issue. Any proposal may introduce new 

FIGURE 11.8. Issue-decomposition. 
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A 
"or• link ~•and" link 

FIGURE 11.9. Issue-network. 

"created-issues" that only affect the design if that proposal is accepted. 
These "stepchild" issues, connected by "or" links, do not decompose the 
parent issue into parts, so they do not form part of that issue's issue-decom
position. Nevertheless a parent issue is not defined as "resolved" unless any 
subissues, inherited from an "accepted" proposal, are also resolved. For 
example, a proposal to use steel for the material of a design object might 
create the issue of a need to protect that part from direct exposure to mois
ture. If the proposal to use steel is accepted, then the issue of needing to 
choose a type of material for the design object would not be resolved until 
the created issue of needing to prevent corrosion also was resolved. 

4. Implementation 

The purpose of this research is to augment the current DHT so that it can be 
used to record the history of collaborative design processes. Two of the 
data-elements used in design process representation presented here were 
previously developed by other researchers at the authors' institution: design
objects and constraints (McGinnis, 1990). Design-objects are the graphical 
and semantic representations of the physical artifacts developed in the design 
process. A design constraint is the fundamental data-structure of the repre
sentation. Design constraints define all the values and features of the design
objects, and all relationships between design-objects. In the DHT, a con
straint represents the finest grain size of information about the design. 
Figure 11.10 depicts the relationships (arrows) between the six data-elements 
(boxes) implemented in the design process representation. 

The design process representation is implemented in the LISP program
ming language using HyperClass, 3 an object orientated extension to Com-

3 HyperClass was developed at Schlumberger Technologies Inc. for building, main
taining, and using database systems. 
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Rejects. Accepts 

Read as: I Subject 1...:::::.!:.-.1 Object I 

FIGURE 11.1 0. Data-element network. 

mon Lisp. A HyperClass object (which should not be confused with a 
"design-object"), is a type of data record that encapsulates, in a single entity, 
the object's data with procedures that operate on that data. These encapsu
lated procedures are called methods. The data and methods of an object are 
stored in slots of the object. A complete explanation of HyperClass can be 
found in (Smith et al., 1988). 

Each of the six data-elements depicted in Figure 11.10 is implemented 
in the DHT as a HyperClass object: design-object, constraint, proposal, 
argument, decision, and issue. As the design-object and constraint were 
previously developed, the reader is referred to McGinnis (1990) and Chen 
et al. (1990) for complete descriptions of these two objects. The four 
principal objects developed in this research are the proposal, argument, 
decision, and issue objects. Two additional supplementary objects, the 
source, and date, are encapsulated in each instance of the four princi
pal objects to identify the designer(s) originally responsible for develop
ing that particular data-element, and the day and time the development 
occurred. 

The design process representation uses four data-element networks: 
decision-chain, decision-process, issue-decomposition, and issue-network (see 
Figures 11.6-11.9) to represent a design process history. These data net
works are formed by linking the six principal data-objects as shown in Figure 
11.10. The data-element networks are implemented in order to organize the 
design history data stored in the database for later retrieval by users of the 
database. The links between the six principal data-objects are implemented 
by the slots in each object. 
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5. Conclusions 

The design history data representation described in this chapter was de
veloped to record information generated in collaborative mechanical design 
processes. By encapsulating proposals, arguments, and an evaluation within 
a decision data-element the representation can record the designers' ratio
nale for supporting or opposing alternative proposals, as well as the deci
sion's evaluation process and the effect (if any) of a decision on the design. A 
history of the design process can be played back by retracing the chronologi
cally ordered decision-chain. In addition, the representation includes the idea 
of a design issue as the tie that binds alternative proposals to a particular 
decision, and individual decisions into a decision-process that maps the his
tory of an issue's resolution. The design issue data-element is also used to 
record the process of issue-decomposition common to the conceptual design 
phase of the mechanical design process. 

The data representation developed in this research borrows from the IBIS 
deliberation method described in Section 2. This can readily be seen by 
comparing Figures 11.1 and 11.3. The position element in the IBIS system 
has been renamed proposal in this representation to better describe the pro
cess that it is used to represent in mechanical design. The data representation 
described in this chapter adds three principal data-objects to the three used 
in the IBIS method; design-object, constraint, and decision (see Figure 11.1 0). 
Design-objects are the physical artifacts conceptually developed in the design 
process. The design-objects are defined by the constraints that identify all the 
values and features of design objects. This relationship is depicted in Figure 
11.10 by the modifies link between the CONSTRAINT and the DESIGN
OBJECT blocks. The design decision is the third data-element not found in 
the IBIS system. The decision data-element serves three distinct purposes in 
the DHT that are not represented in the IBIS system. The first is to identify 
which of all the proposals developed to resolve a particular issue are cur
rently accepted, and which are rejected. The second is to represent the tem
poral history of the design process. As described in Section 3, the decision
chain network is used to represent the temporal history of the design process 
as a chronological sequence of decisions. The third is to record the chrono
logical history of an issue's resolution as a network of decisions concerning 
that issue in a decision-process. 

By going beyond the IBIS method and including three additional principal 
data-elements, the DHT design process data representation is capable of 
representing the kinds of design information observed in the design protocol 
data reviewed for this research. The resulting database is an extension of the 
kinds of design knowledge currently recorded in design drawings, sketches, 
designer's notebooks, and meeting notes. It extends current design records 
by both recording a chronological history the decision process, including the 
alternatives considered, and by centrally organizing the recorded informa-
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tion in a computer database. By organizing the design data into the four 
data-element networks described in Section 3, the temporal design history, 
issue resolution, and issue interaction is represented. By structuring the rec
orded information in the design history and centrally locating that informa
tion in a computer database, the data representation should allow the infor
mation to be easily shared among the design participants. 

In the introduction of this chapter, six problems associated with collabora
tive design efforts are cited from current design literature. It is the authors' 
hypothesis that a design history tool (DHT) employing the data representa
tion described here could help resolve the later five of these six issues. Man
aging fluctuating design requirements and preventing conflicts should be 
assisted by design participants readily having access to the most current 
requirements (recorded as issue data-elements). An additional issue man
aging aid is provided by maintaining an up-to-date history of an issue's 
resolution (organized as a decision-process). Communication and coordina
tion between the various design groups as well as among group members 
should be facilitated by sharing ideas (issues, proposals, arguments) through 
a centralized database. By recording the design decision process, the data 
representation directly addresses the problem of preventing the loss of the 
context of design decisions, and coordinating the decision process between 
development groups. Having the arguments upon which a decision was 
based readily accessible to be scrutinized by all members of a design process 
should help expose critical errors before the final decision evaluation. And, 
finally, having a centralized design history database should considerably 
facilitate the sharing of design information from group meetings. 

The data representation as implemented in the DHT has currently been 
tested by the author using videotaped protocol data. These feasibility tests 
were used simply to verify that the system could be used to record and 
retrieve the information generated in collaborative mechanical design pro
cesses. Research to verify the effectiveness of such a system is proceeding at 
the authors' institution under the directorship of Dr. Ullman. 
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12 
Characterizing Human Analogical 
Reasoning* 

BETH ADELSON 

1. Introduction: Motivation and Approach 

Skilled problem-solvers often work by analogy as opposed to solving from 
scratch every new problem they encounter. And this is very much the case in 
engineering design. For example, a cantilevered beam provides an anology 
for a cantilevered bridge; as does a suspension bridge for a suspension build
ing. With regard to invention, according to Samuel Morse's diaries, 24 ini
tially, in trying to transmit telegraphic signals across significant distances 
Morse tried the strategy of building successively stronger generators. He 
found however, that the signals still degraded with distance. Supposedly the 
solution to the problem came to him in the following way. While riding on a 
train, he happened to look out of the window and notice a Pony Express 
depot, at which horses were being fed and watered. Morse realized that the 
relay station strategy constituted an analogical solution to the telegraph 
problem as well. t In a similar vein Edison's diaries recount that he invented 
the kinetiscope by setting out to "do for the eye what he had done for the 
ear" with the phonograph. 4 

The work described here is part of a research program to develop a 
computational theory that makes use of the central characteristics of human 
analogical reasoning. We begin by studying the phenomenon in context. 
Because the purpose of analogical reasoning is to learn and solve problems, 
we have developed our theory by consistently observing subjects within a 
problem-solving context. This approach has yielded insights into the nature 
of the phenomonon being modeled and, as a result, has provided constraints 
allowing us to specify the theory in a number of ways that increase its 
power. 

• Thanks to Dedre Gentner, Brian Falkenhainer, and Ken Forbus for their loan of 
SME. This work was funded by grants from NSF's CISE and Engineering Director
ates and a Henry Rutgers Research Fellowship. 
t Although accounts from diaries may not be entirely accurate, as here, they often 
provide excellent examples of familiar a phenomenon. 

254 
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As we will discuss in Section 3.1, recent research suggests a class of theory 
that rests on a process consisting of retrieval, mapping, evaluation, debug
ging, and generalization.8• 10• 11• 1s· 19•28•20•22 Each of these components of 
the process is defined in detail in Section 3.1, but it is useful to give the reader 
an immediate feel for the process here. 

In this process, a problem that is analogous to the current "target do
main" problem, but that previously has been solved, is retrieved from mem
ory. The solution to the old "base domain" problem is then "mapped" or 
imposed on the new problem, giving the problem-solver a way of looking at 
the new problem. The old solution is then evaluated and debugged. That is, 
the problem-solver considers the ways in which the old solution needs to be 
modified in order to lead to success with respect to the new problem. Once 
the new problem is solved the method may become a part of the problem
solver's general bag of tricks. 

We can use the example from the case study discussed in Section 2 to 
illustrate the process. In the example, a student is being taught about com
puter stacks by analogy to cafeteria stacks. The student is reminded that 
cafeteria stacks exhibit the last-in-first-out property of the data structure 
being presented to him. This allows him to map or impose the cafeteria 
domain model onto what he knows about data structures. He then evaluates 
and debugs the cafeteria model, modifying it in a way that is appropriate for 
the computer domain. 

The work we present here extends existing cognitive theories of analogical 
reasoning by specifying some possible mechanisms for mapping evaluation 
and debugging. In our theory these three processes are active and problem
driven. Additionally, they are heavily dependent on the use of knowledge 
about function, structure, and mechanism. From this point of view we dis
cuss the following processes in detail in Section 3: 

1. Purpose-Constrained Mapping: In teaching about a complex domain, 
tutors focus their students' attention on individual aspects of the domain, 
allowing the students to map models that are partial but sufficient for 
their immediate purpose.8 •9 As explained below, this strategy results in 
incremental learning that makes both mapping and debugging more trac
table. In this way, purpose provides a powerful and useful constraining 
strategy that needs to be included in a specification of the mapping 
process. 

2. Active Evaluation: A system that models human problem-solving needs 
to be able to identify the bugs inherent in an analogically acquired do
main model. Our system actively searches for bugs in newly mapped 
domain models; the system, rather than a human tutor, initiates the 
search. The system does so by comparing the nature of the actions and 
objects in the newly mapped model to the nature of the actions and 
objects appropriate in the domain being mapped into (see Section 3.3.1 
for algorithmic details). This allows the system to identify the aspects of 



www.manaraa.com

256 Beth Adelson 

the model that are inappropriate and therefore unlikely to hold in the 
domain being mapped into. Our system also has knowledge about the 
way in which analogical correspondences are meant to be understood 
across domains. These aspects of our system reflect powerful elements of 
human reasoning. 

3. Active Debugging: Once the buggy portion of a domain model has been 
identified, it must be replaced by a representation that is accurate in the 
new domain. Our system constructs and runs target and base domain 
simulations of the operations embodied in the models. This allows the 
system to identify mechanisms in the target domain that are functionally 
analogous to portions of the base domain models. The system can, as a 
result, correct mapped models, maintaining the functional explanation 
provided by the analogical example while building a representation of a 
mechanism appropriate to the target domain. 

Here, too, our system's behavior characterizes the constrained way in 
which analogical examples are understood and used; they are not taken 
literally, rather they are understood to be only partially applicable. 
(See the "spring and capacity limitation" example in the next section.) 
This understanding of the constrained applicability may be what allows 
problem-solvers to consider analogies to be helpful even though it is 
known both that they provide imperfect explanations and that the nature 
of the imperfection is unknown. 

We are not alone in the view of analogical reasoning implied by the above set 
of issues. The spirit ofCarbonell's11 work on derivational analogy; Holyoak 
and Thagard's19•28 work on multiple constraint satisfaction; Kedar-Cabelli's 
work on purpose-guided reasoning, 22 Burstein's6 work on causal reasoning 
and Falkenhainer, Forbus, and Gentner's work15 on structure mapping is 
consonant with our view of analogical reasoning as an active, knowledge
intensive process. Nevertheless, we make a contribution by adding these 
particular features, representative of human analogical reasoning, to each 
element in our theory. 

2. Case Study: Protocol Data Illustrating the Issues 

In developing our theory, we conducted a case study and collected protocol 
data from it. 1• 14•23 Repeatedly we have drawn on the protocol data de
scribed below. These data yield insights into the mechanisms that underlie 
analogical reasoning. 

The Protocol 

In collecting our data we videotaped a tutor teaching a student about com
puter stacks as last-in-first-out data structures. The tutor's goal was to have 
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the student be able to specify the procedures for "pushing" and "popping" 
items onto and off of stacks both in Pascal code and in box and arrow 
diagrammatic notation. We chose box and arrow notation, as well as code 
generation, because it is a frequently used exercise designed to have students 
understand the procedures involved in data structure manipulation. At the 
beginning of the protocol session, the student had just completed an intro
ductory programming course in which he had learned about some basic pro
gramming constructs and about elementary data structures such as arrays 
and simple linked lists. He had not learned about using a linked list as a 
stack. The tutor had the intention of building upon the student's existing 
knowledge of Pascal through the use of analogy. 

The relevant events of the protocol can be summarized as follows: 

Learning About the Behavior of a Stack 

The tutor told the student that in the field of computer science the data 
structures referred to as stacks are so named because their behavior is analo
gous to the behavior of the similarly named device that holds plates in a 
cafeteria. The student then proceeded to assimilate the information about 
the behavior of a stack. He thought of ways in which he might have previ
ously encountered the use of stacks in programming. He suggested that 
stacks might be useful in implementing subroutine calls. He then also stated 
that, in general, when a task had an unmet precondition it would be useful 
to delay execution of the task by pushing it onto a stack. 

Learning About the Mechanism Underlying the Behavior 

The tutor told the student that the mechanism of the computer science stack 
is in some sense analogous to the mechanism of the cafeteria stack. In order 
to achieve "last-in-first-out" (LIFO) behavior, items are pushed and popped 
at the top of the cafeteria stack. The student drew a diagram of a cafeteria 
stack and described how push causes the stack's spring to compress and pop 
causes it to expand. 

Implementing Push and Pop in the Target Domain 

The student next drew the box and arrow diagrams for implementing push 
and pop using a linked list. He also wrote the Pascal code. 

After writing push, the student asked if the capacity limitation that results 
when the spring is fully compressed is relevant in the new domain. The tutor 
told the student that the physical elements of the analogy (springs, movement 
of plates, etc.) do not apply. The student then asked if the concept of capac
ity limitation applies even if the spring doesn't. The tutor responded that 
although capacity limitation is an important concept, the student should 
disregard it for now. 
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3. Issues for Specifying a Theory of Analogical 
Problem-Solving 

3.1. A General Theoretical Framework 
We begin the discussion of our work by describing the class 
of theory that emerges from the current literature on analogical 
learning.1,3, 5,8,2S,10,11,15,19,28,20,22,31,32 

Converging evidence suggests a model that embodies the following set of 
processes: 

• Retrieval: A relevant conceptual model of a familiar "base" domain 
is retrieved from memory. This retrieval process is incremental. Base 
domain models relevant to the emerging "target" domain will be retrieved 
throughout learning. The retrieval process is affected by factors such as 
the problem-solver's purpose, his general world knowledge, his knowledge 
of various base domains, and, importantly, his preexisting knowledge of 
the target domain. 

• Mapping: Correspondences are established between the entities in the 
base domain model and the currently known entities in the target domain. 
The base domain model is then mapped to form a model of the target 
domain. 

• Evaluation: Evaluation can be thought of as an experimentation process. 
The Ieamer attempts to use the newly mapped model to solve problems. 
The generation of these problems is equivalent to the generation of a set 
of experiments to test the newly mapped model's accuracy and sufficiency. 
As we discuss later, part of our goal is to build a system that models the 
way human learners actively and strategically seek to generate these 
experiments. 

• Debugging: The results of the evaluation process are used to extend and 
correct the model of the target domain during debugging. Each analogical 
example is, by definition, only partially correct. As a result, we treat 
debugging as a central issue in analogical learning. 

• Generalization: Here the structures shared by the analogically related 
domain models may be abstracted away from both domains, to form a 
more general understanding. 

A sufficient account of analogical learning in complex domains must provide 
detailed specifications of each of the above processes. In this chapter we 
concentrate on the mapping, evaluation, and debugging components of ana
logicallearning. In Section 4 we touch on retrieval. 

Figure 12.1 diagrams the mapping, combined evaluation and debugging, 
and problem-solving components of our system. The system's mapper takes 
as input a base domain model and a list of the correspondences between 
elements in the base model and already known target elements. The mapper 
produces tentative target domain models, which are then debugged and 
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I I 
map eval & debug problem. solver 

FIGURE 12.1 Components of the analogical reasoner. 

evaluated. The debugged models are then passed to a problem-solving com

ponent that can generate box and arrow diagrams and Pascal code. Addi

tionally, in our system, the output of the debugger can be used to guide 

subsequent mappings. 

3.2. Purpose-Constrained Mapping 

Purpose provides an essential constraint in problem-solving, but current 

implementations of cognitive theories do not make heavy use of this con

straint. • The argument for why purpose is necessary in constraining problem

solving runs as follows. Reasoning about a complex domain requires under

standing a number of distinct aspects of the domain and the relationships 

among those aspects. 2 • 7•12 Given the constraints of the cognitive system, it 

is not possible to learn all of these various aspects at one time. Rather, to 

make learning of a complex domain more tractable, students and instructors 

typically focus on individual purpose-defined aspects of the domain and, one 

at a time, map partial models from more familiar analog domains. 8• 9 These 

partial models can later be integrated to provide a more full understanding 

of the target domain. 7 

One section of the protocol data described above provides an example of 

the way in which purpose can successfully constrain the mapping process by 

limiting attention to currently relevant aspects of the domain being learned. 

In teaching the student about stacks, the tutor first explained the LIFO 

behavior of a stack without regard to the underlying mechanism. The stu

dent used this focus of attention suggested by the tutor. He proceeded to 

think of ways in which he might have unknowingly encountered the use of 

stacks in programming; he suggested that stacks might be useful in imple

menting subroutine calls. He then generalized their usefulness, stating that 

whenever a task had an unmet precondition it would be useful to delay 

execution of the task by pushing it onto a stack. Note that the student 

ended up with a sophisticated and correct understanding of one aspect of 

the domain. This enabled him to then sucessfully tum his attention to the 

mechanism underlying the now well-understood behavior. 

• Two notable exceptions are Thagard and Holyoke, 19• 28 and Kedar-Cabelli, 22 who 
also stress the theoretical importance of purpose. 
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3.2.1. Implementing a Purpose-Guided Mapper 

In our computational description, the learning process starts with this selec
tion and mapping of purpose-constrained aspects of the target domain. Our 
mapping mechanism focuses on partial models of the base domain whose 
type reflects the problem-solver's purpose, and maps these models, type by 
type, over to the target domain. 

Basically, our mapper uses the focus suggested by the tutor to select a 
model from the set of models in the base domain. The selected model is then 
mapped by using whatever cross-domain correspondences may have been 
supplied by the tutor to replace base domain elements of the model with 
target domain elements. The mapper also builds, for each element mapped 
into the target, the "template definitions" described below. Additionally, if 
our mapper is currently mapping a causal model that provides an underlying 
mechanistic explanation for a previously mapped "higher-level" behavioral 
model, the results of having debugged the higher-level model will guide the 
current mapping (Section 3.3.1). Note that we define a behavioral model 
as one that describes the results of an action and a causal model as one 
that describes how that action happens. The behavioral model can then be 
thought of as "higher-level" than the causal, in that the behavioral model 
can provide an explanation of an underlying mechanism. 2• 30 

Our mapping algorithm is similar to Gentner's17 in that it uses SME's* 
central principle of mapping structure by mapping objects connected or 
"structured" by relations. The relations are referred to as "predicates" in 
that they are aspects predicated to be true of the related objects. t 

There are, however, four ways in which our mapping algorithm differs 
from SME. (1) We have implemented a purpose-guided focusing mechanism 
that allows our mapper to select a model of a specified type from a base 
domain containing a variety of models. As discussed below, this allows 
incremental learning and debugging. (2) The results of debugging early 
mapped models will guide the mapping oflater mapped models that underlie 
them. As a result, the mapping process becomes more focused as more is 
known about the relationship between the base and target domains (Section 
3.3.1). (3) Descriptive predicates will be mapped by our mapper, but not by 
SME. We have chosen to map descriptive predicates because we have found 
that they can have a role in the functioning of the model. For example, as 
shown in Figure 12.2a, because full is a predicate describing the state of its 
argument, stack, it is likely that SME will not map it over; this will make it 
difficult for SME to produce a target domain model that specifies the current 

• Gentner's Structure Mapping Theory17 is implemented in Brian Falkenhainer's 
Structure Mapping Engine, SME.1 5 . 

t For example, if Fido the dog is my faithful companion we can predicate a compan
ion relationship between Fido and Beth Adelson, companion (beth, fido). We could 
then use that relationship via a mapping process to understand the relationship 
between other pets and humans. 
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push(plate,stack) ~ on-stack(plate,stack) 

l "'on(plate,old-top-plate) 

increase(full(stack)) 
(a) 

push(node,stack) 

I 
put-on(node,stack) 

on-stack(node,stack) 

increase(number 
(node-set) on(node,old-top-node) 

increase( compression(spring)) 

l 
increase(full(stack)) 

(b) 

FIGURE 12.2. Push: behavioral and causal models in the base domain. (a) Behavioral 
model in the base domain; (b) causal model in the base domain. 

fullness of a stack. However, other problem-solving processes may need a 
model that contains this attribute, so that, for example, a stack that is 
already full will not be pushed onto. For this reason, we prefer to keep 
descriptive predicates until after mapping, and then have a debugger get rid 
of extraneous features that can be found not to participate in problem
solving. (4) Whereas SME tends to drop a base domain entity whose target 
analog is unknown, our mapper leaves such an entity in the newly mapped 
model. This allows our system's evaluator to find domain-appropriate re
placements. It results in newly mapped models that have the complexity of 
the models from which they were derived (Section 3.3.2). 

Gentner's Structure Mapping Theory1 7 is powerful in that it describes a 
process that serves the purpose of analogical mapping. That is, structure 
mapping provides the learner with a way to view a barely familiar target 
domain as a structured and, therefore, functional system. (And hence one 
that is useful in problem-solving.) Building on Gentner's idea, we have im
plemented a mapper that preserves structure. Our theory additionally asserts 
that the mapper should produce a model that maintains the functionality of 
the source model (points 3 and 4 above) and should make use of acquired 
knowledge about cross-domain differences (point 2 above). 
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3.2.2. A Sample Mapping 

The following illustrates a mapping produced by our system: 
In this example our overall goal is to have the system model the problem

solving in our protocol. That is, we want the system to learn about computer 
science stacks and stack operations by analogy to cafeteria stacks and to 
produce box and arrow diagrams and code for the operations push and pop. 
To accomplish this, the system begins by taking the tutor's suggestion to 
focus initially on the behavioral model for push. In addition to supplying a 
focus, the tutor also supplies a list of base and target domain correspon
dences stating, for example, that push in the base corresponds to push in the 
target and plates correspond to nodes. The system selects the suggested 
model from a base domain containing behavioral and causal models of both 
push and pop. The selected model is then mapped into the target domain. The 
behavioral and causal models for push in the base domain can be seen in 
Figure 12.2a and 12.2b, respectively. How these models are used in the 
learning process is discussed in the sections that follow. 

In Figure 12.3 we see the behavioral model of the target domain produced 
by our mapping mechanism. What is important to note here is that the 
nature of the models allows them to be used in the problem-solving that is 
the system's ultimate goal. That is, tracing along the arrows in, for example, 
the causal model in Figure 12.2b we see the chain of events that occur when 
push is performed.26•27 Following the model right to left and depth first: 
Pushing is equivalent to putting a new node on the stack; this new node is on 
top of what previously was the top node of the stack. However, having put 
the new node on the stack causes the spring to become further compressed; 
this causes the stack to increase in fullness; and the number of nodes in the 
stack increases. 

The format of the models is represented graphically here. In actuality, 
within the system, the models contain instructions for carrying out the causal 
chain of state changes described in the diagrams. That is, they are composed 
of instructions for computing an increased value for the compression of the 
spring and then based on that new value instructions for computing an 
increased value for fullness. These instructions are carried out by the sys
tem's simulation machine. 1• 16• 13•18 The simulation machine's output is a list 
of the current values of the variables that describe a state after the operation 
described in the model has been performed. 

push(node,stack) R on-stack(node,stack) 

! "on(node,old-top-node) 

increase(ful/(stack)) 

FIGURE 12.3. Newly mapped behavioral model for push in the target domain. 
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Additionally, the format of the models allows them to be examined by a 
debugger, (Sections 3.3.1 and 3.3.2) to be used to generate box and arrow 
diagrams after debugging. 

Although the contents of the models were inferred through protocol 
analysis, the assertions in the model can be formalized to allow, for example, 
the deduction that the old-top-node is the last-pushed-node. Additionally, 
because the predicates specify computations that result in state changes they 
have an underlying "procedural" semantics. 

The following section describes how our system debugs the newly mapped 
model of push so that problem-solving can be carried out successfully. 

3.3. Debugging a Newly Mapped Model 
3.3.1. Actively Seeking out Bugs 

In our theory, debugging is characterized by an active search for bugs, one 
that is initiated by the system rather than by the tutor. The base domain 
model is known, by definition, to provide an imperfect model of the target 
domain. The base model may contain inappropriate elements that require 
deletion or transformation; or it may require additional knowledge specific 
to the target domain. 

Our current example illustrates the case in which a newly mapped model 
contains a concept that is inappropriate in the target domain and needs to be 
deleted. In subsequent sections we deal with increasingly complicated cases 
of transforming a newly mapped model. Looking at the behavioral model 
that our mapper produced for the target domain (Figure 12.3) we see that 
pushing a node onto a stack that is implemented as a list of nodes, leads to 
the stack being more full. However, the system contains prior knowledge 
about the target domain that asserts that lists of nodes are used when a data 
structure without a prespecified capacity limitation is desired. • Since linked 
lists have no specified capacity limitation there is an inconsistency between 
the newly mapped model and prior knowledge of the target domain. The 
system must have the ability to notice and resolve this inconsistency. 

Identifying and Fixing Bugs in a Runnable Model 

Here we describe how the system's evaluation and debugging mechanism 
resolves the "fullness bug" in the course of evaluating the behavioral model 
of push. The system's evaluator looks in tum at each element of a newly 
mapped model in an attempt to determine whether each element it encoun-

• For this example we have supplied the system with the same knowledge of the target 
domain that our novice programmer had. We have given it models for performing 
typical operations on variables, arrays, and linked lists. It also has world knowledge 
about boxes and containers. 
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ters is appropriate in light of the domain the model has been mapped into. In 
order to allow the evaluator to carry out the evaluation, the system has been 
given several kinds of knowledge, labeled K 1-3 below: 

Kl. Any element that occurs in a model has a definition, a template con
sisting of a set of features. 6 •29•31 •32 Elements in the model are either 
objects (e.g., stack) or predicates. Predicates describe attributes of, or 
actions on, objects (e.g.,fullness or push, respectively). For objects, one 
feature in the template specifies the class it belongs to. For predicates, 
the class of both the predicate and the objects it applies to (its argu
ments) are listed. For example, the predicate full has a template that 
specifies that full's class is a measurement of capacity; that full takes a 
container as an argument and that container's class is an object with a 
limited capacity. 

K2. The system knows not only which specific objects and predicates are 
appropriate to each domain, but also which classes of objects and predi
cates are appropriate. For example, the system knows that integer vari
ables in particular, and data structures in general, are appropriate in the 
computer domain. 

K3. The system has general knowledge about how analogical correspon
dences are meant to be taken. For example, the system contains knowl
edge that physical contiguity in the base can be appropriately thought 
of as corresponding to virtual contiguity in the target. 

The system uses the knowledge described above in applying rules that allow 
it to evaluate each element in the newly mapped model. The rules, labeled 
Rl-4, are 

Rl. Infer that an element currently in the target domain is appropriate in the 
new model. 

R2. If the element is not currently in the target domain but it is of a class 
currently in the target domain, infer that a modified version of the 
element is appropriate in the new model and use the existing domain 
definition of the class to modify the element. 

R3. If the newly mapped element belongs to a class that has a corresponding 
class already existing in the target domain (point K3), infer that a 
modified version of the element is appropriate and use the existing 
target domain definition to modify the model. (See modfication example 
below.) 

R4. A predicate can only be applied to an argument of an appropriate type; 
that is, fullness cannot be predicated of a container without capacity 
limitations (point Kl). 

We see each of the above rules (and the knowledge they embody) being 
applied as we follow the evaluator working its way through the model for 
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push in Figure 12.3. (The convention we are using for reading through the 
models is breadth-first, right to left.) Starting at the root of the tree, the 
evaluator encounters the element push. Because the tutor had specified that 
push in the base corresponded to an asserted, but as yet undefined, version of 
push in the target, the system infers that push is appropriate to the model and 
turns to the predicates that follow from it. 

Although on-stack does not yet exist in the target, its definition states that 
it is a "membership relation." Applying rule R2, the system finds that other 
predicates in the target are membership relations [e.g., the Pascal function 
in(set)] and, therefore, the system hypothesizes that the predicate holds. 

The evaluator next comes to the predicate on. The template for on states 
that it is a "physical contiguity relation." The system knows that physical 
contiguity in the base corresponds to virtual contiguity in the target (rule 
R3). It therefore makes this change to the predicate's template and then 
infers that the predicate holds. This is an example of the system's ability to 
model human problem-solvers in interpreting analogical correspondences in 
an appropriate, nonliteral manner. 

The evaluator turns to the predicate full; it finds that full is potentially 
appropriate in that it already exists in the target as knowledge that arrays 
can be full (rule Rl). However, the evaluator finds that fullness can only be 
predicated of containers having capacity limitations (rule R4). It knows that 
the stack is being implemented as a list of nodes and that lists do not have 
capacity limitations. The system suggests that the concept fullness should be 
removed from the model. It then removes fullness. At this point, if the system 
is told that the problem arose because no capacity limited containers were 
being used in this example it will also remove all other predicates whose 
definitions involve capacity limitations. Figure 12.4 shows the debugged 
version of push after fullness has been deleted. 

But more mileage can be gained from this evaluation. The system has just 
mapped and debugged the behavioral model. It will now go back and map 
the causal model using information gained in debugging the behavioral one. 
When this mapping begins, the system will take note of any elements that 
have been deleted from the behavioral model (in this example,full). Pieces of 
the causal model that only explain already deleted behavior will not be 
mapped. 

For example, the dashed branch ofthe causal model in Figure 12.5 will not 
be mapped, since its only role in the model is to provide a way of computing 
fullness by specifying that fullness can be determined by considering the 

push(node,stack) ~ on-stack(node,stack) 

on(node,old-top-node) 

FIGURE 12.4. Behavioral model for push in the target domain: debugged version. 
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push(p/ate,stack) 

j 
put-on(p/ate,stack) 

~ on-stack(plate,stack) 

increase(number / : ~ . 
(plate-set)) ~ on(plate,old-top-p/ate) 

increase( compression(spring)) 

I 
I 
I 

t 
increase(fu/l(stack)) 

FIGURE 12.5. Causal base model. 

current degree of spring compression* in relation to the maximum possible 
compression. t 

This means that the model in Figure 12.7 rather than the more complex 
one in Figure 12.6 will be mapped into the target domain. As a result, the 
debugger will have a simpler causal model to deal with; one in which the 
mechanism supporting the inappropriate concept of full has already been 
removed. As illustrated here, this strategy of incrementally mapping partial 
models and using earlier mappings to guide subsequent ones, can simplify 
the potentially complex process of debugging causal models. 

Using the procedure described above, the system now debugs the causal 
model in Figure 12.7 modifying the definition for put on according to its 
definition in the target domain. This debugging procedure results in the 
causal model shown in Figure 12.8. Reading from left to right we see that the 
model now correctly specifies the sequence of actions that make up push 
(setting the new node's next-pointer to the top node in the stack, setting the 
stack's head-pointer to the new node). It also specifies the results that follow 
from these actions (the new node being on the stack, etc.). This model will 
now be passed to the "box-and-arrow-drawing" portion of the system's 
problem-solving component. This component of the system can, using the 
sequence of actions specified in the model, generate box-and-arrow diagrams 

*We present this model where the fullness of the stack is calculated using the com
pression of the spring because it reflects the model used in our protocol. In the next 
section we present the intuitively appealing example of a base domain model in which 
fullness is calculated using the number of plates in the stack. 
t Recall that the system models contain instructions that specify how to compute 
fullness based on spring compression. 
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push(node,stack) 

j 
put-on(node,stack) 

oti-stack(node,stack) 

increase(number 
(node-se on(node,old-top-node) 

increase( compression(spring)) 

j 
increase(full(stack)) 

FIGURE 12.6. Newly mapped causal model with fullness. 

push(node,stack) 

l 
put-on(node,stack) 

~ on-stack(node,stack) 

increase( number( node-set)) on(node,old-top-node) 

FIGURE 12.7. Newly mapped causal model with fullness. 

of push on a computer screen. That is, the "box-and-arrow" portion of the 
system has knowledge that allows it to carry out the type of actions that 
occur in the models (such as set-next-pointer). These actions are carried out 
in a way that causes diagrams representing the actions in the models to be 
drawn on the computer's screen. 

3.3.2. Transforming a Mapped Model: Reasoning About Simulations 

In the example just described we considered the case where an element needs 
to be deleted. Our system also handles more complex cases in which a model 
needs to be transformed in various ways by finding correspondences between 
a target-domain inapropriate element mapped over from the base and exist
ing target domain elements. 

The first case in which a model needs this type of transformation is illus
trated by the example in which the goal is to implement a stack using an 
array as opposed to the previous example in which a linked list was used. The 
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push(node,stack) 
-+ set-next-pointer(node,old-top-node) + set-head-pointer(stack,node) 

-+ on-stack(node,stack) 

increase( number( node-set)) on(node,old-top-node) 

FIGURE 12.8. Debugged causal model in the target. 

representation of the base domain is the same as it was for our previous 
example. Knowledge of the target domain still consists of information about 
variables and arrays but, this time, not about linked lists. The system again 
has runnable models for typical array operations such as initialization and 
search. 

The behavioral model of push is again mapped into the target domain. 
This time no changes are made in the behavioral model; the fullness of the 
stack is found to be consistent with the system's knowledge of the capacity 
limitation of an array. After mapping the behavioral model, the system maps 
the causal model of the stack into the target domain and then begins to 
evaluate and debug it. During this process the system questions the tutor on 
the appropriateness of the spring in the causal model (Figure 12.9). (The 
system's knowledge specifies that physical objects like springs do not belong 
in models of computer memory.) 

The tutor tells the system that the domain-appropriate functional analog of 
the spring needs to be found. In finding the functional analog of the spring 
the system will draw on several types of relational knowledge (RKl-3). This 
relational knowledge is learned by the system; the system notices and stores 

put-on(data,stack) 0 on-stack(data,stack) 

increase( number 
(plate-set) on(data,o/d-top-data) 

increase( compression(spring)) 

j 
increase(ful/(stack)) 

FIGURE 12.9. Newly mapped causal model of pushing onto an array. 
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these relations whenever it acquires a new model. They do not have to be 
hand-coded by the programmer. 

RKl. The system contains functional to structural mappings; knowledge 
relating state changes and the mechanisms causing them.2 • 13• 16• 21 

For example, it knows that "changes in fullness are supported by 
changes in the mechanism comprised of the spring, the set of plates, 
etc." 

However, we want to stress that the system's knowledge does not 
contain any explicit statement concerning how changes in fullness are 
related to changes in the spring. This is what needs to be determined. 

RK.2. The system has knowledge relating actions and the state changes 
they produce. It knows, therefore, that "pushing leads to changes in 
fullness." 

RK3. The system also has knowledge relating actions and the mechanisms 
involved. It knows that "pushing involves a change in the spring." 

In order to find the piece of target domain mechanism with the same func
tion as the spring, the system will find what sort of state change in the base 
is associated with a particular change in the spring. It will then turn to the 
target, look at the parallel state change, and determine what piece of mecha
nism is effected in the way that the spring was. To do this the system first 
needs to focus on the base and find what state changes the spring is involved 
in. It examines its knowledge of functional to structural mappings (RKl) 
and finds that the spring is involved in changes in fullness. Now, in order 
to find out the nature of the relationship between changes in fullness and 
changes in the spring, the system runs a simulation of push and obtains 
values for the fullness of the stack and the compression of the spring before 
and after the simulation is run. The system then compares the direction of 
change in both fullness and spring compression and finds that there is a 
positive relationship between the two. Currently, the system can recognize 
positive and negative correlations, as well as the lack of relationship between 
two state variables. It is possible to expand this part of the system to include 
the recognition of more complex, but regular relationships. 

The system now needs to find what piece of mechanism in the target 
domain changes for the same reason and in the same way as the spring (i.e., 
increases with fullness). The system begins by retrieving an operation in 
which fullness increases. It will then run this operation and look for pieces 
of mechanism that register increases in fullness. Target domain knowledge 
about the relation between actions and state changes (RK2) asserts that 
initializing an array causes fullness to increase; the system simulates the 
process and finds that in the target, it is the array-index that increases with 
fullness. 

As a result of this process, in which corresponding simulations are sought, 
run, and evaluated for the purpose of finding functionally analogous mecha
nisms, the system correctly hypothesizes that the array index is the analog of 
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push(data,stack) 

j 
put-on(data,stack) 

on-stack(data,stack) 

increase( number 
(plate-set on(data,old-top-data) 

increase( value(index)) 

j 
increase(full(stack)) 

FIGURE 12.10. Partially debugged causal model of pushing onto an array. 

the spring. The system can then substitute the array-index for the spring 
(Figure 12.10). This method of finding functional analogs for base domain 
mechanisms allows the system to choose and maintain the part of a causal 
analogy that is appropriate across the base and target domains. It reflects the 
way in which human problem-solvers understand both the limitations and 
the utility of analogical examples. 

3.3.3. Breaking Ties 

The system is also able to deal with a variation on the previous example of a 
transformation. That is, it is able to break ties when more than one piece of 
target domain mechanism is found to be analogous to a piece of the base. In 
these cases the ties are broken by considering the role that the base domain 
object played in the base model and comparing that to the role played by the 
tied target objects. A situation in which the system needs to choose among 
competing potential analogs is illustrated by considering an example in 
which the base domain model and the preexisting target domain knowledge 
are different than they were in the previous example. For this example, in 
which the stack is again being implemented using an array: (I) A base 
domain model is used in which fullness is calculated using the number of 
plates in the stack. As mentioned above, this is an intuitively appealing 
representation, although it differs from the one used in our protocol. This 
situation produces the target model shown in Figure 12.11. (2) The target 
domain includes the concept of a data-set, which comprises the contents of 
an array. 

When the evaluator reaches the branch that contains the assertion that 
the number of plates in the plate-set increases as a result of push, it questions 
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push(data,stack) 

l 
put-on(data,stack) 

~ on-stack(data,stack) 

! ""on(data,old-top-data) 

increase(number(p/ate-set)) 

j 
increase(ful/(stack)) 

FIGURE 12.11. Causal model using plates to calculate fullness. 

the appropriateness of the plate-set. Once again, the tutor tells it to find the 
functional analog. Using the method described just above in Section 3.3.2 
the system finds that the number of elements in the array's data-set and the 
value of the array's index both increase as an array is initialized. In order to 
determine which is the better analog for the plate-set the system now looks 
at the role played by the plate-set in the act of pushing. The system looks at 
the template definition for push and finds that for this action, the plate-set 
is the contents of the container. Turning to the target domain, the system 
finds that during array initialization, the data-set also serves as the contents 
of the container, whereas the index serves to locate the cell currently being 
initialized. As a result of comparing the roles of the index and the data-set to 
the role of the plate-set, the system breaks the tie; it decides that the data-set 
provides a better analog to the plate-set than does the index. The system then 
replaces plate-set with data-set in the model. 

4. Future Work 

There is an aspect of the debugging process that still needs to be addressed. 
Now that the models mapped from the base domain have had changes made 
to them, they must be checked to see that they are still sufficient. We are in 
the process of implementing a mechanism to do this through a series of 
simulations designed to test that the models still exhibit aspects of LIFO 
behavior that the system knows are important. For example, pushing and 
then popping a set of elements must result in reversing their ordering. 

Additionally, we have not discussed the retrieval process. Currently, we 
are working on expanding our code generator to reflect the repeated re-
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trievals we have observed. These retrievals produced at least two qua/tita
tively different kinds of examples, used in two different kinds of processes, 
both of which are analogical in nature. One is a process in which the surface 
features of past examples are put into correspondence with the surface fea
tures of the current problem. This is strongly reminiscent of the process 
described by Anderson and Pirolli. 5•25 The second is a process of reasoning 
from the constraints made explicit in diagrams that depict the actions in
volved in the concept being learned. The models that have been presented in 
this chapter are meant to serve as underlying representations for these draw
ings. We need to address the issue of which kind of process occurs at differ
ent stages in problem-solving in order to predict which kind of analogy will 
be retrieved at a given time. 

Last, we have already collected protocols on the task of turning a stack 
into a queue. This will allow us to address several issues. (1) The problem
solving involved will put more pressure on the processes and the representa
tional format specified in our theory. (2) Because turning a stack into a queue 
requires reasoning about the relationship between structure and function, we 
will be able to look at that important issue. (3) We will also be able to make 
statements about the important, but less frequently studied, process of within 
domain analogy, which is highly important or engineering design. 

5. Summary and Conclusions 

We have presented a discussion of three of our system's mechanisms: one for 
mapping, one for evaluating mapped models, and one for debugging incon
sistencies. We have implemented a purpose-constrained mapper that reflects 
the way students increasingly limit their focus of attention as more is known 
about the relationship between a base and a target domain. We have also 
implemented an evaluation mechanism that identifies inconsistencies as ele
ments of newly mapped models are checked to see if they are the sort of 
elements that are known to exist in the target domain. In doing so the 
evaluation mechanism uses knowledge about the nature of the base and 
target domains and the way in which relations apply across analogous do
mains. The evaluation mechanism reflects the nonliteral way in which ana
logies are understood. Finally, we have presented a debugging mechanism 
that maintains functional aspects of base models while adding target
appropriate causal explanations. This allows the system to model the way 
human problem-solvers select and use the level of explanation that is appro
priate in an analogical example. 

The development of the theory has been possible because we have worked 
within a problem-solving context, reflecting the purpose of analogical rea
soning. This approach has yielded insights into the nature of the phe
nomenon being modeled and, as a result, has allowed us to develop active, 
reasoning, and knowledge-intensive mechanisms that are characteristic of 
the nature of the analogical reasoning process. 
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13 
Entropy Measures in Engineering 
Design 

RONALD S. LAFLEUR 

Abstract. The development of a design science requires that progress made 
through research and technology be accountable. The difficulty in measuring 
progress lies in the different points of view of researchers, teachers, man
agers, and practitioners. This is compounded by design issues such as specifi
cation fuzziness, individual/team decision making, multifunctional design, 
and concurrency in the product development. A common, universal measure 
is needed. A commonality between problems is that mass, energy, and infor
mation are stored and transferred in the product or technical system. The 
entropy function has the power to integrate the mass, energy, and informa
tion measures of multifunctional problems into one measure. This provides 
a way to measure, in an unbiased way, the efficacy of design solutions, design 
methods, technical systems, and the advancement of design science. 

1. Introduction-Diversity in Engineering Design 

Diversity is a beneficial character of design evolution of products, engineer
ing methods, or technical systems. The more choices available, the higher the 
chance of satisfactory progress in engineering. The diversity in engineering 
methods, design research, multifunctional problems, and engineering envi
ronments creates a problem when measuring alternatives in order to make 
comparisons and insure progress. 

Diversity is a necessary feature of engineering design methods. On a very 
basic level, there is a lack of information in design problems. The designer 
must provide information as design specifications, decisions, and constraints. 
The method and substance of these input conditions are different between 
countries, regions, companies, groups, and design problems. The selection of 
one method over time reduces the number of potentially successful methods. 
The chances for evolving the "best" method are highest if method diversity 
allows choices. 

Engineering design research augments industrial practice and the teaching 
of design methods. Progress is the identification of important design-related 

275 
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TABLE 13.1. Nomenclature 

System Fields 

Ill General fitness functional t Time 
v Volume A.t Time differential 
N Mole number of species i s Mass specific entropy 
E Energy e Mass specific energy 
I Information v Mass specific volume 
X General variable vector n Mass specific mole numbers 
s Entropy of species i 
T Temperature p Material density 
p Pressure J Flux rate 
/A Electrochemical potential X Spatial coordinate 
M Number of subunits u Velocity 
n Number of configurations w Molecular weight 
K Boltzmann's constant F Body force 
p Configuration probability c Concentration 
w Frequency of occurrence (] Entropy production 
D Degrees of freedom A Reaction affinity 
vi Variation level L Phenomenological coefficient 

k Thermal conductivity 

Superscripts Subscripts 

DES Design environment Electrochemical species 
VER Verification environment k, l,p, q,m Vector counters 
CON Construction environment in Flow inward 
APP Application environment out Flow outward 

Overbar-averaged E Energy degree of freedom 
E Heat flux 0 Zero energy state 
T Temperature gradient env Environment value 
/A Electrochemical potential gradients ( ). Natural process 
s Entropy flux ( )v Virtual process 
u Velocity gradients 
N Species flux 
v Visco-plastic stress 
R Electrochemical reaction 

variables and understanding relationships between them. In any one research 
endeavor, a diversity of conceptual and detailed ideas are considered from 
which candidate hypotheses evolve. The potential for the research to yield 
new understanding is higher when diversity is higher; diversity is good for 
design science. 

The complexity of the design problem is highest when considering a num
ber of different functions. For example, the external shape of a modern 
turbine blade is governed primarily by its aerodynamics and strength. The 
aerodynamic and fatigue physics, units, and methods of measure are differ
ent enough to constitute discrete disciplines. But disciplines are for engi
neering convenience. In the true situation, different physics interact. Mea-
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surement of these interactions is along the lines of established disciplines; one 
being the input to the other. 

The various situations in design evolution can be distinguished by "engi
neering environments" of differing conditions, activities, and goals. For ex
ample, a test engineer works with prototypes while a manufacturing engineer 
works with the subunits and their assembly. Each environment has its own 
goals and, consequently, differing measures and units of "goodness" or 
fitness. Concurrent engineering attempts to meet the diverse concerns of 
application, manufacturing, and testing environments at the time of design 
decision making. This complicates the designer's job. The complexity can 
only be managed using design tools for the diverse concerns plus their 
interactions. 

This chapter proposes a single measure that is universal and not arbitrary: 
the entropy function. The need for a single measure of fitness in engineering 
design and metadesign is explored in Section 2. This is followed by a descrip
tion of a viable single measure, the thermodynamic entropy in Section 3. In 
successive sections, the single measure is discussed in terms of its ability to 
represent different scales, variable types, and levels of variation. 

2. The Need for a Single Measure-Single Measure 
Criteria 

The required features of a universal measure are formed as a set of criteria 
addressing design effectiveness, mutual existence of natural and human pro
cesses, scale, residence in engineering environments, and uncertainty. 

2.1. Representing Different Scales of Engineering 
Problems 
The engineering of useful devices and the development of design methods are 
processes that occur on a variety of scales. For example, the design of a 
cleanroom and the design of VLSI microcircuits are on opposite ends of 
scale. This example can be stretched further by considering engineered mate
rials and industry design. Scale is a measure of amount of material or 
smallest resolved length that is configured in the design. 

Engineering problems are usually solved by "decomposing" the system 
into smaller, more manageable, design problems. Then the scale of a prob
lem is determined by the scale of its subunits. Combination is the reverse of 
decomposition. However, the best system is not necessarily a combination of 
the best subunits due to boundary interactions. The boundaries are defined 
by the surface geometry and the types of fluxes they permit such as mass and 
energy. 

Scale is a relative observation based on the form of a system and its 
subunits. The system decomposition process leads to a larger number of 
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simpler design problems. The simplification is a byproduct of subunit spe
cialization. A system often has complex multifunctional purposes. The sub
unit functions must contribute to the function of the system as 

~single = ~(~subunirl • ~subunir2• • • ·) (13.1) 

This interaction between form and function transcends scale. 
The form-function of the different scale structures is related to physical 

behavior. Due to various boundary conditions on a structure, the collection 
of matter will respond or "behave." The physical laws that govern behavior 
are scale independent; e.g., conservation of mass, chemical species mass, 
mechanical and thermal energy. However, the detail of behavior and func
tion description is only as good as the scale of the system and its subunits; 
i.e., the smallest resolved scale. To simplify through detailing, the engineer is 
motivated to decompose the system into subunits already designed and well 
characterized. This is the case when the subunits are known materials or 
off-the-shelf items. Therefore, a single measure of performance must be 
applicable over many scales occurring in design and engineering systems. 

2.2. Representing Different Points of View 
The engineering process involves a diversity of issues such as performance, 
manufacturability, and environmental impacts. Consequently, the process is 
affected by people with differing points of view. In a typical company, a 
variety of people all wearing different hats are involved with product devel
opment. Small businesses require individuals to wear many hats. A product 
or design method is initiated by a need stated by marketing personnel or 
managers. Project design engineers plan, configure, or analyze candidate 
components or systems. Manufacturing engineers interactively input require
ments of fabrication and assembly. Technicians enact the manufacturing 
plan, turning raw materials into the product and assembling components. 
Test engineers verify product safety, performance, and tolerances. The pri
mary product evolution ends when sales personnel enact packaging and 
shipping of the approved products. A secondary product cycle arises when 
servicing, failure, recycle, or disposal are considered. 

Different personnel have different concerns in the product evolution. 
These concerns are measured differently. For example, the design perfor
mance of a heat exchanger is measured by effectiveness (actual heat exchange 
divided by the maximum possible exchange) while material cost is measured 
in parts such as tubing, 180 degree bends, thin fins, and solder. The overall 
fitness of a design or method must reflect diverse issues and accommodate 
various measures. 

The evolution of products or engineering methods can be detailed by a 
sequence of single decisions. A single decision is a yes or no to either accept 
or reject choices. A single decision is quantified because yes and no are 
discrete values of a single variable. The single decision must weigh the differ-
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ent issues and integrate them into one measure. The functional relationship 
between the many special measures and the single decision variable has been 
arbitrary. A special example is a weighted sum of presumed independent 
measures such as 

«~»single= 1.8«1»aerodynamic:s + 0.9Cl»manufacturing + 2.5«1»/atigue· (13.2) 

The coefficients indicate the relative weight of the contributions while ensur
ing dimensional consistency of engineering or economic units. More gener
ally, the presumably independent measures of special domains represent 
coordinate axes such that the single measure depends on them as 

(13.3) 

The dependency of one measure upon another reduces the dimensionality 
but may increase the nonlinearity of the single decision variable. 

Alternatively, the independent performance measures can be defined along 
the special types of fundamental fluxes in engineering systems. The funda
mental physics of mass, chemical species, and energy fluxes suggest that 

A single measure of performance must allow for a variety of physical effects, 
integrate the different measures of physical effects, and accommodate differ
ent domains of engineering and technology. 

2.3. Information Flow Between Engineering Environments 
On the technical system scale, engineering environments are defined in terms 
of the different activities that occur in the engineering method. Different 
tools and personnel, with their different points of view, act within four 
primary environments: application, design, verification, and construction 
(LaFleur, 1992). Information can flow between environments as shown in 
Figure 13.1 below. 

The application environment is the origin of the product idea or need and 
raw materials. The product will encounter actual conditions and perform an 

APPLICATION 

---------- VERIFICATION 

FIGURE 13.1. Information flows between engineering environments. 
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actual task in the application environment. In the design environment, the 
product, conditions, and functions are abstract. The abstract variables are 
determined by information gathering, input decisions, physical modeling, 
and solution techniques. In the verification environment, the candidate de
sign is prototyped and instrumented to test for task satisfaction, tolerances, 
and safety. Computer simulations that test the design under artificial condi
tions are a part of verification. The abstract design is brought into reality in 
the construction environment. Raw material or subunits are shaped, treated, 
and assembled. The constructed product may then be verified for quality and 
tolerances. 

The routing of the product through the environments establishes the engi
neering method. The location and routing is associated with time in the form 
of schedules and logistics. Branching of the path, such that information from 
different environments operates on the design simultaneously, is the cornerstone 
of concurrent engineering. The product is in different forms in the applica
tion, design, verification, and construction environments. Consequently, fit
ness is measured differently in each environment. The overall fitness of the 
engineering method should account for all special fitness measures as 

cf) = Cl»(ct»DES cf)YER cf)CON ~PP) 
single • • • • (13.5) 

where the three-letter abbreviations are the engineering environments. The 
information flowing from one environment to another requires the use of 
common units of fitness measuring. A single measure of design and method 
fitness must be evaluated in each engineering environment. 

2.4. Evaluation Uncertainty 
Evaluation of the special fitness measures is accompanied by a degree of 
uncertainty. The special measures of fitness are quantitative and qualitative 
variables. Fitness evaluation is completed through experiments or modeling. 
Interpretation of operational conditions, experimentation, modeling of de
sign physics, and the quantification of design effectiveness are imprecise 
processes. 

(13.6) 

Qualitative variables are fuzzy due to language imprecision. For example, an 
automobile seat may be comfortable or uncomfortable. Although comfort or 
discomfort is very important to the consumer, the two conditions do little to 
help the engineer change the design. The test engineer could devise a verifica
tion experiment using a rating system. This process of quantification is ac
companied by a degree of uncertainty due to population statistics and rating 
uncertainty. 

Quantitative measures are not immune from fuzziness and uncertainty. 
The use of instruments and a single prototype is accompanied by scatter and 
averaging. The test engineer seeks precise and accurate instruments but still 
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must live with a limited population of prototypes or test cases. Statistics 
plays an important role in evaluating the measures of fitness. 

When evaluating the fitness measures, a prototype is modeled using com
puter simulations or experiments. Either situation requires adoption of a 
typical operating environment. In the application environment, the condi
tions are real. Therefore a degree of uncertainty is introduced by modeling 
the actual operational environment. This type of uncertainty can only be 
diminished by performing tests over a range of expected operational varia
tions. This yields statistics and a measure of product robustness. 

Computer and experimental models of the candidate design represent a 
typical configuration. Experimental verification attempts to produce actual 
physical behavior and task functioning as a model to the application envi
ronment. The system may need to interact with other devices, in which case, 
the verification model approximates the interactions. 

In computer models, simulations are produced using idealized laws of 
physics, which neglect many real effects such as friction, nonlinear interac
tions, and inhomogeneities. Only the primary physical processes are cap
tured. This is not a problem because, usually, the engineer is concerned only 
with the primary physical behavior that leads to task functioning. Nonlinear 
interactions could amplify neglected secondary terms such that the primary 
physical behavior is altered. This leads to an unpredicted discrepancy or 
another type of uncertainty. 

Although it is usually ignored, a level of uncertainty is present in every 
engineering problem. A single measure of design or method effectiveness 
should account for the built-in uncertainties. 

2.5. Summary: Features of a Single Measure 
There is a need for a single measure of fitness for a variety of reasons. These 
reasons are formalized in the single measure criteria. Then the product effec
tiveness and the method by which it is produced could be assessed at the 
same time. The effectiveness criterion is stated as follows: The single measure 
must assess the effectiveness of designed products, design methods, and engi
neering technical systems. 

The design of products and the design of engineering methods can be 
considered on equal footing if both natural physical processes and human 
decision processes are represented. Since the engineering process is a combi
nation of human and natural produced effects, this leads to the mutual 
existence criterion as the single measure must permit both natural and human 
effects to be assessed at the same time. 

Decomposition is a common tool in the design and analysis of devices. 
The single measure must transcend all scales from microscopic systems up to 
large macroscopic technical systems. The scale criterion is stated as the single 
measure must be quantifiable at any scale and remain applicable over decompo
sition or combination. 
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Different variable types are due to different concerns and the engineering 
environments that must be represented. The diverse ways of assessing fitness 
may be transferred to a single measure. The residence criterion is the single 
measure must quantify design fitness in the different engineering environments 
with consistent units. 

The information flow between environments is accompanied by uncer
tainty. The level of variation of variables must be represented. This will 
provide an expression of uncertainty that can be tracked and assessed in the 
evaluation. Therefore, the uncertainty criterion is stated as the single measure 
must represent different uncertainty levels of conditions and variables in the 
engineering method. 

This section outlined the need for a single measure and some of the funda
mental requirements the single measure must satisfy. In the next section, 
entropy is proposed as the single measure that can satisfy these criteria. 

3. The Concept of Entropy: Basis and Balance 

Entropy is proposed as the single functional measure. This section reviews 
the foundation of the entropy function and its role in system description. 
The geometric foundation of equilibrium thermodynamics was pioneered by 
Josiah Willard Gibbs (Gibbs, 1961). Gibbs saw the system state as a surface 
with geometric properties such as slope and curvature. Later work led for
mulations of nonequilibrium that rectify and incorporate accepted dynam
ical laws. 

3.1. Macroscopic Properties 
Thermodynamic theory describes the interaction of hidden microscopic 
modes of action in matter with macroscopically observable states and pro
cesses. Classically one begins with a series of postulates (Callen, 1985). The 
first postulate addresses the macroscopic equilibrium of a system as charac
terized by energy, chemical species mole numbers, and volume. Extensive 
variables are divisible during decomposition and additive during combina
tion of subunits k. 

X= Xsystem = L xk, where X is v, M. or E. 

" 
(13.7) 

Equilibrium is a macroscopic property. On the subunit scale, the energy of 
any one subunit may fluctuate due to configuration changes with its neigh
bors. Thus the subunit is not at equilibrium. However in an isolated system, 
the macroscopic scale averages the subunit fluctuations: 

(13.8) 
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The state of equilibrium is observed when the system's scale is sufficiently 
large to produce constant and uniform characteristics. A macroscopic sys
tem that is not isolated is not at equilibrium. Since X is conserved, the X 
fluctuations about equilibrium must flow to and from neighbors; the subunit 
has amounts of fluxing sources/sinks of X onjboundaries with its neighbors: 

xk = X" + L Xkj,in(L\t) - L xlcj,out(L\t) = X,.(L\t). (13.9) 
j j 

A macroscopic system that is in communication with other systems cannot 
be at an equilibrium state. The system's state is then a question of constraints 
on the system. Consequently, decomposition and combination are important. 

3.2. Required Amount of Information and Entropy 
Equilibrium is one configuration out of many possible configurations consis
tent with the boundary constraints. Alteration of the constraints allows the 
system to access different, nonequilibrium configurations. A certain amount 
of information is required to characterize each configuration (Shannon and 
Weaver, 1949). Less information is needed when constraints affect the de
signed system; constraints are input information to the system configuration 
problem. 

Something is zero at equilibrium. Equilibrium is characterized by a bal
ancing of "forces" or uniform and constant energy, mole numbers, and 
volume. Equilibrium is also indicative of noncommunication with neigh
boring systems, i.e., isolation by zero boundary fluxes. More information is 
needed to describe a system configuration at a new equilibrium state when a 
constraint (information) is removed; information is transferred. Therefore, 
given constant constraints, the equilibrium configuration will require the 
maximum amount of information for description (Raisbeck, 1963). The 
amount of information needed to characterize the state of a system is a 
function of the set of configuration variables. For example, a special, ther
mally open system of constant volume and chemical species 

(13.10) 

The maximum information needed to describe equilibrium when fluxes are 
zero occurs when the "slope" of the information hypersurface is zero, 

01 o 'lib· h -ax= at eqw num, w ere X E E", v, N;. (13.11) 

Equilibrium is represented by the maximum amount of information needed 
for characterization. This sheds light on the decomposition method. Smaller 
systems have less possible configurations and require less information to 
describe. Subunits are formed by internal partitions or constraints. 

Alternatively, the traditional thermodynamic view originates from the 
second postulate: the existence of entropy and its maximization at equilib-
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rium (Callen, 1985). The entropy depends on the same variables as the 
information measure: 

S = S(E", E"i.tn• E"i,out• V, N;). (13.12) 

Information is a human-descriptive variable and entropy a natural variable. 
Entropy is postulated to be a maximum at equilibrium. 

;: = 0 at equilibrium, where X e E~r;, V, N;. (13.13) 

A third postulate states that the entropy is extensive and therefore is divisible 
by decomposition and additive by combination. 

(13.14) 

Similarly, the information required to describe a system is equal to the sum 
of the information required to describe its subunits: 

(13.15) 

Thus, decomposition does not create or destroy information or entropy, but 
breaks the system into smaller, more manageable subunits. 

3.3. Intensive System Variables-Temperature and 
Entropy Units 
The use of entropy allows the classical definition of slope functions. The 
hypersurface of the system's state has slopes that are zero at equilibrium and 
nonzero elsewhere. The entropy relation is partially differentiated to yield 
definitions of the temperature, pressure and electrochemical potentials such 
as 

1 as r = aE .... T(E, v, N;). (13.16) 

The slope functions are known as the equations of state. The slopes are 
intensive and are not additive when combining a decomposed system. Each 
subunit has its own set of intensive variables. Consider an isolated system 
decomposed into subunits. Since the energy, mole numbers, volume, and 
entropy are extensive, the equilibrium condition for the system yields that 
the temperature, pressure, and electrochemical potentials be the same be
tween adjacent subunits that have a mutual, fully communicating boundary. 
Since intensive variables drive fluxes, the fluxes are zero at equilibrium. 

The temperature is qualitatively consistent with the human observations 
of "hot" and "cold." The concept of temperature led historically to tempera
ture instruments and scales. Units of measure were defined to give quantita
tive measure to the qualitative sensations. Units placed on temperature re-



www.manaraa.com

13. Entropy Measures in Engineering Design 285 

quire that entropy have the units of energy divided by the temperature units. 
For entropy to maintain its nondimensional status, temperature must have 
units of energy. 

3.4. Nonequilibrium Entropy Balance for Continuous 
Systems 
Real systems are rarely in true equilibrium. Most functions of engineered 
devices utilize continuous energy, mass, and volume transfer and are not 
isolated. The continual transfer requires gradients of intensive variables be
tween the subunits or through the system in communication with its sur
roundings. Behavior, task functioning, and effectiveness of a system are 
related to the transfer of energy, mass, and volume. The fundamental en
tropy relation dictates that such transfers create a transfer of entropy dic
tated by a balance of entropy equation. 

The nonequilibrium change of a system's entropy is tracked in terms of 
entropy flux to and from the system and the entropy produced or destroyed 
within the system. The entropy-changing processes are produced by the 
transfers of energy, mole numbers, and volume. The balance of entropy is 
the variation of the fundamental entropy relation: 

(13.17) 

In terms of material time derivatives of mass-specific variables, 

1', Ds De Dv Dn1 
p Dt = p Dt + pp Dt - Jl.iP Dt ' (13.18) 

where density is mass averaged. Each term on the right-hand side is evalu
ated by incorporating the dynamical physical laws of conservation of ther
mal energy (total-mechanical), mass, and chemical species. 

Recognizing the common form of conservation equations as a rate of 
change term being equal to the net flux plus a net source term yields 

Ds aJ! 
p Dt =-ax,.+ u, (13.19) 

where the entropy flux, in terms of heat and chemical species fluxes, is 

J.• = J:/. - Jl.i J!; 
m T WiT' 

(13.20) 

and the entropy production (source), in terms of viscous dissipation, chemi
cal reactions, heat dissipation, gravity work on mass species, and mass spe
cies dissipation is the scaler (de Groot and Mazur, 1984): 

1 v aui 1 R 1 E aT J!; [ a Jl.i] 
u = TJ"'1ax.,.- TA1~ - T 2 J.,. ox,.+ w1 F.,.1 - ox,. T · (1 3·21) 
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The terms have a common form of a spatial gradient multiplied by a flux. 
Thus, the entropy production is related to mass, chemical species, thermal 
and mechanical energy behaviors, and functions within the system. 

3.5. Phenomenological Laws 
Physical effects, produced by gradients within the system or subunits, are 
responsible for the function of designs or engineering methods. These gradi
ents are supported by boundary conditions on the system or decomposed 
interfaces between the subunits. The entropy production and entropy flux 
terms are related to these boundary induced gradients. 

Phenomenological laws are the relationships between fluxes and gradients. 
A special example is Fourier's law of heat conduction for a homogeneous 
isotropic system where heat flux is the thermal conductivity multiplied by 
the temperature gradient. Other examples include Pick's law, Hooke's law, 
Ohm's law, and Stoke's law. These laws were developed for specific physical 
systems in the absence of other physical effects. The laws were also developed 
in terms of energy-type measurements. 

Alternatively, nonequilibrium thermodynamics utilizes general flux
gradient relationships stated in terms of entropy. This results in kinetic 
coefficients as an alternative to the traditional material properties of thermal 
conductivity, binary diffusion coefficient, or resistance (de Groot and Mazur, 
1984; Haase, 1969). For example, the general phenomenological relation for 
heat flux is expressed in terms of temperature, electrochemical potential, and 
velocity gradients as 

J.E = -LE:f_1_ fJT- LE!f _!_ OJI.i- LEu _!_ oup (13.22) 
m m} T 2 OX· mdc Tox mpq Tox . 

J " q 

However, some of the kinetic coefficients can be stated in terms of accepted 
material properties and temperature. For example, the kinetic coefficient for 
temperature driven heat flux is related to the thermal conductivity tensor as 

(13.23) 

Anisotropic and cross-effect kinetic coefficients are not readily available but 
may be symmetric due to Onsager's reciprocal relations. For example, the 
Dufour effect is the flux of heat driven by species concentration gradients 
and the Soret effect is the mass flux of species driven by temperature gradi
ents. Material properties for the Soret and Dufour effects are not as widely 
available as scaler thermal conductivities, viscosities, and mass diffusion 
coefficients. 

The fluxes occur on the boundaries and within the system or subunits. 
Since scale is selected by decomposition, there is an opportunity for approxi
mation of the transfer laws. The different effects of system functioning can be 
modeled in terms of phenomenological flux equations with gradients and 
kinetic coefficients. The interior fluxes of a system can be approximated 
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using the fluxes on the boundaries. The boundary fluxes are relevant in task 
functioning while interior fluxes contribute to entropy production. 

The entropy function can be calculated and tracked in terms of a variety 
of underlying physical processes. The equilibrium fundamental relation links 
entropy to mechanical (volume), electrochemical (mole numbers), and en
ergy processes. The processes between decomposed units are driven by dif
ferences of temperature, pressure, and electrochemical potentials. At the 
heart of all processes in a design's operation or in the engineering method are 
the fundamental mass and thermal, mechanical, and electrochemical pro
cesses. Therefore, entropy is proposed as the single measure for effectiveness 
of designs and engineering methods. It will be shown in successive sections 
that the entropy quantity has the ability to represent many aspects of the 
design process and technical system development. Some of the criteria out
lined in Section 2 will be addressed in a general fashion. 

4. Application of Entropy and Scale Issues 

The properties of designed systems or subunits change when the boundaries 
are open or closed to fluxes. The effects of internal and external partitions 
that define the scale of systems and subunits are important. This section 
addresses satisfaction of the scale criterion. 

4.1. Special Decomposed Subunits 
The constraints on the system's boundaries produce the gradients that sup
port physical behavior and task functioning. Chemically closed systems refer 
to systems with no chemical species fluxes. Thermally closed systems do not 
have thermal energy (heat) flux and mechanically closed systems do not have 
work fluxes. These special situations are of interest to designers of special 
components. 

Each type of closed system yields a special form of the entropy balance 
equation and method of calculating the subunit entropy. For example, the 
rate of entropy change in the fully closed system is equal only to the entropy 
production inside the system. 

Ds 
p Dt = u. (13.24) 

Using phenomenological flux-force relations, the entropy production is a 
positive definite quantity. For example, for a homogeneous, isotropic, in
compressible material with linear phenomenological relations and no cross 
terms, the entropy production is 
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This can be used for many systems as material requirements dictate. All 
electrochemical, thermal, and mechanical systems have positive definite 
entropy production inside their boundaries. 

In open systems, the increase or decrease in entropy rests with the net 
entropy fluxes compared to the positive definite entropy production. The 
only way to decrease the entropy and required information of a system is to 
have openings to fluxes. Fluxes are the realm of nonequilibrium thermody
namics and are dictated by the special functions of the decomposed system 
and its subunits. 

The entropy balance applies to macroscopic scales of the systems or sub
units. In macroscopic cases, the continuum assumption leads to a wealth 
of special discipline knowledge for the determination of gradients, kinetic 
coefficients, and boundary fluxes (Bejan, 1982; Haase, 1969; and LaFleur, 
1990a). The decomposed scale also leads to approximations of interior fluxes 
for the calculation of entropy production. The macroscopic entropy is calcu
lated in terms of near-equilibrium physical behaviors and functions. The 
alternative is to calculate the system's entropy in terms of "in the limit" 
decomposition to a large number of microscopic subunits followed by com
bination. This idea leads to quantum mechanics and thermostatistics. 

Extensive properties, coupled with conservation laws, indicate that system 
decomposition or subunit combination do not create or destroy energy, mole 
numbers, volume, entropy, or information. The fundamental relation of 
entropy links the observable macroscopic configuration variables and the 
hidden, microscopic configurations within all matter. The scale indepen
dence of the first law of thermodynamics yields a balance that is not affected 
by decomposition. The fundamental entropy relation is independent of scale 
in macroscopic systems. 

The jump to microscopic description is not kind to the fundamental en
tropy relation. As the scale of a system approaches the macroscopic to 
microscopic boundary, the number of subunits that affect the system in
creases dramatically. The number of configurations is related to the number 
of atoms using combinatorics. A large number of configurations are possible 
and the required information is large. Microscopic systems design is the 
realm of materials scientists and engineers. 

4.2. Combining Finite State Subunits-Thermostatistics 
In the limit, the microscopic subunits have a large number of configurations 
and the fluctuations allow the system to visit different configurations fre
quently. This idea may also be applicable to design or combinations of 
macroscopic subunits with finite numbers of states. 

The finite configurations of the subunits are described by quantum theory 
where each configuration is a certain energy state. Combination of the sub
units creates a combinatorics problem where the number of combined sys
tem configurations is factorially related to the number of subunit configura-
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tions. Fluctuations from one system configuration to another is assumed to 
be random. Therefore each configuration is equally probable. Unequal prob
abilities are discussed later. 

For example, consider a system decomposed into M similar subunits of 
two states each (of energy 0 and energy E1). The number of subunits at the 
E1 state is the total energy divided by the subunit energy or 

E 
~ = E· = ~(E, Ej). 

J 

(13.26) 

The number of subunits at the 0 state is the balance or 

M0 =M-~. (13.27) 

The number of configurations is equal to the number of ways to distribute ~ 
energy packets among the M subunit compartments. Combinatorics yields 
the number of possible configurations as 

n = M! M! 
~!Mol= ~!(M _ ~)! = O(~,M) = O(E,Ei,M). (13.28) 

A similar approach can be used for dividing a system into discrete subunits 
with individual configurations. The key is to model each subunit with a 
limited number of finite energy states and probabilities for the energy states. 

The number of possible configurations is related to the information re
quired for description and the system entropy. The number of configurations 
is multiplicative between the subunits while information and entropy are 
additive among the subunits. The function that connects the entropy to the 
number of configurations is the natural log function. Thus the fundamental 
relation for entropy stated in terms of configurations is 

S(E, V,N1,Ei, f1,Nii,M) = KlnO(E, V,N1,Ei, f1,N;i,M), (13.29) 

where K may be chosen as Boltzmann's constant and fix the scale of S to 
match the Kelvin temperature scale. From this entropy fundamental rela
tion, versions of temperature, pressure, and electrochemical coefficient can 
be found (the quantities that drive fluxes and produce the design's function). 
Equation (13.29) can be used as an explicit basis to track entropy changes in 
terms of finite configuration changes. 

Natural fluctuations between the different configurations are described by 
thermostatistics. Consequently, the state of the system is not known but is 
described by probabilities and statistical moments. Thermostatistics pro
vides a method of calculating entropy for finite state systems when each state 
has a level of probability. Similar mechanisms occur during the design pro
cess when different configurations are tried and probabilities of design out
comes can be formulated. The probabilities depend on the number of possi
ble design solutions and the amount of extensive quantities associated with 
the choices. 
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4.3. Material Partitions and System Environment 
The change of the system's configuration leads to observable, macroscopic 
changes in energy, mass species, and volume. Often this is seen as matter 
segregation or the formation of material partitions. A system with dis
cernable material partitions is not at true equilibrium. The condition for zero 
fluxes requires uniform character of the matter. This can not be accommo
dated in systems with open material partitions. Organization of systems into 
uniform property subunits creates a singularity of entropy at the subunit 
interfaces. The material partitions can be defined as configured subunits 
when decomposing. 

At nonequilibrium, the conditions external to the system have the oppor
tunity to influence the internal entropy and information required for descrip
tion. The internal information is associated with the concept of organization 
or order/disorder by Shannon and Weaver (1949). It is the action of external 
effects that creates organization such that less information is required for 
characterization. The external conditions and constraints are defined as the 
system's environment (LaFleur, 1991). The exterior of a subunit is the sub
unit's environment. In most cases, subunits are the environment of other 
systems or subunits. Therefore, the environment itself is a system that has 
its own configuration variables and entropy and information. 

Defining a large closed system (supersystem) as a system plus its environ
ment yields the traditional view that entropy, information, and disorder are 
maximized. Since entropy production is positive definite, the supersystem 
entropy will monotonically increase with time. Therefore entropy is max
imized in the supersystem. This does not mean that the system's entropy is 
maximized; the system's entropy may be minimized at the expense of its 
environment, i.e., environmental impact. 

5. Representing Different Variable Types 

One required feature of a single measure is the representation of different 
variable types. Entropy is an appropriate measure if it is applicable to multi
functionals, qualitative or quantitative variables, uncertainty, and continuous/ 
discrete systems. 

5.1. Multifunction Design 
High functioning systems, such as products and technical systems can be 
decomposed into subunits with lower, special functioning. Subunit measures 
of fitness must be related to performances such as task functioning, safety, 
environmental impact, and required technical system resources. Functioning 
that is reduced by decomposition is stated in terms of fundamental fluxes. 
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The technical system can be examined in a similar way, i.e., decomposition 
to special subunits and functioning in terms of thermal and mechanical 
energy and chemical species fluxes. Technical system measures of fitness such 
as economics, personnel time, scheduling, quality, and market share can all 
be fundamentally related to the physics in the entropy balance equation. 

For example, considering personnel as a subunit in the technical system, 
the cost of workers is related to the amount of work done. Work done 
transforms inanimate products as changes in thermal energy, mechanical 
energy, and electrochemical species. Apparently diverse measures can be 
stated in terms of the entropy balance when measured by extensive quantity 
changes. 

5.2. Quantification of Qualities: Fuzziness and 
Probabilities 

In engineering design, qualitative variables are not accountable unless con
verted to quantitative measures. The conversion is not exact and may allow 
fuzziness using statistics of population data. The conversion yields averages 
and statistical moments, a quantified statistical representation of the qualita
tive variables. Statistics plays a role in calculating entropy and required 
information. 

For example, if a system and its environment are subunits of a closed 
supersystem of fixed volume and mole numbers, the super-system energy is 

D 

Esuper = E + Eenv and E = ~ PEmEm, 
m=l 

(13.30) 

where the configuration probability equals the number of available envi
ronment configurations divided by the number of possible supersystem 
configurations 

p, = OE,env(Eenv,m) = OE,env(E..,per- Em)= p, (E E ) (13 31) 
Em n (E ) n (E ) Em m• super ' . 

E,super super E,super super 

where O(E) is the number of configurations of energy E (Callen, 1985). For 
example, if many configurations of the environment are possible with a 
particular system configuration, then the system configuration is probable. 

Information theory (Shannon and Weaver, 1949) yields that the en
tropy of the qualitative configuration is related to the probability of the 
configuration 

(13.32) 

The total number of configurations is a multiple of the number of configura-
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tions, ni, over each degree of freedom, D: 

(13.33) 

For every degree of freedom, configuration frequency of occurrence based 
on sorting in qualitative bins, is related to outcome probability as 

(13.34) 

For example, a questionnaire on learning environment was used to poll an 
undergraduate and graduate class. The questionnaire had numerous ques
tions from four categories unknown to the student. The results for the two 
degrees of freedom are shown in Table 13.2 below. The frequency data can 
be reduced to probabilities using equation (13.34) for each ofthe two degrees 
of freedom. 

The entropy in each degree of freedom (LaFleur, 1990a) is calculated by 
adding the entropy of the configuration, weighted by the probability of 
occurrence or 

(13.35) 

Therefore, the entropy can represent fuzzy variables, population-frequency 
data and uncertainty in the engineering method. Based on the example in 
Table 13.2, the entropy of the undergraduate and graduate classes were 
1.328 K and 1.276 K respectively. Adding these two degrees of freedom 
yields a total entropy of 2.604 K. From the entropy measure, it is clear that 
the graduate class had less entropy; the experience and knowledge of gradu
ates are constraints and graduate classes tend to be more specialized. In a 
similar way the entropy can measure the advancement of knowledge through 
design science research. 

The probabilistic calculation of entropy is especially applicable to the 
conversion of qualitative variables to accountable quantitative variables. In 
the example given above, each qualitative question could form a finite state 
subunit and could be analyzed in detail to give an entropy for each outcome. 
Then the total entropy would be calculated in terms of the middle of equa
tion (13.35), the sum of the product between an outcome's entropy and the 
probability of that outcome. 

TABLE 13.2. Learning environment questionnaire responses. 

Class w11 WJz wi3 wJ4 wJ 

Undergraduatej = 1 34 91 53 62 240 
Graduate j = 2 8 35 30 37 110 
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5.3. Continuous and Discrete Systems 
Entropy can be used to assess the fitness of both continuous and discrete 
systems. Continuous systems contain a continuum of matter and allow fields 
to form. Fields are mathematically described by dependent variables such as 
temperature, pressure, electrochemical potential, concentration, etc., and in
dependent variables (space and time). System characteristics are described by 
field distributions with partial differential equations for balance equations. 

Discontinuous systems have partitions usually formed along interfaces 
between different matter. The discontinuous system can be viewed as a sum 
of continuous subunits with interfaces between them. Continuous subunits 
can be treated in terms of fields. The interface between the discrete subunits 
is a surface that has its own balance equation. 

The entropy is discontinuous between continuous subunits and the inter
face is a subunit that contains the entropy discontinuity. Boundary surfaces 
are of lower spatial dimension than a system volume; a lower number of 
configurations are possible. Variationally, a quantity is constant on the sur
face. Geometrically, at any instant, the surface is a special function of three 
spatial coordinates. This can be expressed as a zero variation of the function 
between the coordinates. 

A system and environment may be treated as both continuous and dis
continuous. The field equations for continuous systems or subunits are 
used in the entropy balance to find entropy fluxes and production. The 
interior entropy fluxes can be approximated in terms of boundary fluxes. For 
example, LaFleur (1991) gives the solution of a pipe insulation problem in 
terms of thermal and fluid entropy production. The entropy associated with 
the configuration of discontinuous units into a system is measured using 
information-thermostatistical theory discussed above. Configuration pro
bability is stated in terms of the frequency of occurrence or the number of 
configurations along the degrees of freedom of energy, volume, and electro
chemical mole numbers. 

6. Representing Different Levels of Variation 

In engineering methods and environments, there are a variety of variables 
such as constraints, conditions, specifications, physical behaviors, material 
properties, and geometries. A single measure is required to represent quan
tities with different levels of variability. The entropy measure tracks engi
neering method progress and represents the different variables using a level 
of variation hierarchy (LaFleur, 1989). 

6.1. Variable Types 

Some features of engineering problems are constant. A distinction can be 
made between different types of constants. One type is a universal constant. 
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For example, numbers, conversion constants, pi, Boltzmann's constant, etc. 
are accepted as universal constants. Another constant type is derived from 
the material tables referenced in engineering. Tabulated material properties 
are accepted as constant although the materials may be unknowns in the 
design problem. Another type of constant is the constraints on the design 
problem or method. Constraints define the design problem and limit the 
system configurations. These are adjustable but do not vary during the 
solution process of one problem. Another type of constant is the physical 
boundary conditions on the system. These limit the physical behavior and 
produce the gradients needed for functioning. Condition adjustment is 
usually performed between solutions in search of control or application
matching operating conditions. 

The problem contains unknowns that characterize the effectiveness of the 
solution. Behavior variables represent the internal configuration of the sys
tem including temperature, pressure, energy, chemical species concentration, 
velocity, and strain. Spatial coordinates and time locate field distributions 
and internal and boundary fluxes. Task performance variables, such as 
safety and efficiency, characterize the system or subunit fitness. Unknown 
variables may have known upper and lower bounds due to conditions and 
constraints. Qualitative measures, imprecise specifications, or nonlinear 
behavior require the use of probabilistic variables. Statistical measures are 
derived from histograms that indicate probabilities under the action of 
random effects or imprecision. 

6.2. The Variable Hierarchy 
The constant, characterization, and statistical variable types have different 
levels of variation. Entropy must be influenced by the problem variables to 
reflect the overall effectiveness of the technical system or engineering method. 
The problem's variables can be organized into a hierarchy based on the level 
of variation. This sorts and organizes knowns and unknowns to be expressed 
in the entropy measure. Lower entropy means more order or more constraint 
on possible configurations. Knowledge lowers the variability of the solution 
set. 

The problem variables' levels of variation lead to a hierarchy of variation. 
Variables can be arbitrarily sorted into compartments of different variation 
levels. For example, a nine-level hierarchy is defined in Table 13.3 below 
(LaFleur, 1989). 

Incomprehensibles are unobserved variables and are usually assumed to 
be ineffective on the system operation. Level 3 and lower variables are 
known variables and are available after problem set-up. Research is needed 
if the problem statement does not explicitly state the knowns. Level 4 re
presents the independent coordinates that arise in the governing physical 
equations and are used to track field, behavior, and performance variables. 
Unknowns are identified by levels 5 and higher and are evaluated in the 
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TABLE 13.3. Example variable hierarchy of nine levels. 

X( vi)= variable X of 

vi 
0 
1 
2 
3 
4 
5 
6 
7 
8 

Variational level vi 

Description 
Universal constants 
Material properties 
Geometric constraints 
Physical conditions 
Independent variables 
Bounded dependent variables 
Unbounded dependent variables 
Random variables 
Incomprehensible variables 

engineering method. Behavior variables are governed by physical laws. Per
formance measures are defined in terms of behavior variables. Design or 
configuration are determined by a decision-making process; input informa
tion provides closure. 

For example, the design of a heat exchanger can be treated using the level 
of variation hierarchy to yield: 

vi= 0 pi 
vi= 1 for the two fluids: thermal conductivity, specific heat, viscosity 
vi = 2 inlet and exit fitting sizes, maximum length and shell, diameter 
vi = 3 for the two fluids: inlet flow temperature and flow rate 
vi = 4 radius, axial coordinate, time 
vi = 5 for the two fluids: temperature distribution, flow velocity distribu

tion, pressure drop, net heat exchange and materials of the shell, 
tubes and fins, tube diameter, number of tubes, tube pattern, tube 
wall thickness, fin spacing, fin thickness, shell diameter, shell thick
ness, head thickness 

Level 5 variables may be categorized in terms of behavior variables (gov
erned by physical principles), performance variables (governed by function 
definitions), and design variables (degrees offreedom). Using levelS assumes 
that the bounds of variables are known (bounds are level2 or 3 variables). 

6.3. Implicit Variations 
The entropy, as the single measure of system or method efficacy, must de
pend on the variables sorted in the variation hierarchy. Thermodynamics 
requires that a fundamental relation be derived from which all properties 
and design sensitivities can be found such as the implicit formula of 

S = S(X(O), X(l), X(2), X(3), X(4), X(5), X(6), X(7), X(8)). (13.36) 
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Nonequilibrium is stated in terms of an expansion using sensitivities as 

as 
fJS =oX( vi) fJX(vl), where vl = 0, 1, 2, 3, 4, 5, 6, 7, 8. (13.37) 

The variation of entropy is due to processes in the system or method. Level 
0 variables do not vary, variation of independent variables are zero, and 
incomprehensibles are assumed to be ineffective. The nonequilibrium en
tropy variation can be split into natural and human-controlled processes 
(LaFleur, 1990a). Natural processes governed by conservation laws are the 
variation of level 5, 6, and 7 variables. Human-controlled or virtual pro
cesses are the variation oflevel1, 2, and 3 variables 

(13.38) 

where 

(fJS),. = fJS(5, 6, 7) and (fJS)., = fJS(1, 2, 3). (13.39) 

Spatial or time dependence is not tracked in the variational process. 
The unknowns sorted as levels 5, 6, and 7 must be solved to characterize 

the system or engineering method in terms of the entropy measure. These 
variables are solved in the engineering method using analysis, design deci
sions, and statistics. Unknowns depend on the knowns, independent vari
ables, and each other. Levels 7, 6, and 5 variations can be solved successively 
or simultaneously in terms of lower level variables as 

fJX,.(5, 6, or 7) = ft(X(4), X(3), X(2), X(l), X(O)). (13.40) 

The processes of solution can occur if the number of unknowns is matched 
by an equal number of governing equations or input decisions, i.e., an infor
mational balance. Input decisions derived from engineering environments 
are of level 3 or lower, i.e., they are constant but adjustable. The input of 
information constrains the engineering problem degrees of freedom. The 
entropy of the problem, as a function of the levels of variations, should 
decrease with solution knowledge. This tracks the advancement of the design 
process or method improvement. 

If the system is characterized by integral variables (space and time aver
ages), then the unknowns are reduced to level 3 variability. The solution 
process reduces the level of variability. Therefore, the determined system or 
engineering method has entropy of level 3 variation. System or method 
improvement is attained through the engineer-controlled virtual process of 
level 1, 2, and 3 variations. Therefore, the problem solution effectiveness 
of the engineering system is measured by how the levels of variation of 
a problem decrease. The entropy tracks the problem's highest level of 
variation. 

Nonlinear systems are not well behaved and may produce instability and 
multiple solutions. For example, LaFleur (1991) gives the design of pipe 
insulation using four methods. The genetic algorithm results in a nonlinear 
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design evolution that has a "strange attractor" as a fuzzy region of solutions. 
In this case, the solution process does not fully reduce the problem level of 
variation completely and leaves degrees of freedom. The remaining degrees 
of freedom require extra information inputs leading to one system design or 
one engineering method. In the case where nonlinearity produces multiple 
solutions, one must be selected. Human control is a virtual process and 
constitutes artificial selection (LaFleur, 1990b). The natural selection is a real 
process produced through fluctuations that act on unstable solutions that 
separate regions of stable solutions. 

Using the variable hierarchy, the entropy can be stated in terms of vari
ables with different levels of variations, from constants up to random vari
ables. The engineering method's effectiveness is accountable in terms of how 
unique (linear) problem solutions are found or how nonunique (nonlinear) 
solutions are selected naturally or artificially. 

7. Summary 

Entropy was hypothesized to meet the single measure criteria as a common 
basis for measuring the effectiveness of designed products, engineering 
methods, and technical systems. The entropy function thermodynamics were 
reviewed and entropy was found to be widely applicable over macroscopic to 
microscopic scales, equilibrium or nonequilibrium processes, and continuous 
or discrete systems. Entropy was found to apply to the decomposition of a 
system into smaller subunits and to the combination of components into a 
system. The general system was treated as a sum of subunits that themselves 
may be systems. The treatment of a system's environment as a system iden
tifies environmental entropy. 

Multifunctional system performance can be measured using the entropy 
calculated from the special actions of mass species, thermal energy, and me
chanical energy on the systems's boundary. Internal fluxes that cause entropy 
production could be modeled in terms of boundary fluxes for specific engi
neering domains. Qualitative variables can be converted to quantitative mea
sures of entropy by tracking the number of degrees of freedom, number of 
configurations, and the probabilities of each configuration occurring. 

The entropy function is related to the engineering problem's level of varia
tion. Important variables are sorted into a variation hierarchy where implied 
relationships govern the overall problem level of variation. Both natural and 
human controlled processes in engineering design are tractable through the 
natural and virtual processes of the entropy function. The increase of under
standing is the statement of variables and relationships between them. 
Knowledge reduces the problem's level of variation. Therefore, research 
on applied design, new methodologies, and testing of hypotheses could be 
tracked using the single measure of entropy. Design science advances are 
reflected by lowered entropy. 
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Design Education 

KENNETH J. WALDRON AND MANJULA B. WALDRON 

Abstract. The instruction of design in engineering curricula has long been 
controversial. New influences such as changes in industry practices, changes 
in the approach of the profession, as reflected in accreditation criteria, and 
changes in the legal and regulatory environment within which we must 
operate, mandate some rethinking of design instruction. Some traditional 
approaches continue to be useful, but new technical materials and methodol
ogies must be incorporated into already crowded curricula. Some sugges
tions are provided in this chapter. 

1. Introduction 

The essential difference between an engineer and a scientist is that the engi
neer creates new artifacts and technologies, whereas the scientist studies the 
world as it currently exists. The parts of engineering that relate directly to 
this creative or synthetic activity are design and manufacture (Waldron, 
1992). In some engineering fields we are not accustomed to think in terms of 
"manufacture," but there are other, equivalent words such as construction, 
which is really the same concept applied to artifacts of larger scale. In other 
cases the engineer's product may be a process chart, or a set of software. 
Nevertheless, some sort of artifact is produced, and there is a sophisticated 
planning process involved in the production of that artifact. 

Design is planning for manufacture. An excellent command of manufac
turing processes will avail nothing without good design (Hoover and Jones, 
1991). This point has tended to be lost in the current concern over improving 
manufacturing industry. 

Is there enough emphasis on design in engineering education? This is an 
old question that we keep revisiting. Nevertheless it is an appropriate ques
tion at this time for several reasons. 

One reason is the new Accreditation Board for Engineering and Technol
ogy (ABET) criteria. These specify one year of mathematics and basic sci
ences, one-half year of humanities, and one- and one-half years of engi-
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neering topics. There is no longer any set number of hours for design as 
opposed to engineering science topics. There is a requirement for a meaning
ful design experience toward the end of the student's educational program. 
There is also a requirement for the integration of open-ended problems 
throughout the curriculum. 

Another reason is that industry has now absorbed the concept of concur
rent engineering into their culture, and they are demanding that students 
have experience in working in teams and, in particular, in cross-disciplinary 
teams. 

Yet another reason is the current trend among university administrations 
to insist that curricula extend over no more than 120 semester credit hours. 
Since almost all engineering curricula currently require substantially more 
credits than this it is predictable that there will be pressure to cut material. 
Time in the curriculum devoted to design activities will be vulnerable to 
reduction under these pressures. 

The new ABET criteria (Engineering, 1994) throw the responsibility for 
ensuring that our curricula have appropriate design content onto us, the 
engineering academic community, and onto the professional community of 
which we are part. It is no longer possible to hide behind the ABET require
ments. Equally, it is no longer possible to use them as a reason for a lack of 
innovation. It is up to us whether we treat this as a disaster, or as an 
opportunity. 

As far as providing experiences in working in multidisciplinary teams is 
concerned, we are at the same point that industry was at 5 or 10 years ago: 
we are not set up for that kind of activity. We will not get much sympathy 
from our colleagues in industry, since, in many cases, companies had to go 
through very painful restructuring exercises to get to a point that they could 
fully utilize the interdisciplinary teaming ideas of concurrent engineering. We 
need to get to work and remove whatever barriers we may have to this mode 
of operation. 

Students learn to design by doing it (Koen, 1994). Meaningful project 
experiences must form the core of any educational program in engineering 
design. This is because it is in part a creative activity akin to that of a creative 
artist. The medium is different and is, in fact, very much more complex, but 
the nature of the process is very similar. 

This central fact has made design instruction the bane of generations of 
academic administrators. Design resists being taught "efficiently" by pack
ing students into lecture classes that can be taught with minimal faculty 
effort. Design instruction demands individual interaction between the stu
dent and the instructor. Consequently, design instruction is manpower inten
sive and does not fit when universities make policies about course section 
sizes and instructor workload. 

Another consequence is that design resists attempts to tum it into a "sci
ence" (Dixon, 1988). It is, fundamentally, a synthetic activity. Sciences are 
fundamentally investigative activities. Once again, design does not fit the 
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pattern. Consequently, faculty who make design their primary focus face 
problems with the promotion and tenure process when that process is based 
on a narrow, science-based definition of scholarship. This does not have to 
be. Most universities also use different definitions of scholarship as criteria 
against which synthetic activities are judged. There is no reason these defini
tions cannot be adapted to evaluation of design activities. However, the use 
of design activities in promotion and tenure is perceived to be a problem by 
engineering faculty, which negatively impacts their willingness to commit 
effort to design activities and design instruction. 

For all these reasons, there is a continuing tension in engineering curricula 
between the need to give instruction in design and the tendency to reduce, or 
even eliminate that instruction since it doesn't fit the primary instructional 
paradigm of the university for science-based subjects. 

2. Project Work 

As was pointed out above, students learn design by doing it. The provision 
of meaningful project experiences is therefore crucial in any design curricu
lum. Of course, good feedback on the project work is essential to the learn
ing experience. The most effective feedback comes from having the artifact 
designed actually manufactured as a prototype. Many manufacturing prob
lems will not be identified until a part is put in the hands of a technician 
for manufacture. It is important for students to learn, early, the importance 
of communicating with those who will be making the artifact. Functional 
shortcomings may not be easily envisaged when the design only exists on 
paper, but will be immediately apparent when it is prototyped. Finally, the 
experience becomes more vivid to the student and is consequently better 
remembered. 

It is easy to shy away from carrying projects through to manufacture of a 
prototype. Large and expensive artifacts, such as civil engineering structures, 
may be economically impossible to prototype. Even smaller items may be 
expensive to prototype, particularly since most prototypes must be predomi
nantly handmade. Nevertheless, carrying projects through to the prototype 
stage gives the students the best possible design experience. 

Paper projects, in which only drawings and specifications are produced, 
may be the only viable option given the fiscal and temporal constraints of the 
program. However, to be effective, a paper design project must be exhaus
tively critiqued by one, or preferably several, experienced designers. Doing 
this in the format of a design review in which the students must present their 
work for criticism by the rest of the class, the instructors, and experienced 
invited experts, is effective in focusing the students' attention by requiring 
them to defend their work. The feedback obtained may not be as effec
tive as having a prototype manufactured and tested, but it will certainly 
pick up major shortcomings. It should be emphasized that a paper design 
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project without adequate feedback to the students is of little instructional 
value. 

All ofthis requires instructors with significant design experience. Unfortu
nately, for reasons discussed in the introductory section, many engineering 
faculty are not equipped to be effective design project instructors, and many 
are not willing to put in the necessary effort to work with the students 
effectively. Some schools solve this problem by hiring experienced designers 
who have retired from industry, or who work on a part-time basis as instruc
tors for design projects. 

Project work is also essential to provide students with project management 
and team-working experience. Ideally, each project should be conducted by 
a team with members from a variety of relevant academic backgrounds. This 
might include students from outside the engineering college, such as students 
from business, communication, or industrial design, as well as students from 
several engineering disciplines if the project is broad enough. After many 
years of being discouraged from collaborative work, students often have 
difficulty adapting to the team situation. 

Use of project management tools, such as a statement of work, a Gantt 
chart, or other time scheduling tools, and, of course, a budget should be 
required (Ulrich and Eppinger, 1995). Students should learn about profes
sional conduct and division of work in team-working situations. 

Students need to be aware that a design can be viewed as a hierarchy of 
decisions. When making a design decision, the designer sets a dimension, or 
selects a material or component. There is a second set of decisions, which are 
decisions which direct the design process. These are decisions about what to 
do next, or about how far to pursue analysis or experiment. They are man
agement decisions. 

Students also need to understand that an important feature of design is 
that the available time, and resources, become constraints on the design 
process. Often, complete analysis cannot be performed within these con
straints. The designer must then make design decisions with only partially 
quantitative information. There is an important set of decisions in any design 
project which trade-off the quality of information that can be obtained by 
further analysis against the time and resources required to obtain that infor
mation. A finite element analysis of a part requires considerable expense in 
personnel time to generate the model, and computer time to analyze it and 
present the results. It may also take several days to yield results. If computa
tions using simple strength of materials models indicate that the factor of 
safety is large there is no point wasting those resources on the finite element 
analysis. Even if the strength of the part appears to be marginal, if time and 
money is short, cruder but less expensive alternatives to further analysis will 
be used. For example, the cross-section might be simply increased to a size 
judged to be safe, or a higher strength material might be selected. 

A consequence is that designers must often make decisions on the basis of 
incomplete information or, more accurately, on the basis of incomplete in-
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formation from analysis combined with the knowledge base generated by 
their integrated experience. Such decisions can be very difficult, particularly 
when the success or failure of the project hangs on them. Nevertheless, they 
must be made. Making these judgment decisions is a new and important 
experience for students who are accustomed to "black-and-white" situations 
in which there is only one right answer, and analysis is pursued until that 
answer is manifest. 

An increasing number of schools are using projects from industry (Bailey, 
1995), and are expecting the sponsoring company to contribute to the costs 
of prototyping the design and operating the course (Beach, 1993; Roeder, 
1994). This strategy eliminates the objection to manufacturing prototypes on 
grounds of cost. It can also make proper levels of course staffing more 
palatable to administrators. Most important, it ensures that the problems 
used are real problems, and are perceived as such by the students. This 
practice also provides an important interaction with the industry sponsor, 
and provides a real customer to which the group must present their work. 

3. A Design Methodology 

Although the primary means of learning design is by practice, students 
and experienced designers need structure to enable them to find their way 
through the process. This is the function of design methodology. There has 
been a lot of attention paid to design methodology in recent years. Such 
concepts as Quality Function Deployment (QFD) (Clausing, 1994) and Con
current Engineering are design methodologies (Ullman 1992; Wesner et al., 
1994). Unfortunately, the presentations in many traditional textbooks are 
grossly oversimplified and misleading. This is, in fact, an extensive and 
complex subject. 

Although the prescriptive presentation found in most older books (Pahl & 
Beitz, 1984) is incomplete and therefore misleading, it is a useful starting 
point for presentation of design methodology. Figure 14.1 has been used by 
the first author for some years when introducing the subject. This figure 
shows a generic flow-chart of the design process. The portion of the chart to 
the left of the heavy dotted line deals with the activities of the human design 
team. The items to the right of that line are computer-based tools that can be 
used in the appropriate portions of the process. 

The three blocks in the top left-hand comer deal with the identification of 
the problem by "the customer," and the interactions between the design 
team and the customer, or sponsor. The process begins with a perceived 
need. It is useful for the students to be able to negotiate the specifications 
upon which the design is to be based with a real sponsor, as occurs in 
professional design work. The original specification from the sponsor will 
often contain data in forms that are not directly useful for design purposes. 
Students need experience in identifying the data they need to drive the design 
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FIGURE 14.1. The design process. The central stem represents the major activities of 
the design team. The three blocks in the top left-hand comer represent the interac
tions with the sponsor of the project that result in the specifications which drive the 
design process. The blocks to the right of the heavy dotted line represent computer
based design tools which might be used in the design process. 

process, and extracting that information from the sponsor's requests. QFD 
techniques are useful for this transformation (Fleischmann, 1994) and com
puter tools such as ITI's Quality Capture™ are now available for students to 
create their house of quality (Hale, 1995). 

The central stem of Figure 14.1 indicates activities which are primarily 
carried out by the design team. In particular, the three blocks indicated by 
the heavier lines might be regarded as forming the "core" of the design 
activity. 

The conceptual design block represents the part of the process that encom
passes the formulation of the concept upon which the design will be based 
and the approximate determination of major dimensions, and selection of 



www.manaraa.com

14. Design Education 305 

major components. The analytical design block represents the phase in 
which the design concept has been identified, and the major features have 
been sized, at least approximately. This is the process of refining the sizes of 
major elements and setting all important dimensions. This is done by means 
of intensive analysis of the system being designed and its component parts. 
The detail design block represents the part of the process in which fully 
dimensioned working drawings are produced of all parts to be manufac
tured. Minor components, such as bolts and other fasteners, may also be 
specified, and most tolerances will be specified during this stage. 

Attention needs to be drawn to the characteristic of the design process that 
design decisions made earlier in the process provide constraints on later 
decisions. For this reason, the further the design progresses, the more tightly 
constrained it becomes. The conceptual designer operates with very few 
constraints. This can be a problem for students and junior engineers, since at 
this stage there is no "reference frame" in which to operate. Once the concept 
has been set and the major features designed, all later design decisions must 
be compatible with those made earlier. The nature of the design decisions 
which must be made therefore becomes increasingly specific. 

This presentation is misleading because the design process is presented 
here as being sequential, with clear boundaries between the different stages. 
This is far from being the case in practice. It will be seen, on Figure 14.1, that 
there are arrows in both directions along the design stem. This is meant to 
indicate the frequent situation in which as the design of a component, or 
subsystem, is pursued in greater detail, it becomes apparent that it cannot be 
built in the form postulated at earlier stages of the process. It is then neces
sary to go back to those stages of the process and change the design, requir
ing, in tum, rework of other parts of the system design. Students should 
learn that this kind of backtracking can greatly increase the duration and 
cost of the design process, and is to be avoided whenever possible. The point 
should be made that early correction of a problem is almost always less 
expensive in the long run. The real solution to this problem is to develop a 
number of alternative concepts in parallel. When problems arise it is then 
usually possible to solve them by switching to one of the alternative con
cepts, reducing rework. One of the important points of working in a team is 
that different team members can develop alternative concepts in parallel. 

The most grievous problem with the presentation of Figure 14.1 is the 
presentation of the process as being a serial process with each stage com· 
pleted before the next is initiated. This is counter to the most important 
feature of concurrent engineering, which is the extensive use of parallelism in 
the design process (Ward 1994). It is tempting to operate in a one-task-at-a· 
time mode, but the pressure from the marketplace for shorter and shorter 
product cycle times requires that each stage of the process be initiated long 
before its predecessor is complete. Again, different members of the team can 
be pursuing different stages of the design process in parallel. For example, 
the design of manufacturing tooling may be proceeding at the same time as 
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analysis of the design itself. The key to making this work is excellent commu
nication among all members of the team. Students need to be taught the 
importance of communication both within the team, and with other con
cerned parties such as sponsors and management. The point needs to be 
made that this cannot be left to chance, and that formal protocols and 
formal reviews are important communication tools. 

It is worthwhile to also introduce some of the more advanced design 
methodologies, such as Quality Function Deployment. There is a great deal 
of terminology from Design for Value, Quality Circles, and other such con
cepts that is freely used in industry. An overview that provides some intro
duction to these concepts will be helpful to new graduates in making the 
transition to the world of industry. 

It is also very important that students are required to estimate the cost per 
unit of producing their design, and that this be done on a realistic and 
comprehensive basis. The relationships between price and volume for differ
ent manufacturing processes, and the costs of specifying unnecessarily tight 
tolerances are fundamental to effective functioning as a design engineer in 
industry. Students must also appreciate the real costs of the design and 
development process itself in order to develop the discipline to be able to 
make good project management decisions. There is never enough time and 
money to pursue analysis to completion. An essential part of the design 
process is deciding how far it is necessary to analyze each function before 
making the necessary design decisions. 

4. Social Issues 

Design projects provide a convenient place in the curriculum to introduce 
instruction on social issues. These range from regulation and liability mat
ters, through intellectual property issues to professional ethics. 

Regulations and standards are, of course, an integral part of the design 
process. It is not possible to provide even an introduction to all of the 
bewildering array of regulatory agencies that govern different industries, and 
to the volumes of regulations that they have generated, without specialized 
courses. However, students must be made aware of the need for designers to 
be knowledgeable about regulations and standards applicable to their indus
try. They should also be made aware of the importance of maintaining 
proper documentation of their work for the purpose of satisfying the certifi
cation requirements of the regulating agency or agencies. A good tool for 
this purpose is the traditional designer's notebook. The discipline of putting 
all work into a suitable notebook, of signing and dating each page as it is 
completed, and indexing the work, carries a message on the importance of all 
of the designer's work, and it's potential value to the employer. It also brings 
home the importance of being able to establish the time at which each part 
of the work was done. 
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Of course, this type of documentation is equally important for establishing 
precedence and rights in patent proceedings. Students do need to understand 
what rights a patent establishes, and the general features of the procedure for 
obtaining a patent. The same is true for copyrights. 

There are many misconceptions in the engineering community regarding 
product liability. Students should receive instruction on their responsibilities 
as professionals, and on those of the companies that may employ them. They 
should understand that a good faith commitment to designing quality and 
safety into a product is usually the best defense against product liability 
actions. It is certainly true that there are horror stories in which even com
panies that have fully complied with applicable regulations at the time of 
manufacture, and have used the best available technology, are still vulnera
ble to product liability judgments. See, for example, Yodice (1992) and Wolk 
(1993). The apparent enormity of these rather rare cases obscures the fact 
that they are aberrations and that companies that use good practices do have 
fewer claims and judgments made against them. Students should be made 
aware that a constructive approach to avoiding liability by early and fre
quent communication between the design team and the legal department is 
also important. 

Finally, ethics and professionalism covers the areas outside of formal 
regulations that are essential to productive interactions with sponsors, 
clients, and other professionals. In our highly competitive industrial environ
ment, the use of another's ideas without attribution has become a rather 
common practice. The maintenance of the respect and trust that is essential 
for all professional interactions is seriously damaged by this and other prac
tices that are commonly justified by competition and proprietary interests. 
Students need to be aware of the negative effects of unethical or deceptive 
conduct, even when that conduct is perfectly legal. They also need to be 
aware of the responsibilities they assume as professionals, and the special 
status attained by certification as a professional engineer. They should be 
made aware that they are members of a professional community that has 
common interests, and that that community may be of assistance to them in 
advancing their careers. They also have a responsibility to that community 
to uphold its professional standards. 

5. Innovative Curricula 

Recently many design education programs across the country have incor
porated some of the above features in their capstone design courses (In
novations, 1993). There are courses developed using concurrent engineering 
practices. Communication, group interaction, and group decision making 
become important. Developing trust, respect, and understanding of knowl
edge and methods used by people from different disciplines becomes crucial. 
Support systems and methods that can facilitate these interactions become 
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important. In Chapter 8 Thurston discusses group decision making and a 
failure modes and effects analysis scheme for information flow. In Chapter 
16 Ramanathan presents a knowledge-based software system that can facili
tate access to timely information and knowledge by different group members 
of the concurrent design team so that better and informed decisions can be 
made. In Chapter 15 Ishii discusses structured methods for life-cycle design 
and design reviews. In this section we present a few selected case studies 
that present different ways in which educators have addressed the issues 
mentioned above. 

Gabrielle (1994) reports using reverse engineering to teach design. That is, 
conducting an in-depth analysis to try to recreate the original design process. 
This is then followed by a re-engineering phase where students create new 
designs. For their projects they selected commonly used household products 
with which the students were familiar such as a hair dryer. They formed a 
team of five to six students to explore the different disciplines involved. At 
the end of the reverse engineering phase they found that the students had a 
real appreciation for the engineering involved in the design of even these 
simple products. 

Fleischmann (1994) reports teaching environmentally responsible design 
to undergraduate students by integrating this theme into their curriculum. 
They used an integrated design approach in response to the industry de
mands that all engineering graduates understand how the engineering pro
fession affects the environment. In order to cope with the amount of infor
mation students need in their curriculum, they integrated QFD and LCA 
tools into the environmentally motivated designs that students were carrying 
out. They developed educational materials that their faculty and students 
could use. These include a project manual that contains information on 
value and ethics, materials and recycling, and case studies, project manage
ment, planning, QFD, LCA, etc. The key to the success of their curriculum 
was to ensure that there was a balance between the complexity which inclu
sion of legal, ethical and regulatory framework provide and the students' 
ability to integrate this material into their projects. 

We used product dissection in teaching life-cycle design issues to create 
world-class products. The premise was that most designs are evolutionary 
rather than revolutionary. As Brown shows in Chapter 9, there is creativity 
even in routine designs. Re-engineering certainly needs more creativity than 
routine design. The students were assigned to teams so that the team mem· 
bers were from as many different backgrounds as possible. This included 
industrial design and mechanical, electrical, and biomedical engineering. 
Each team had four members and had a product and a process coach who 
guided them through the process and product design issues, based on the 
information from the weekly homework exercises and internet communica
tion on an as-needed basis. 

In the course students learnt both the process issues and the structured 
product methods. Through a series of appropriately designed homework 
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assignments the students applied these methods to their own products and 
teams. They carried out structured brainstorming for functional and value 
analysis of their product by creating a why and a how diagram (Ishii et al., 
1994). 

The students also did team-building exercises focusing on trust and respect 
by identifying what special knowledge and talent each team member pos
sessed. Students were introduced to quality principles. Wesner, Hiatt, and 
Trimble's book, Winning with Quality (1994), was a required text for the 
students. Students used the Internet, group meetings, and class discussions 
for communication amongst themselves and with the product and the process 
coaches. 

Students first took apart the product they selected and identified the func
tional and structural relationships. They learnt to transform customer re
quirements through QFD methods by creating a house of quality. They 
carried out value analysis, design for assembly, serviceability, design for 
recyclability, failure modes and effects analysis, and learnt about design 
trade-offs. They benchmarked their products and re-engineered their prod
uct along one of the life-cycle issues most suitable for their product. They 
learnt group decision making and their decision was arrived at through team 
consensus based on data from their DFX analyses. 

The students reported that they developed an appreciation for obtaining 
and integrating information, learning to work with others, and applying the 
knowledge they had gained in their engineering training. One group chose to 
redesign along the user issues identified by QFD analysis. Another group 
chose to pursue safety issues through examination of regulations and user 
requirements, and the third focused on the recyclability issues after carrying 
out a serviceability analysis. 

Bailey (1995) reports the results of a three-quarter capstone design course 
that takes industry-defined "real-life" design projects from product defini
tion to prototype construction and testing. The customers of the student 
teams were the industry personnel who provided them with the projects. The 
student groups developed the design specifications using the QFD method, 
scheduling via critical path techniques, systematic generation of alternative 
designs, selection of criteria for optimal designs, and the construction and 
testing of the prototype. The students used the Internet for communication 
and collaboration and learnt about the relationship of the design process to 
technology transfer. Students worked in groups of three to four. They visited 
their industrial clients and developed their designs with a complete knowl
edge of the industrial setting. The results were impressive. One of the groups 
redesigned the tools and operation of molded packaging in such a manner 
that the net productivity doubled for the client. Both industrial engineering 
and mechanical engineering knowledge was used in the solution. 

Beach (1993) describes his two-quarter integrated design, manufacturing, 
and marketability (IDMM) course. Cross-functional teams of four students 
from design, manufacturing, and marketing worked on projects provided by 
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industry clients. The design was driven by the customer and constrained by 
finances. Team evaluation was based on the firm's profitability. Students ob
tained significant manufacturing hands-on experience and they were coached 
by practicing engineers. The students enjoyed learning different cultures and 
vocabulary and walking through the product realization process. 

All students gained substantial experience in materials and manufacturing 
tools and made manufacturing decisions in the context of market-driven 
information. The students learnt shop practices and, through this experience, 
acquired respect for each others' abilities and learnt a common vocabulary. 
Each team had a volunteer coach from industry who was a practicing de
signer. They learnt about guarding proprietary information. Through the 
Process of Change laboratory the students learnt to combine the "soft" 
issues with the "hard" engineering design issues. By the end of the first 
quarter the students had learnt about conjoint analysis and marketing issues, 
shop practices and had their design mapped out and marketing analysis 
completed. In the second quarter they learnt topics such as QFD, process 
design, and product realization. They worked on the prototype development 
and completed the market simulation. The students made their presentations 
and received feedback from their industrial clients. 

6. Summary 

In this chapter we discuss a design education philosophy based on over 25 
years of personal industrial and academic design experience and on the 
design theory and methodology research results of the last decade. The 
importance of project work is established and a design methodology based 
model for design education is presented. The importance of making students 
socially responsible for their design is emphasized. Several design education 
courses taught in different institutions are presented as case studies as models 
to provide guidance. 
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Life-cycle Design 

K. ISHII 

Abstract. This chapter addresses life-cycle design and describes a model of 
simultaneous design reviews using design compatibility analysis (DCA). Early 
stages of design affect various issues that comprise the life-cycle cost of 
products as well as reliability and serviceability. Our research uses the con
cept of DCA to model the life-cycle cost and customer value of mechanical 
systems. DCA focuses on good and bad examples of designs and gives an 
overall evaluation of designs in a normalized scale. This chapter summarizes 
the methodologies and computer tools developed based on this model. Spe
cifically, the chapter describes computer programs that evaluate layout de
signs and give suggestions for improvement. 

1. Introduction 

Life-cycle design is a practice of incorporating various values of a product in 
the early stages of design. These values include not only functionality but 
also manufacturability, serviceability, recyclability, etc. Figure 15.1 shows 
these values in the life-cycle of a product. It is essential that these issues be 
addressed at this time since life-cycle values and costs are "locked-in" once 
preliminary design is complete. 

Life-cycle design is largely an organizational and managerial challenge. 
However, the rapidly advancing field of computer-aided design provides an 
opportunity to use computers to promote life-cycle engineering more effec
tively. Design for assembly (DFA) is perhaps the most mature of these 
disciplines. Boothroyd and Dewhurst (1983) and many others have proven 
that DF A using computers can provide significant cost savings. There are 
other computer programs that assist other aspects of life-cycle designs (Poli 
et al., 1988; Desa et al., 1989; Cutkosky et al., 1988; Duffy and Dixon, 1988; 
Turner and Anderson, 1988; Simmons and Dixon, 1985). 

In order to promote life-cycle design, we need to model the practice to 
identify the essential elements: parties involved and the necessary informa
tion flow. This understanding will lead to not only organizational innovation 

312 
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Product Life-cycle 

FIGURE 15.1. Life-cycle of products. 

but also effective computer aids for life-cycle design. The main goal of our 
research is to develop a framework for computer programs that help de
signers to evaluate a candidate design with respect to various life-cycle 
values. Design compatibility analysis (DCA), has shown its utility in design 
for injection molding (DFIM), design for forging, design for serviceability 
(DFS), and process selection. 

DCA is a model of design reviews in which experts with different responsi
bilities judge the candidate design from various angles. The concept has led 
to many computer programs. The framework is effective for designer train
ing as well as a preliminary screen for manufacturability and trade analysis 
of several candidate designs. The object-oriented nature of this approach 
accelerates the modeling of the product values and allows us to implement 
"expert's" knowledge at critical stages of design. 

2. Compatibility Methodology 

2.1. Model of Design Reviews 
In the past several years, we have been developing a flexible methodology 
that supports life-cycle evaluation of designs. While we do not claim that our 
framework covers every aspect of life-cycle design, it has proven to be both 
versatile and adaptable. We have applied our compatibility approach to 
design for assembly (Adler and Ishii, 1989), design for injection molding 
(Beiter and Ishii, 1990; Ishii et al., 1989b), forging process design (Maloney 
et al. , 1989), design for serviceability (Gershenson and Ishii, 1991) and pro
cess selection (Ishii et al., 1990). This section gives a brief description of our 
general approach. 

The central idea of our model is to evaluate simultaneously a candidate 
design from multiple viewpoints (Ishii et al., 1988, 1989a). That is, we seek to 
model " round table" design reviews in which the various experts evaluate the 
proposed design and suggest improvements (Figure 15.2). These suggestions 
primarily focus on modification of the candidate design, but may also be 
directed to respecification of the process (use of an alternative molding 
machine, etc.) or even renegotiating the user requirements. 
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Process Engineer Tooling Engineer 

FIGURE 15.2. The model of design review. The compatibility approach models a 
design review in which multiple reviewers with various expertise study a candidate 
design. Each gives his/her own comment about the compatibility between the design 
and the life-cycle value for which he/she is responsible. Note that the compatibility 
comment includes "in between" cases such as "poor." 

Note that in Figure 15.2, each expert describes his/her view of the compat
ibility between the candidate design and his/her field of expertise using an 
adjective qualifier: excellent, very good, good, poor, bad, and very bad. They 
do not have to be adjectives since the qualifiers are eventually mapped into a 
[0, I] measure. The key here is that some compatibility issues are absolute 
design rules, i.e., definitely not permitted, or absolutely good, while some 
others are not so extreme. The qualifier "poor" indicates that the compatibil
ity is undesirable, but if other constraints dominate the final decision, then 
the expert will accept the design. 

Our approach views the experts' design knowledge as compatibility com
ments and compiles them as C-data. A C-data contains an ID number, the 
associated design components/features, compatibility descriptor such as 
"very good" and "poor," reasons and suggestions, and, most importantly, 
the conditions for the data to be true. Some C-data also looks at com
patibility problems within the candidate design and inconsistency in the 
specifications. 

C-data: ID = mbasel 

elements = plate, ribs 

descriptor = poor 
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reason = with wall thickness of Th and edge gating, the 
maximum flow length for the melt is too long and 
may require very high packing pressure. 

suggestion = l. use a center sprue gate 
2. consider multiple gating 
3. increase thickness 

conditions = gate location = edge of the plate. 
plate-thickeness (Th), 
attribute (maximum flow-path)= FP, 
attribute (suggested flow-path) = MFP 
FP > MFP (15.1) 

A collection of C-data comprises the compatibility knowledge-base (CKB). 

CKB = {c-datalc-data c G x X x P x [0,11} 

where: 

G: Universe of discourse of the user requirements 
X: Universe of discourse of the candidate design 

(15.2) 

P: Universe of discourse of the decisions related manufacturing and other 
life-cycle process 

[0, 1]: Normalized measure between 0 and 1. 

That is, CKB is a set of relations between the specification space G, design 
solution space X, the life-cycle process space P, and a rating between 0 and 
1. Figure 15.3 is an example of a poor compatibility for the design of injec
tion molded parts. 

Our model further looks at how the design team combines everybody's 
comments, makes compromises, and arrives at a total "consensus" evalua
tion. Figure 15.3 shows the concept of DCA, which models the evaluation 
process. DCA is a knowledge-based technique for calculating the total nor
malized measure of compatibility. At any time in the development process, 
designers can check their candidate design by comparing the proposed de
sign with CKB. The compatibility model also utilizes the attribute rules 
(qualitative or quantitative) which reason about the characteristics of the 
candidate design and the detailed implications of the specifications. An at
tribute rule may involve the use of design formulae (e.g., stress equations) 
frequently used by designers and process engineers. 

2.2. Decomposing Candidate Designs to Elements 

In order to develop a computer program that utilizes the compatibility 
knowledge, we must describe the data in a form the program can recognize. 
More specifically, the preconditions of C-data must be represented with a 
standardized set of parameters. This section introduces the notion of "design 
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FIGURE 15.3. Representative C-data. Each compatibility information element is con
tained within an individual data card. This card contains the type of element in 
question, the conditions for it to be true, and a rating if this condition is true. 

elements" to allow uniform representation of C-data. Such representation is 
essential if computers are to relate a candidate design to the compatibility 
knowledge base. 

Each expert "breaks up" the part design into different building blocks or 
design elements. Since these design elements are associated with design rules, 
it is important to identify the decomposition process of each expert. These 
elements serve as one of the data organization keys in our compatibility 
knowledge base. Using the injection molding example, we define the ele
ments of a proposed plastic design so that we can organize the compatibility 
information by discrete elements: 

A design element (si) is the smallest physical unit in a design that is of any interest to 
an expert who is evaluating the design. 

Naturally, the element decomposition of a candidate design will be differ
ent among groups of experts. We have adopted the designer's language in 
collecting and organizing design rules and guidelines. Hence, the compatibil
ity data will also be represented in terms of the design elements derived from 
the designer's perspective. In injection molding, an example of such a design 
element is Boss 1 shown in Figure 15.4. 
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FIGURE 15.4. Model for a computer plastic cover. This sketch environment allows 
the user to define individual elements of the proposed design as well as interactions 
between elements. Each element (boss, rib, snap, etc.) is further defined by answering 
questions regarding their size, thickness, and overall dimensions. 

The tooling engineer or process engineer views the candidate design from 
different perspectives, which typically involves several design elements. For 
example, a tooling engineer may identify a design rule associated with how 
closely a rib can be incorporated in a mold. This rule will involve not just one 
rib but two, e.g., Rl and R2 in Figure 15.4. Hence, two rib elements will fill 
the (elements) slot in the corresponding C-data. 

In short, the (element) slot in the C-data is a mapping for cross
referencing the interest of the designers, tooling engineers, and molders. As 
the next section explains, DCA checks the candidate design for compatibility 
of each element with respect to other elements. 

2.3. Computation of the Compatibility Index 
For any individual expert or combinations of experts, the model computes a 
match index (MI), a measure of compatibility between the expert's rules and 
the design. Figure 15.5 shows the flow of DCA. 

Given a description of the proposed design and the design specifications, 
DCA analyzes the individual elements relative to the specifications. Then, 
for each element that makes up the design, DCA selects from the compatibil
ity knowledge base the data that applies to it as matching compatibility data 
(MCD). The applicability criteria of the C-data is twofold: (1) the element 
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must be referred to by the C-data, and (2) the design must satisfy the condi
tions in the C-data. 

Then, the program rates the compatibility of each design element with 
respect to applicable C-data and computes the match coefficient index. This 
computation utilizes the function MC which maps MCD into a number 
between 0 and l. The function MC operates as follows. Each C-data in 
MCD includes an adjective descriptor that takes the value {excellent, very 
good, good, fair, bad, very bad}. The program maps these descriptors into a 
numerical code {1.0, 0.8, 0.6, 0.4, 0.2, 0.0}, respectively. Hence, then adjec
tives are mapped to n set of numbers between 0 and 1. We then use the 
function bestinfo to total this set of numbers into a single match coefficient, 
M(s) E [0, I]. In our application, the function bestinfo takes the rating of the 
worst C-data if there is at least one "negative" comment (ratings less than 
0.5) about the design; otherwise, bestinfo takes the best C-data. If MCD is 
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empty, i.e., there is no reason to believe the design is bad nor good, the match 
coefficient is assigned 0.5. Note that the function MC is user definable, i.e., 
one may adopt other mapping such as taking the mean. 

The total evaluation for the entire set of elements is the match index: 

where: 

Ml = I:Ku(s) · M(s) 

MI = the match index 

K = the set of design elements 

u(s) = the weight of evaluation of elements [I:Ku(s) = 1.0] 

M(s) = value of individual C-data 

(15.3) 

Hence, design compatibility analysis gives a normalized rating for a candi
date design. 

DCA: G X X X p X CKB -+ [0, 1] (15.4) 

Note that the match index is only an averaged measure of compatibility 
and does not reflect situations where most design elements are compatible 
but some minor elements are not. This element may seriously jeopardize the 
entire design. Hence, a good design has a high match index and a narrow 
range of the match coefficients over the set of design elements. 

Note that each design element has an associated weight of evaluation, u(s). 
As described previously, a design element is related to the functional decom
position of the design. Hence, we can interpret u(s) as the weight of impor
tance of the associated function of the element. A designer can assign the 
weights according to his/her needs. As a default, each element will have 
equal weight. The match index, then, is the measure of how well the design 
satisfies the requirement and how compatible this function is with other 
elements. 

3. Applications of DCA 

DAISIE (Designers Aid for Simultaneous Engineering: Adler and Ishii, 
1989) utilizes an object-oriented programming environment devoted to aid 
life-cycle design using DCA. The underlying languages are Prolog and 
HyperCard. DAISIE has served as a platform for several life-cycle design 
aids: 

1. Design for serviceability (Gershenson et al., 1990) 
2. Material and process selection (Ishii et al., 1990) 
3. Design for injection molding (Ishii et al., 1989b) 
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In addition, a research group at Stanford University applied DAISIE to 
design for assembly (Ishii, Adler, and Barkan, 1988). DCA has also been 
successfully applied to the tribological design of machine elements (Ishii, 
Klinger, and Hamrock, 1990). 

Various design interfaces are available depending on the application. For 
the injection molding system DAISIE/DFIM, designers can describe their 
proposed design in a "shorthand sketch" (MacDraw-like sketching environ
ment, Figure 15.6). DAISIE asks the user questions regarding the require
ments and process constraints through HyperCard. The system uses DCA to 
evaluate the compatibility and suggests remedies/improvements through tex
tual and pictorial information. 

3.1. Design for Serviceability and Reliability 
A current trend in industry is to produce designs that are as simple as 
possible to assemble (design for assembly [DFA]). Very often, but not 
always, DF A leads to more reliable designs due primarily to the reduced 
number of parts. Unfortunately, DFA may sometimes lead to designs that 
are very difficult to service. 

Some systems designed for assembly may be impossible or very difficult to 
replace in the field. The lack of tunability or adjustability of some DFA 
designs may degrade the performance of the device after servicing. The 
possible enhanced reliability due to DF A and modular designs, i.e., reduced 
service frequency, could be offset by an increased cost of each repair. Hence, 
manufacturable designs without thorough consideration for serviceability 
and reliability could lead to unexpected increases in servicing and warranty 
costs. In addition, the intangible effects on customer satisfaction could be 
quite significant. 

Many companies have compiled comprehensive guidelines for serviceabil
ity design. The guidelines address, for various service modes, (I) provisions 
to detect servicing needs, (2) design features to enhance the ease of servicing, 
and (3) estimated life-cycle service cost. However, the strong push for manu
facturability (assembly, modularity) sometimes compromises serviceability 
and reliability considerations beyond a justified level. We are developing 
applications for some major automotive industries to help designers to ac
cess their proposed designs with respect to serviceability. 

Recently, we have developed a computer aid to analyze the life-cycle 
service cost of automotive systems and provide suggestions that improves the 
serviceability of candidate designs (Gershenson and Ishii, 1991). The system, 
based on DCA, allows the user to describe the layout/configuration of pre
liminary designs using icons and links (Figure 15.6). The system further 
performs what we call "phenomena-based serviceability analysis." This 
method identifies cost driving service modes, analyzes the life-cycle service 
cost based on these phenomena (service modes), and maps the costs to the 
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t.le)or Assembly 

FIGURE 15.6. Design description using icons. This pallet allows the user to define the 
method of assembly/disassembly of the individual components or modules within a 
car door. 

actual construction of the candidate design (Figure 15. 7). Figure 15.8 shows 
the design suggestions. 

This method, service mode analysis (SMA) has been applied to door 
hardware systems at General Motors, to power train systems at Ford, and to 
appliances at General Electric. We are currently extending the methodology 
to accommodate advanced planning for product retirement and recycling of 
recovered materials. 

3.2. Material and Process Selection 
Most people agree that the cost and quality of a product are " locked" into 
the layout design. Many companies are actively pursuing means to integrate 
the life-cycle values of the product early in its development. In particular, 
design for manufacturability (DFM) has provided engineers a systematic 
methodology to reduce development time, cut production cost, and reduce 
defects. DFM typically focuses on the particular manufacturing process, 
e.g., machining, stamping, injection molding, assembly, etc., and seeks to 
incorporate into the early product design features that can prevent manufac
turing problems and significantly simplify the production process. 
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While this type of activity certainly enhances product competitiveness, it 
usually applies to a specific process. What precedes DFM is a very important 
decision; selection of the material and manufacturing process. 

Frequently encountered process selection targets include (1) electronics 
housing: sheet metal forming or injection molding; and (2) automotive parts: 
machining or die casting or investment casting. These decisions not only 
affect the DFM methods that follow, but also the product's overall market 
competitiveness. 

A variety of factors influence this decision, many of which cannot be 
estimated accurately, e.g., volume of sales. While there are many handbooks 
for qualitative guidance in selecting a process, they do not provide a quanti
tative means to compare the suitability of each process to a given part. 
Today, most engineers select a process based on their experience and intu
ition in addition to "guesstimation" (estimation based on educated guesses) 
of many of the influencing factors. Engineers can greatly benefit from a 
design tool that allows them to compare different processes in a more 
rational, systematic manner, utilizing as much quantitative information as 
possible. 
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FIGURE 15.9. Geometric specifications. This card is asking the user for information 
regarding general shape. The total enclosed volume of the product is also specified. 
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FIGURE 15.10. Ranking of candidate processes. The program uses DCA to rank the 
compatibility of candidate processes to the product specifications. 

The application HyperQ/Process is used to determine the most appropri
ate and cost-effective manufacturing process for a proposed design. Again, 
it uses DCA to evaluate the compatibility of a given specification with 
various candidate manufacturing processes. The program receives the prod
uct specifications in three modules: (l) geometry, (2) production, and (3) 
material and mechanical strength (Figure 15.9). Then DCA ranks the com
patibility of commonly used manufacturing processes (Figure 15.10). If the 
user requires further analysis, DCA illustrates the details of its compatibility 
studies (Figure 15.11). The program is undergoing field testing in several 
companies. 

3.3. Design for Injection Molding 
This application, which we now call Hyper Design/Plastics, evaluates proposed 
product designs for their compatibility with the injection molding process. 

The user sketches a design then selects icons from a floating pallet and 
places them upon the drawing (Figure 15.12). The application then asks 
questions regarding each feature, such as, rib height, wall thickness etc. Once 
all the feature data and interaction information is entered the application 
evaluates the design with respect to its built inC-data. A rating from 0 to 100 
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FIGURE ·15.11 . Process-specific output. This card shows a specified process rated in 
the areas of material, production, and geometry. The card also shows which C-data 
applied to this example, and leads the user to improvement ideas. 

is returned along with reasons for the rating and suggestions to improve the 
design (Figure 15.13). 

4. Conclusion and Future Work 

This chapter addressed the methodologies and computer programs that help 
designers incorporate various life-cycle values into early designs of a product 
with appropriate balance. The proposed method of design compatibility 
analysis captures the design guidelines and cost models in a compatibility 
format. DCA uses the object-oriented compatibility data to (1) compute an 
overall "goodness" of designs, (2) give reasons, and (3) provide suggestions 
for improvement. 

The previous applications have proven useful as training tools for inexpe
rienced designers. Our current effort addresses the on-line use of the previous 
applications as well as the integration of multiple life-cycle values. Through 
these efforts, we hope to enhance the concept of design compatibility analysis 
to encompass not only qualitative guidelines but also quantitative cost 
models. More specifically, our future research will address: 
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directly from a CAD application. 

0 Ulsuols(o 11) 

dlim1009 bod bO>l_l 
d!imiOII bod boss_! 
d!iml026 poor boss_! 
d!imiOIO poor bo>S_I 
dfim1008 poor boss_! 
d!iml012 bod holt_! 

E!l! 

U•• ••r1e• of•h'lr...,.,"""'---------=rr-__. 
·rib lhicknt.!ls 3hou&d M: no mort Uw160• of 
1be nominal v.n thicl<ne>S 

·.3pKinc: btrvt:en n"'bs o! at lt:u• N'ict W 
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1. Systematic identification of user's life-cycle requirements 
2. Methods to represent and store design alternatives 
3. Comprehensive measure of "goodness" of design 

In addition to these fundamental goals, our group is now addressing 
recyclability. The natural extension ofmanufacturability and serviceability is 
the impact of product designs on the utilization of the components and 
materials after the product's useful life. The question of recyclability is criti
cal as we deplete the earth's limited resources and quickly fill our environ
ment with hazardous waste. Our research efforts focus on design constructs 
that are compatible with easy disassembly, separation, and identification of 
source materials, and their reprocessing. 
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16 
Support for Workflow Process 
Collaboration 

JAY RAMANATHAN 

Abstract. Global competition has created a tremendous need to streamline 
the total collection of activities (or the workflow process) by which high
quality products are designed, maintained, and serviced. To meet this need, 
companies are embarking on practices like integrated product-process design 
and team-oriented management. These practices attempt to identify and 
address different types of constraints early during design to reduce problems 
and iterations in "downstream" activities. Numerous individuals must then 
apply these practices when developing each product component. Given that 
various disciplines and departments are also involved, the problem of man
aging the workflow process is quite complex. Furthermore, existing applica
tions developed over the years must somehow be leveraged in any solution. 
A fundamental challenge addressed here is to develop process-driven infor
mation systems to actively assist the way in which each worker, within each 
department or job category, performs each one of these activities correctly. 
By ensuring correctness and timeliness within the context of the overall 
workflow process, dramatic cost and cycle-time reductions are achievable 
while producing quality products. 

1. Introduction 

Collaboration required to support enterprise-wide practices often involves 
numerous disciplines and must be structured to ensure value is, in fact, 
incrementally added to the product. While structure is often desirable, some 
processes are more ad-hoc. The term workflow process is used here to refer 
to the collection of activities (structured or ad hoc) that must be performed 
by different types of workers who must collaborate for any professional 
endeavor. (The adjective workflow distinguishes the human work activities 
from processes performed by tools that manipulate materials, and from 
business processes that focus on functional decomposition as opposed to the 
flow of control between activities, as we shall see later.) 

Focusing on workflow process support for concurrent engineering, it is 
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important to note that workers from different departments or job categories 
must collaborate to both identify and address two types of interacting con
straints. One type is process-related and arises out of enterprise-specific 
policies and manufacturing issues (such as properties of existing tools or 
quality criteria). These process constraints, in turn, provide the context for 
the other type, product-related constraints. Based on process constraints, 
product requirements are refined and addressed during conceptual and de
tailed design. Terms like concurrent engineering, integrated product design, 
and life-cycle engineering are often used to describe the identification and 
refinement of the interacting product/process constraints and to differentiate 
this design methodology from detailed product design performed in isolation. 

Networked hardware and software systems are required for the cost
effective support for collaborative work. But, "integration" must go beyond 
the mechanics of transmitting, exchanging, and sharing data in a networked 
environment. The hardware/software system must actively "know and as
sist" the collaborative workflow process. An enterprise may follow a specific 
discipline or workflow methodology in its use of existing software. This 
knowledge must be represented in a machine-readable form and used to 
actively guide engineers through a collaborative workflow process that ex
ploits investment in software. Here, we will refer to an integrated software 
system that supports a workflow as an assistant. 

Considerable work has been done in groupware (ACM, 1991; Ishii, 1991) 
and a variety of products (like mail and calendar systems) are now available 
commercially. The focus of these efforts has been in facilitating unstructured 
collaborative interaction between users at different workstations. An exam
ple is the collaborative editing of documents or drawings. In this case, one 
user performs the editing and other users at other workstations can see the 
results and make contributions by editing the same drawing. In addition, 
artificial intelligence research has concentrated on the problem-solving na
ture of detailed design conducted by individuals. More recent research in 
design emphasizes the process-oriented nature of large-scale design (Wal
dron, 1988; Waldron and Waldron, 1988). Issues of making the project plan 
and team decisions visible to the concurrent engineering team have been 
studied by efforts reported i~ Kyung (1991) and Klein (1993). Process model
ing and project managem~nt within software engineering have been ad
dressed by Krasner (1992). The design of knowledge-based information sys
tems has been reported in ~shok (1987); Chandrasekaran and Johnsonson 
(1992); Fisksel (1989); Gup}. and Madnick (1987); Kannapan (1993); Rama
nathan and Sarkar (1988); arkar (1989); and Williams (1990). 

The cost-effective develo ment of information systems for design, manu
facturing, and logistics has also been the concern of a spectrum of national 
and international efforts, like the United States Air Force's IISS (Integrated 
Information Support System) (Althoff, 1990; WRDC, 1990), ElF (Enter
prise Integration Framework) (ElF, 1990), liCE (Information Integration 
for Concurrent Engineering) (Mayer, 1993), DARPA's DICE (Defense 
Advanced Research Projects Agency Initiative in Concurrent Engineering) 
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(Ramana, 1993), CALS Industry Steering Group (CALS, 1991), KIDS 
(Knowledge Integrated Design System) (KIDS, 1990), and European Com
monwealth's ESPIRIT (AMICE, 1989). These efforts are being conducted 
to define standards-based information architectures to support the require
ments of concurrent engineering, manufacturing, and logistics. While all 
these efforts emphasize that building cost-effective information systems is 
an interdisciplinary effort involving organizational and behavioral theories, 
networking, database, artificial intelligence, and software engineering tech
niques, they each also emphasize the need for process management. Some 
efforts go beyond stating the need and outline a strategy. A good example is 
the draft standard (U.S. Department of Commerce, 1993) for Functional 
Process Improvement within the Department of Defense. 

The disciplined, process-model-based approach to collaboration presented 
here has evolved out of the OBID (Object-Based Integrated Design) project 
-an Air Force SBIR grant to commercialize technology relevant to concur
rent engineering-and related research programs and conducted over the 
past 12 years (Alroy, 1991; Blattner, 1979; Ramanathan, 1993; Ramanathan, 
1987). Driven by the process management requirements of organizations, the 
focus is on modeling different roles that must enact the discipline represented 
in a workflow process model. When the model is negotiated, created, and 
agreed upon by the collaborators, it is used by a process model-driven 
software assistant to govern the collaborative enactment of workers on 
the actual projects. Thus, the assistant supports design as a collaborative 
problem-solving activity involving steps (and decisions) that transform 
product information from one form to another. Many different types of 
problem-solving agents, such as workers (engineers), analysis software, expert 
systems, and a variety of database applications, are also managed by the 
assistant in order to transform and develop the product information. Fur
ther, support is for long-term collaboration requiring the global state of 
the problem-solving and the manipulated information entities to be saved 
in a database. Man~gement visibility is provided by metrics such as queue 
times of activities, delays, and other attributes of the global state. Process 
management as a technology is also positioned here in the context of the 
information system architectures. 

Thus, this chapter reflects an interdisciplinary perspective in developing 
assistants for workflow process support and management. It also discusses 
and assesses their tremendous commercial impact and viability. The chapter 
also includes future process management technology issues that need to be 
addressed both from an engineering and an information systems perspective. 

2. Problems Due to Lack of Process Assistance 

In this chapter, problem scenarios arising from lack of support for different 
types of workflow processes are examined. Though the workflow problems 
examined here are related to design and manufacturing, similar problems 
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exist due to lack of process support in many professional endeavors. Assis
tants, which have been developed and utilized in commercial pilots by aero
space industry vendors to support the users and address the problems in each 
of these scenarios, will be presented later along with measured and signifi
cant productivity improvements. 

Existing Problems in Interdisciplinary Design and 
Manufacturing 

The first user scenario considered here presents the difficulties encountered 
when engineers attempt to design blades for multistage jet engine compres
sors. Currently, design is done collectively by aerodynamics, stress, dynam
ics, and mechanical engineering specialists using mainframe application pro
grams that have been developed over the years to analyze different design 
parameters. Typically, each type of engineer must make key design decisions 
(e.g., blade thickness, T/C ratio, attachment design, tilt and lean, etc.) that 
determine how other engineers use those decisions to set up the parameters 
and invoke analysis applications. Based on each application function in
voked, other key decisions are made or earlier decisions are rejected and 
design must iterate between the disciplines. Today the design process is 
hindered by many factors: 

• Manually allocating work to engineers and keeping track of the status of 
each blade design rapidly approaches exponential complexity because of 
the need to keep track of the decisions associated with each department, 
each application, each blade number, each compressor stage, and each 
design iteration. 

• Difficult for engineers of one specialization to anticipate downstream 
problems that their design decisions might create for engineers of another 
specialization. Selecting design alternatives that reconcile downstream 
problems is especially difficult for a novice engineer. 

• Considerable effort is expended in setting up the correct application invo
cation calls, based on earlier project-specific decisions, and getting into 
and out of applications. 

• Difficult to maintain design histories to gain insight that would help refine 
the design process. Because of this, key process decisions leading to pro
cess improvement are typically lost. 

• Lack of knowledge regarding the precise status of design, despite the use 
of project management tools. While project management tools are used, 
they often reflect an inaccurate status because they are updated off-line 
based on information that does not reflect all the exceptions, problems, 
and the variations from the planned project. These inaccuracies soon lead 
to major perturbations of the plan. 

Due to the problems presented above, the design of a compressor tradition
ally takes many months. 



www.manaraa.com

16. Support for Workflow Process Collaboration 333 

The next example has to do with assembling a product and occurs further 
downstream. Most companies find themselves with critical product informa
tion missing, misplaced or in some engineer's "private" database. Because a 
way to improve quality is to assemble a complete set of product information 
for manufacturing, it is necessary to assemble a complete product informa
tion packet (which may, in turn, be stored in a product data management 
system). This packet can then be provided to manufacturing. The problems 
in assembling the packet are numerous: 

• Time consuming to interact with multiple applications and databases
manufacturing database for open orders, bill-of-materials database for 
the drawings and process plan, and other databases where specific product 
information may reside (if it does not reside in the product data manage
ment system yet). 

• Time consuming to track the exact status for each open order (e.g., which 
drawings and process plans have been completed for this order). The 
production planner often needs to make numerous phone calls to deter
mine which order can, in fact, be released based on a complete informa
tion packet. 

• Time consuming to contact appropriate engineering departments to de
velop pieces of the information (i.e., CAD drawings, process plans, etc.) 
and have the information appropriately reviewed. 

• Lack of precise status makes it impossible to provide accurate feedback to 
customer on planned availability of the product. 

Even after information is provided to manufacturing, further problems 
remain: 

• It is difficult to track problems with an assembly as they are being 
addressed by the planning, engineering, and purchasing departments. 

While the two sets of problems, discussed above, that typically occur 
during design and manufacturing are not complete, they do indicate the 
fundamental lack of assistance for collaborative work. The problems pre
sented above are further magnified when an attempt is made to practice 
integrated product/process design. Tremendous knowledge is required by 
each type of engineer to collaborate and complete every activity so that all 
the relevant product/process constraints are addressed to minimize errors in 
all downstream activities performed by other engineers. 

Productivity via Assistance: Case Study Results 

Productivity improvements achievable via knowledge-based assistance dur
ing a complex design process have been demonstrated by an aerospace ven
dor and are documented below. The automated workflow combined the 
existing application software and the turbine blade design process into a 
blade design assistant. 
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The overall goal of the blade design assistant workflow was to shorten the 
cycle time. None of the existing applications was altered. The blade design 
assistant builds the appropriate input parameter file and commands to in
voke each of these applications. The engineers do not need to be concerned 
with the format of this file, only the content (values of the parameters). 
Where possible, design activities are performed for blade design and to 
decrease the routine effort expended by the design engineers. This workflow 
assists the engineers in the design of a blade and its associated attachments. 

The four major engineering departments that collaborate are aerodynam
ics, stress analysis, dynamics, and mechanical design. Within each depart
ment, design activities are supported to include component design, data 
entry, coordination with other engineers, and use of software applications. 
In addition, dependent activities are prevented from being executed until all 
requisite information and approvals are available (in order to ensure that 
engineers are not expending effort on inappropriate activities). This was 
accomplished using the coordination features of the assistant. 

Process flowcharts (models) developed by the expert engineers were con
verted to a workflow process assistant using the KI Shell described in detail 
in the next section. The KI Shell development environment contains the tools 
used to represent this workflow. KI Shell rules were also developed to imple
ment analytical code to analyze application output and apply design con
straints; to prepare input, submit, monitor status, and retrieve output of 
application on heterogeneous computers; and to suspend/initiate the work
flow process for different specialists based on the design process model. An 
overview of the workflow between the different engineering departments is 
shown in Figure 16.1. 

The pilot results were documented. The benefits of the blade design work
flow were: 

MECHANICAL 
DESIGN 
(lnnial 

Requirements) 

WORKFLOW PROCESS 

FINAL 
...... t---1 

BLADE 
PARAMETERS & 
DRAWINGS 

PASS 

FIGURE 16.1. Overview of the workflow process control flow and interactions be
tween the disciplines (roles) as supported by the Blade Design Assistant. 
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• Improved design labor hours from 5 to 1. 
• Improved design time from 13 to 1. 
• Captured process knowledge of experienced engineers. 
• Dramatically reduced training for new users. 
• Remembered and interpreted design rules consistently each time. 
• Engineer-developed flowcharts converted into process management 

software. 
• Standardized design process and reduced mistakes. 
• Standardized configuration of the resulting product component. 

The engineering features of the workflow process mentioned by the engineers 
were: 

• Interface between various disciplines. 
• Suspended and resumed workflow activities. 
• Tied together current design applications. 
• Captured design rules. 
• Captured expert process knowledge. 
• Interface with applications without any modifications required. 
• Operated applications on existing mainframe platforms from workstations. 

What Did the Workflow Process Assistant Do? 

More generally, the above process benefits arose from supporting the follow
ing key features of the workflow process assistant: 

• Structuring (or modeling) of the activities of the process that must be 
presented to each discipline and presenting the users with only those 
activities ready to be worked on. 

• Actively guiding users by dynamically controlling creation of new activ
ities and determining when activities must be performed by different 
groups of people for each project, each component, and each design 
iteration. 

• Prohibiting activities from being performed, if indeed this is the policy of 
the company, until information/decisions generated at earlier activities are 
correctly completed and reviewed. 

• Allowing the easy exchange of decisions made in earlier activities (possibly 
by other disciplines) and ensuring that these decisions are correctly made 
so that each subsequent activity can also be correctly performed. 

• Automating the setting up of data and invocation of the application 
function as required by the policy of the company. Also, automating 
dispersal of application output to specified destinations-other applica
tions, users, or processes. 

• Providing decision support (based on expert knowledge) for completing 
the activity correctly. 

• Providing status information on activities queued, completed, being 
worked on, and waiting on an event. 
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3. Workflow Assistance Requirements and Concepts 

Based on the design and manufacturing user scenarios such as the ones 
discussed in Chapter 2, this chapter abstracts the requirements of an infor
mation system to support fundamentally collaborative approaches like con
current engineering. These requirements are reviewed both from the perspec
tive of the user and the implementor of the information system. 

User Questions 

Without collaborative process management software, the user must rely on 
experience and judgment to resolve the following types of questions broadly 
classified into three categories: 

Collaboration Related: 

• What is the most critical task within the process for me to work on? What 
choices do I have at this point? 

• What process/product constraints must I satisfy at this point to reduce 
downstream iterations? 

• What/when/how do I coordinate with other project members/ 
departments? 

• What decisions made previously affect my work? 
• How do I document and archive my product and process decisions to 

enable process improvements in the future? 

Information Related: 

• What application function(s) should I use and how do I use them 
effectively? 

• How do I transform data to run an application? 
• What are the useful and relevant views of data at this step? 

Management Related: 

• What is the overall status of the projects? 
• What process decisions can be improved in the future? 

Collaboration Issues 

The collaborative questions above arise due to the interdisciplinary na
ture and enterprise-orientation of the required problem-solving. Individual 
problem-solving must take place in the context of disciplined group problem
solving. This makes it important for the assistant to monitor the status of 
activities of different types of users and to enforce the policies and protocols 
of the enterprise while actively guiding the collaborators through the disci
pline reflected in the workflow process model. Thus, collaboration requires 
that "responsibility" for specific activities must be "ascribed to" and "en
acted by" individuals in specific departments. The concept of roles is required 
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to group the activities that are the responsibility of a given type ofworker. A 
variety of different protocols might be needed to support interactions be
tween different departments. Examples of protocols between roles include 
reviewing, circulation, waiting for completion of activities done by other 
roles, and providing deliverables to "customer" roles. 

Because of the detailed nature of the collaboration support required, 
the workflow discipline must be modeled precisely enough to be negotiated 
among the different types of participating engineers. Thus, a simple yet 
complete notation is necessary to acquire the knowledge. The notation 
allows a specific approach-or workflow-to be recorded and negotiated 
up front by all the participating roles. This is when group problem-solving 
takes place. From a workflow modeling and enaction point of view, the col
laborative process knowledge characterized above consists of 

• Knowledge of roles that participate in the process and the protocols 
between roles. 

• Knowledge of the process (structured collection of activities) enacted by 
each role in an organization. This includes when and under what condi
tions one role creates activities for another role to enact. 

• Knowledge of how to perform each activity correctly so that downstream 
activities can "count on" it. This includes the correct use of data, previous 
decisions, and applications to perform the activity. 

Thus, the objective of the modeling approach presented here is to support 
the acquisition of these types of knowledge. 

Information Issues 

Information, necessary to address the above questions, is large in volume, 
broad in scope, evolving continuously, and must usually be obtained from 
different existing sources (Figure 16.2). As a consequence, the assistant must 
exploit existing systems as shown in Figure 16.3. 

Depending on the evolution of knowledge pertaining to a particular phase 
of problem-solving, the problem-solving may be distributed among the assis
tant, analytic, and database applications; expert systems; and the user in 
various ways. The varying role of the end user makes it important for the 
assistant to have the explanation capability in a system-dominated problem
solving activity, plus a good, precise understanding of the nature of the user's 
problem-solving if the system's role is one of decision support. The in
volvement of numerous existing applications brings in user-interface and 
intelligent-application-support issues such as the invocability of applications 
from the interface, hiding application-dependent invocation details such as 
providing the right data, and reasoning about the success and failure of 
activities based on the applications output. 

The assistant software must also work with existing applications via 
clearly defined interfaces. Conceptually, these interfaces-called PAs or Pro-
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• AUTOMATED FUNCTIONS 
• ISLANDS OF AUTOMATION 

FIGURE 16.2. Today: Information systems view of the problem. Information systems 
consist of monolithic applications (with embedded process support) and databases 
that are not integrated to provide decision support for the collaborative process 
involving people, applications, and data. 
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FIGURE 16.3. Future (compare with Figure 16.2): Enterprise process management to 
provide decision support and reduce level of required training, effective use of appli
cations and data, and coordinate between roles in the organization. 
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grammed Adaptors-define how the application is invoked using its API 
(application program interface), and how the application's functions are 
used within the process input and output. Furthermore, the PA should be 
invokable from the process management software. Existing and new applica
tions can then be "wrapped" in process management software, as illustrated 
in Figure 16.3. Not only are benefits of improved information flow derived 
from this "wrapping," but also facilitation of orderly and cost-effective migra
tions from existing application programs to new re-architected applications. 

Workflow Process Management Issues 

To facilitate process management and process improvement, the exact status 
of the process as well as the decisions made during a process must be visible 
to management. Considerable research must be done in this area and the 
issues are discussed in the concluding section. 

Assistant Architecture Issues 

The long-term nature of collaborative problem-solving creates the need for a 
persistent process database for storing the state of the problem-solving and 
its byproducts along with the relationships between the objects involved. In a 
collaborative environment, shared information can become obsolete very 
soon, if not continually updated in the common process server. Also, assis
tance often involves shallow inferencing on large amounts of inhomogeneous 
information that is continually updated. The volume of information entailed 
and the collaborative nature of problem-solving requires problem-solving to 
be intertwined with browsing and use of already-created process and product 
information. This requires the assistant to have an open architecture to 
interface with existing applications at any point during the enaction. 

4. Modeling and Enacting a Concurrent Engineering 
Workflow Process 

The KI Shell™ is a workflow process "shell" that has two components as 
shown in Figure 16.4. One component being the development Kl Shell, which 
is used to edit a workflow model. The other component is the runtime KI 
Shell which is designed to assist the users to enact the modeled workflow. 

Within the development KI Shell, there are different integrated model 
editors (like the Workflow and the Frames Editor in Figure 16.4) which allow 
workflow objects (see Figure 16.6) to be edited and stored in an SQL da
tabase. The use of the database as the process server provides concurrency 
control and persistence. The graphical workflow editor allows the roles to be 
created and the overall activity structure to be determined. The Frames 
Editor allows rules (triggers associated with the objects) and attributes to be 
associated with the activities. Another tool, RuleWriter (Figure 16.8), allows 
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FIGURE 16.4. KI Shell components for worldlow process modeling and enaction. 

rules to be expanded to C procedures that invoke applications and use SIL 
(System Integration Library) calls. The SIL is a comprehensive library of 
reusable operations-including create, delete, update, etc.-on the work
flow objects. 

The runtime KI Shell is a collection of generic utilities designed to display 
and interpret workflow objects and, thus, enact a workflow representation or 
model created by the KI Shell development environment. The workflow 
model with its interfaces to applications and KI Shell runtime utilities is 
called an assistant. 

An assistant, when enacted by the user, presents the subprocess instances 
awaiting execution for each role, maintains the state of execution for each 
subprocess, controls the use of multiple applications, and provides decision 
support for completing the activities of the process. Thus, an assistant pro
vides active workflow process support and uses applications consistent with 
the information system's perspective in Figure 16.3. 

In order to enforce process discipline during enaction, the KI Shell run
time monitor has detailed control over the activities of the users as they 
invoke applications, perform activities, and modify data objects. (Note, 
however, that no control must be exerted for interactive applications.) The 
detailed control is achieved by building the monitor as an intermediary 
program between the user, the applications, and the KI Shell's own object
based database. By having this control, the assistant can enforce a discipline 
by utilizing the knowledge represented in the workflow. This is illustrated in 
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FIGURE 16.5. KI Shell's runtime architecture is designed for workflow process 
management. 

Figure 16.5 by comparing the workflow process support to the traditional 
approach of interacting with the operating system. 

Finally, the KI Shell runtime monitors the status of activities and does not 
have an inference engine typical of expert system "shells." This unique run
time characteristic of the integration-oriented KI Shell sets it apart from 
other expert system shells. 

Mode ling and Implementation 

Two basic steps-acquiring process knowledge and implementing the assis
tant-are involved when using the KI Shell Development Environment. The 
final step is enacting the assistant, which is the workflow model interpreted 
by the KI Shell runtime. Each of these three steps is described in detail 
below using a specific application example that reflects concurrent engi
neering concepts. 

Step 1-Acquire Expert Process Knowledge 

The objective of this step is to develop the streamlined workflow process 
model (Figure 16.6). This requires significant participation from the eventual 
users of the assistant. 
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FIGURE 16.6. Workflow process object classes. 

M402 

The real issue at this point is to negotiate between the interdisciplinary 
users of the system and develop a good workflow process model based on a 
knowledge of how experts perform their activities and collaborate with each 
other. 

Mode ling Concepts 

Many modeling approaches exist (Curtis, 1992; Hars and Scheer, 1992; 
Mayer, 1989; Ross, 1977; Scheer, 1992). Since IDEF (Buffum, 1981) is used 
extensively within the DOD design and manufacturing efforts, it is also used 
as a starting point for discussion here. IDEF consists of several complemen
tary notations for creating models. Of relevance here is IDEFO, which is 
designed to identify activities in an enterprise. This modeling notation helps 
create both an activity decomposition and, for each activity, the input
constraint-output-mechanisms (as in Figure 16.7a). The other notation
IDEFlX-uses the data requirements, identified by an IDEFO model, to 
create an entity-relationship model for the enterprise data model. Figure 
16.7b, when compared with Figure 16.7a, illustrates the concept of enaction. 

Activity decomposition identifies the functions and the external view of 
data used within the activities and is a valuable starting point for workflow. 
Activity decomposition does not explicitly model the flow of control between 
activities and the organizational aspect of responsibility based on "who" 
enacts "which" specific activity and in "what order." The modeling nota-
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OUTPUTS 

MECHANISM 
(Resources To Perform The 
Function (Tools, People)) 

FIGURE 16.7a. Notation for single IDEF activity identifying INPUT, CONTROLS, 
OUTPUT, and MECHANISM. Note that the controls (data from previous activities) 
implement concurrent engineering philosophy of performing the activity in the cor
rect context. 

tions underlying the KI Shell include both the activity decomposition and 
control flow views. These complementary views are presented graphically in 
Figures 16. 7c, d, e, and f for the example selected for discussion here. 

Before examining the different views of a workflow, it is first necessary to 
discuss the underlying workflow model. Figure 16.6 presents an overview of 
the KI Shell workflow objects that must be created to represent process 
knowledge. These objects constitute the conical (or composite) form, based 
on which several different graphical views (or perspectives) of the standard 
form can be projected and used to model different perspectives of the work
flow, as illustrated in the application discussed below. The notation details 
of some of the graphical views are in Tables 16.2-16.4 provided in the 
Appendix. 

At the heart of every interdisciplinary workflow effort are the fundamental 
concepts of role and activities. Each role enacts activities related by the role's 
perspective of the flow of work. The activities within a role are further 
organized into a hierarchy of frames. Each frame aggregates conceptually 
related activities that hide details at the lower levels. Both activities and 
frames also have associated semantics reflected in the rules (methods), attrib
utes, and links. In KI Shell, a use of frames is to control the discipline (the 
"when") by which activities are performed. 

Each activity can have attributes, links, and rules that provide a way of 



www.manaraa.com

344 Jay Ramanathan 

<ACTIVITY NAME> 
-1 

PERFORM C PROCEDURE I 

INPUTS: 
M407 Input Based On Existing Corporate 

Databases 

CONTROLS: 
Examine Previous Process Decisions to 
Determine Effect on Current Activity 

OUTPUTS: 
Data & Process Decisions 

MECHANISMS: PROGRAMMED 
ADAPTOR 

Invoke Application 
Functions Provided • Set up Session 
Locally Or • T ransrnit Data, Invoke 
Remotely, Update Application Functions 
Resources • Examine Output 

COMPLETION CRITERIA: 
Is the activity correctly completed? 

FIGURE 16. 7b. Enaction of an activity (initiated by clicking on the Perform button of 
a displayed activity object) actually causes a C procedure containing the "how" logic 
to execute. Typical logic programmed with this procedure is illustrated. 

implementing the support when the activity is enacted (i.e., when the "per
form" button is clicked). Conceptually, each activity must meet certain ob
jectives and satisfy the completion criteria for the activity, so that the next 
activity enacted can assume the correct completion of previous activities. 

The rules (triggers or methods), in tum, consist of an event+ procedure 
(in the C programming language). The typical events monitored by the KI 
Shell runtime are related to the process. Examples of events are enacting an 
activity or entering and exiting a frame. The procedure specifies "how" an 
activity is enacted when the event occurs within the context of the workflow 
structure. The links declaratively specify different relationships between 
workflow objects. "Completion" is an example of a system-maintained at
tribute that allows the KI Shell runtime to track completed activities. 

Enaction ensures that a modeled activity is correctly completed. The in
put-constraint-output-mechanism defined in a model is actually manipulated 
by the C procedure. 
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I XTRUDER™ 

FIGURE 16. 7c. Example of an activity model for die design using the IDEFO Notation 
summarized in Table 16.2. CDM stands for Corporate Data Management, and 
MME, Shear, Stream, and ALPID are applications developed by the Air Force for 
materials modeling and simulation. 

Application of Mode ling Concepts 

As an example to illustrate the application of the modeling and enaction 
concepts, this section uses the die design process. This application was de
veloped under an SBIR grant supported by the Air Force Manufacturing 
Science Program. 

In a traditional extrusion plant environment, the interactions between 
different roles are done on an "over the wall" basis. With the die design 
assistant-XTRUDER-the Production Planner is able to specify and 
schedule Tooling and Equipment in the context of Die Design and Process 
Metallurgy decisions (constraints) made by the die designer and the 
metallurgist. 

An overview of the related models resulting from the modeling step for die 
design is illustrated in Figures l6.7c, d, e, and f. While the fundamental 
concepts of roles and activities that are illustrated here have been introduced 
before, these figures also illustrate how the more detailed notation in Tables 
16.2-16.4 have been applied to create the different views of a die design 
workflow process model. These graphical notations incorporate the use of 
activities (rectangular boxes) and relationships (represented by different 
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FIGURE 16.7d. Example of an activity model for die design with activities grouped by 
the role name (e.g. Production Planner) reflecting the discipline that is responsible for 
completing the activities. 

links). As indicated in these tables, different relationships are the focus of the 
different views or perspective of the composite or conical view of workflow 
objects presented in Figure 16.6. 

The first model (Figure 16.7c) consists of activities, input (use of corporate 
data), controls (previous data that constrains the current activity), output 
(data created during the activity), and mechanisms (use of applications and 
resources) similar to IDEFO. 

In this view of the workflow model two concurrent engineering principles 
are embodied: 

• Do not over-constrain the implementation during design. 
• Address all necessary process constraints early on to reduce iterations. 

For example, the simulation activity occurs only after the press selection is 
made, thus ensuring that the correct parameters are used in the simulation 
and no iterations will be necessary. Throughout the workflow, detailed de
sign decisions are made based on the available components and tooling. 

The next model (Figure 16.7d) illustrates the perspective of the different 
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FIGURE l6.7e. Control flow, role, and synchronization view depicting the flow of 
work between the departments, using notation in Table 16.4. 

disciplines (or roles performing the activities). This can also be obtained by 
identifying the mechanisms for each activity in an IDEFO model. However, 
in this notation, the flow of control during collaboration is not explicitly 
visible. 

As depicted in the model in Figure 16.7e, each role consists of many 
activities sequenced appropriately. Given an activity is a fundamental primi
tive of any workflow, it is imperative that each activity in a workflow be 
enacted to add value (i.e., meet the completion criteria) to ensure that the 
overall workflow-the sum of activities-eliminates unnecessary iterations. 
Further, by identifying the "AS-IS" and "TO-BE" times with each activity, 
one can estimate the actual "cycle" time. 

The final view is the activity decomposition illustrated in Figure 16.7f. In 
this view, the framing concept is used to group activities at the same level of 
abstraction. 

In summary, the two concurrent engineering principles are modeled by the 
controlling arrows of the model in Figure 16. 7c, the collaboration protocols 
between roles as modeled in Figure 16.7e, and the user's view of the activity 
network in Figure 16. 7f. These different views are all important for defining 
the structure of the workflow. 
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Container Selection 
Geometry Specification 

Lubricant Selection 
Application Specification 

Final Microstructure Selection 
Press Selection 

Design Summary Report 

FIGURE l6.7f. Activity hierarchy with an activity refined to subactivities: The activ
ities in a frame are typically grouped to reflect a discipline and similar level of 
abstraction. Subactivity link allows detailed refinement of an activity. This view is 
developed using the notation in Table 16.3 (see Appendix). 

Creating the Model Using the KI Shell 
KI Shell Development tools create a machine readable version of the work
flow objects (Figure 16.6) based on the models created in Step 1. The work
flow editor component of the KI Shell is used by the workflow designer to 
define the structure of an arbitrarily complex process. The title bar of the 
editor (see Figure 16.8) allows the user to select/create roles (a collection of 
related frames) and frames (or group of related activities), and edit these 
objects. The workflow designer can then edit the activities that belong in that 
frame. Figure 16.8 also illustrates the editing of a sequential frame called 
"Process Metallurgist" composed of activities called "Processing Variable 
Selection" and "Processing Variation." Attributes associated with the activ
ity "Processing Variable Selection" are "Temperature" and "Strain Rate." 
These attributes hold the decisions made during the enaction of the workflow 
for a specific project. By linking frames, the editor creates the subprocess for 
a role. 

The editor also provides the ability to express sequential, choice, condi
tional and repetitive execution of the activities in a frame, based on the state 
of the process. In the workstation environment, multithreaded options for 
executing activities are available. This allows the user to follow more than 
one path through a subprocess. With each activity, the editor allows the user 
to associate rules that assist the user in performing the activity. The rules 
(event/procedure pairs) can be triggered based on user interaction (pressing 



www.manaraa.com

I PERFORM I 

16. Support for Workflow Process Collaboration 349 

Use SlL to get previous decisions, made at earli er 
activities, providing selected alloy name and required 
product microstructure, 

Access an external database application (using the API) 
containing properties of the selected material, 

Set up the inputs (material property data) and invoke the 
API for a material modeling application and pass control 
to the application , and 

When control comes back to the application, take the 
user-selected temperature and stram rate values retun1ed 
by the application and use SIL to store it in attributes as 
decis ions associated with the Process Variable Selection 
activity. 

FIGURE 16.8. User interface of the Development Environment illustrating the 
Frames Editor and the Rule Writer. 

a function key or mouse click) or by the modification of the attributes by 
other rules. A variety of suitable events (such as "perform," "pre-modify," 
"post-modify," "enter frame," etc.) are also supported. 

Step 2-Process Model Enaction 

The implementation of enaction is illustrated Figure 16.9. When the user 
clicks on the "perform button," the logic in the box-programmed in a 
procedural programming language like C-is executed. Thus, the activity 
model provides the "what" context within which the procedural code-the 
"how" -executes. 

Once a workflow structure has been defined, the procedures (e.g., the 
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I PERFORM 

FIGURE 16.9. Enaction facilitates the correct use of information system components 
and their standard interfaces in the context of the activity and the role. 

perform procedure) associated with the rules of each activity can be pro
grammed using the RuleWriter component of the KI Shell. As illustrated 
in Figure 16.8, the RuleWriter title bar allows the programmer to edit the 
file containing the source code for the C procedures of rules. The declara
tions (for include files, etc.) are automatically inserted by the RuleWriter. 
C language templates are provided by the RuleWriter to eliminate syntax 
errors. 

The Rule Writer component of the KI Shell also uses menus to assist the 
user in developing procedures using "SIL" for programming productivity. 
The KI Shell System Integration Library ("SIL" in the title bar of Figure 
16.8) is a collection offunctions provided for use within the rules. Within the 
rules/procedures, a variety of associations can also be made. Based on deci
sions made in earlier activities, appropriate data can be set up for user or 
application use. Applications can also be invoked automatically. Upon com
pleting the execution, data generated by the application invocation can be 
distributed as specified. 

An example is "Perform+ Create_Efliciency_Stability_Map" associated 
with "Processing Variable Selection" activity in Figure 16.8. In this step, 
Create_Efliciency_Stability_Map is programmed inC to: 

• use SIL to get previous decisions made at earlier activities, which provide 
selected alloy name· and required product microstructure, 
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• access an external database application (using the API) containing prop
erties of the selected material, 

• set up the inputs (material property data) and invoke the API for a 
material modeling application and pass control to the application, and 

• when control comes back to the application, take the user-selected tem
perature and strain rate values returned by the application, and use SIL to 
store them in attributes as decisions associated with the Processing Vari
able Selection activity. 

A more general overview of the C procedure is given in Figure 16.9. KI 
Shell provides the ability to use standard interfaces to information systems 
correctly from the perspective of an activity and the role within a process. 

Thus, in this step the procedures, as specified by the modeler in Step I, for 
each rule are programmed using the extensive SIL library provided by the KI 
Shell. Often an activity has to wait on a decision by an activity of another 
role before proceeding. This is implemented by one of the SIL functions 
("wait for signal") invoked in the perform procedure of the current activity. 
The "send signal" SIL function has to be executed by the appropriate activ
ity of another role before a waiting activity can proceed. At this point, a 
workflow is completely implemented. 

Step 3-Enacting a KI Shell Assistant 

This requires linking the KI Shell Runtime with the workflow rules and 
Programmed Adaptor calls (PAs) to form an assistant that can be enacted by 
the user. In the following, the users' view of enaction for the specific example 
is discussed. 

Users' View of Enaction 
The XTRUDER assistant coordinates the functions of three roles: 

• Extrusion Production Planner, 
• Die Designer, and 
• Process Metallurgist. 

The XTRUDER assistant actively presents the work instances that enable 
the correct sequence of activities and role interactions to be enacted. The 
KI Shell runtime interprets the XTRUDER workflow to present the 
XTRUDER roles on the screen as in Figure 16.10. 

When a role and a role instance are selected, the user is presented the 
frame last executed. Figure 16.10 illustrates the Die Designer frame with the 
completed activities and the next executable activity. 

Collectively, the three roles complete the activities in the process as fol
lows. The first activity is "Product Specification." When executed by the 
Production Planner, it provides the geometry, application, and microstruc-
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FIGURE 16.10. When authorized performers of different roles log on, they see the 
work queues associated with their roles. For the Die Designer, the user interface of 
the assistant when performing the Processing Variable Selection action is shown. 
Users can interact with the invoked application in another window. Perform rule 
name and hidden attributes are not displayed. The assistant presents activities and 
visible attributes as illustrated in the first activity of this frame. Activities are colored 
to reflect their status. When this subprocess completes control goes to the next role 
and process as specified. 

ture values for constraining decisions made at later activities by the other 
roles. For example, the geometry constrains the candidate billets selected 
from a manufacturing database during the "Billet Selection" activity. The 
actual geometry of the billet selected by the engineer becomes the decision 
value of the attribute associated with "Billet Selection." This value, in turn, 
constrains the next activity and so on. "Die Design" is an example of an 
activity performed by the Die Designer role that invokes an application for 
rough design prior to detailed finite element simulation during the "Perform 
Extrusion Simulation" activity. This activity in turn is performed with the 
assurance that the appropriate press guaranteeing the appropriate pro
cessing conditions is available. 
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By using the assistant, engineers are able to complete complex designs 
correctly the first time, and at a fraction of the cost. Thus, XTRUDER 
integrates Die Design application programs, a Materials Behavior database, 
and Process simulation applications that quantify the manufacturing re
quirements for the Production Planner. 

The KI Shell also provides automatic status tracking and inter-role depen
dencies of work in progress, and provides graphical presentation of status as 
in Figure 16.10. Performance metrics are also captured automatically for KI 
Shell developed Assistants, providing queue time, span time, and wait time 
for each role/role function. 

A variety of different metrics can be obtained during enaction. For exam
ple, the time taken for executing each activity on an execution path can 
actually be measured. When the workflow manager enacts a model, it can 
obtain the following kinds of data: 

Queue time: The length of time a subprocess waits before a worker selects 
it for execution. 

Span time: The length of time it took to execute actual activities in a 
role. 

I METRIC I 

I SPAN: I 
lauEUE: I 

I PERFORM : I 
IWAIT: I 

I IDLE : I 

I ACCUMULATED TIME I 

10:6:241 

lo:o:ss' 

I!!I!J 
lo:4:16 1 

FIGURE 16.11. Process enaction provides a unique leverage-Process Metrics: When 
an activity is enacted, time stamps can be automatically obtained to measure span 
time, queue time, and wait time. These metrics, along with others, can provide a 
measure of the performance of the process. 
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Rejections: 
Resource: 

The number of times a design was rejected. 
Type of resource used and actual amount. 

Figure 16.11 illustrates the time metrics for the Die Designer process while 
producing the 14-gauge wire. The overall status of the different process 
instances producing-14-gauge wire, Wl2 x 124 1-beam, Wl2 x 87 1-beam, 
24 x 36 slotted plate, text 1-beam-is readily visible to a manager by looking 
at the queues (Figure 16.10), color coded to reflect status such as "awaiting 
processing," "completed," "waiting for another role to complete," etc. 

5. Workflow Process-Based Information System 
Architecture 

Before proceeding to a discussion of future research issues, the process man
agement technology is first positioned in the context of information system 
architectures. The three-schema architecture is widely accepted as a starting 
point for separating the concerns of 

• the users of the information systems, 
• international standard activities, and 
• implementors of products that work with the standards. 

Thus, the positioning begins with this architecture. 

Three-Schema Architecture 
Building upon the early three-schema architecture piloted by the IISS 
project (WRDC, 1990), most efforts-like CIMOSA (Computer Integrated 
Manufacturing-Open Systems Architecture)-propose the use of the "Three 
Schema Architecture" (AMICE, 1989; Althoff, 1990) to separate the external 
(the specific enterprise's view), conceptual (the standard view across enter
prises), and internal (implementation view) of functions, information, re
source, and organization. The external views of these four elements are com
bined and used by the collection of activities structured to support the roles 
and the organization of the enterprise. This is illustrated in Figure 16.9. 

Within the context of the standards-based information architecture, an 
information system for assisting disciplined concurrent engineering can now 
be developed as follows: 

• Analyst: The expert responsible for specifying the "TO-BE" models of the 
workflow and creating initial logical prototypes using standards (concep
tual models of function, information, resource, and organization). 

• Deployment Engineer: Responsible for installing the logical "TO-BE" 
workflows, customizing the logical assistants to access enterprise-specific 
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data using the three-schema architecture, and augmenting the "TO-BE" 
worldlows with enterprise-specific policies. This will create a deployed 
assistant. 

• Manufacturing Engineer: Enacts the deployed assistant. 

This chapter has presented an approach where, beginning from a basis of 
standards and modeling notations to describe CIM system behavior (the 
generic constructs), useful models can be created for industry segments. 
These models describe the specific "TO-BE" CIM system behavior. Once 
developed, these models can be deployed into an industry using a software 
platform or "shell" for model enaction and integration. This reduces the cost 
of developing information systems by: 

• Providing the ability to generalize and standardize CIM process support 
provided to an industry segment, and reduce custom software developed. 

• Permitting the cost of development of a "TO-BE" model to be amortized 
over the industry segment. 

• Associating with model enaction benefits that are clearly identified and 
can be provided for entire industry segments. 

Why is the above scenario for CIM system development made possible by 
process management? To understand this, w~ must consider the historical 
perspective. Since the beginning of the information systems age, application 
systems tied together three elements: 

Data: Includes data definition and management. 
Application Functions: Operate on data and automate certain activities. 
Workflow Process: Steps by which users are guided to perform work activ
ities and decisions. 

Problems arose as a result of the duplication of data definition and man
agement logic within each application. Consequently, data modeling (Chen, 
1976; Codd, 1979; Navathe, 1992) and management systems were developed 
during the eighties to eliminate duplication of data, avoid describing the 
same data in different ways, and provide common reusable data manage
ment software to all applications. Thus, data modeling and management 
technology allowed the separation of data handling logic from applications. 
This, in turn, allowed the independent management and evolution of data 
and applications. It has also facilitated the development of draft standards 
(IRDS, 1991). 

Figure 16.2 illustrates the separation of data and applications in current 
information systems. Because the application functions are so isolated, they 
still do not support the actual process of doing work. Therefore, the users 
continue to face process-related questions, which today they must either 
address manually or by applications that incorporate a workflow that often 
does not meet their workflow requirements. 
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Workflow management represents a technology development of the nine
ties (Ramanathan, 1992). Its development is analogous to the development 
and transitioning of databases into common practice. During the past few 
years, the commercial significance of process management, independent of 
product data management, has been widely recognized (Seybold, 1992). 

By clearly separating the workflow processes from applications (as illus
trated in Figure 16.3), workflow technology provides fundamental technical 
advantages. A workflow process "bridges" across the islands of automation 
by supporting the end-users with knowledge-based integration. To reiterate, 
an architecture where there is separation of the process knowledge and its 
management has several advantages: 

• Enterprise workflow process models modified/maintained independent of 
application and data objects. 

• Process used to control when/how applications are used. 
• Different process logic can be applied to same data objects/applications

based on the roles and responsibilities. The same applications can be used 
by different processes (e.g., a finite element analysis application can be 
used differently for a forging die design process than for an extrusion die 
design). 

• Time-variant logic separated from time-invariant enabling separate evolu
tion of process objects. Process decisions made during activities executed 
for specific projects (e.g., 1-beam vs. wire) vary, but data objects (e.g., 
billet, process) do not vary. 

• Process used to maintain global state. 
• Separation makes it easier to associate and maintain use of process-related 

data. 
• Process decisions made during a project can be stored and managed 

separately from applications. This provides a history of the process for 
analysis and improvement. 

• Process metrics data (e.g., when an activity begins and terminates, how 
long it took for a subprocess to execute, how often did a subprocess get 
executed, etc.) can be obtained and presented for process management 
and process improvement. 

6. Future Research Issues 

At least two significant research issues arise from the ability to clearly sepa
rate the process layer: 

• In what way should an integrated tool-set for process improvement be 
implemented to provide feedback and control during enaction, and 

• What are the suitable mechanisms for process reuse? 
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TABLE 16.1. Types of features to be provided by process technologies. 

Process Modeling 
• Provide the ability to create different views or perspectives that are all consistent with respect 

to an underlying canonical model based on activities. Some views are: 
• Activity decomposition view-this relationship is commonly modeled in several business 

process modeling tools. 
• Input and Output data created by each activity-also provided by several business process 

and information engineering modeling tools. 
• Resources necessary for each activity-this is also provided for in tools that support IDEF 

modeling. 
• Control ftow between activities over time-this is similar to the petri net model used by 

simulation tools but not typically provided for worldlow enaction. 
• Roles that define the view of the activities that must be enacted by a type of personnel and is 

the responsibility of each member of that group. 
• Protocols (supplier/customer, reviews, routing, coordination-send and receive-among 

others) that must be modeled as other relationships between activities of roles. 

Process Simulation 
• Ability to examine consumption of resources and rate at which queued tasks are processed 

based on different routings. 
• Ability to study other cause and effect relationships. 

Process Enaction 
• Enforces process enaction discipline between roles in compliance with company policies and 

practices. 
• Delivers necessary information to perform the activity correctly and controls the steps to 

complete an activity. 
• Simplifies determination of which activity to perform next. 
• Provides data for decision support and for activity execution. 
• Automates required data setup and invokes the application process. 
• Disperses application output to specified destinations. 
• Accumulates actual process execution data. 

Process Management 
• View enaction status-the actual time taken to execute a task versus allocated time and the 

actual versus planned consumption of resources. 
• Obtain metrics to answer questions like how often was a process for rejected parts enacted 

and for which part. 
• Process decisions made during enaction provides a history. 

Project Management 
• Plan consisting of tasks, allocated time and resources. 
• Critical path analysis. 
• Manufacturing and Resource Planning. 
• Comprehensive support for planning and scheduling of resources to meet demand. 
• Process reuse. 
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: Role Name 

• xxxxx : Activity 

~ : Signal to execute 
an activity ol another 
role 

FIGURE 16.12a. Activity and roles: Generic process for collecting product 
information. 

DUCTION PLANNER ASSIST : 
Prj'Sciiiu:"T:o An Information Packet For Assembly 

FIGURE 16.12b. Production Planner Assist: Process to collect an information packet 
for assembly. 
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Continuous Process Improvement via Process Metrics, 
Feedback, and Control 

Today, process simulation is a way to understand system behavior, and 
enaction provides accurate process metrics for each project. While aspects of 
manufacturing and factory-floor, characterized by repetitive processing of 
tasks that are very similar in nature, can be simulated, many enterprise 
processes (e.g., conceptual design) cannot be accurately simulated. Thus, 
actual enaction metrics could play a significant role in identifying areas 
for improvement. However, the type of process data that might be collected 
and synthesized for presenting process performance results is not well 
known. 

Table 16.1 lists the features that are provided by isolated process technol
ogies today. 

To facilitate rapid process improvement, the first step is to integrate 
process-related tools (STARS, 1991). Several advantages result from an inte
grated set of process tools. With data integration-all process tools working 
on the same consistent database-it is possible to provide tools to enable a 
greater degree of process control: 

AIR LOGISTICS COMMAND: 
'-'~fiPem .. ioll Advocacy Process 

TIME 

FIGURE l6.l2c. Air Logistics Command: Competition advocacy process. 
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• Simulation can use actual process enaction data preserved in the enaction 
database. Therefore, simulation provides more accurate visualization of 
the actual process characteristics providing a way for dynamic replanning. 
For example, a process manager could animate (instead of simulate) the 
manner in which the activity queues change over time; thus, identifying 
bottlenecks. This facilitates process improvement. 

• Process management is based on actual resource usage. As costs are in
curred, project management tools provide exact status by providing early 
information about cost over-runs. 

• Global awareness of exact process status allows resources to be redirected 
to problem areas before the problem compounds to more unmanageable 
ones. 

• By enacting a modeled process and capturing precise model-based metrics 
in the database, areas for real process improvement are easier to identify. 

However, such an integrated toolset does not exist. If it is proto typed, it will 
facilitate research in the type of enaction data to be collected and synthesized 
for process improvement. 

Process Reuse 

Patterns rapidly emerge when examining process models. Figures 16.12a, b, 
and c illustrate variations of the same process designed to accumulate the 
components of an information packet. Figure 16.12a is a generic, site
independent version. Figures 16.12b and 16.12c illustrate variations for dif
ferent industries. Over time, a library of logical workflows, like the one 
illustrated in Figure 16.12a, must be developed to provide a rapid, cost
effective way to provide custom software solutions like the ones in Figures 
16.12b and 16.12c to the industry. While it is clear object-oriented technol
ogy must be exploited for such reuse, the actual design of objects for reuse is 
a difficult task (Monarchi, 1992) and must be researched. 

Appendix: Modeling Notations 

The three tables in this appendix provide notational systems for defining 
different views of a workflow model. 



www.manaraa.com

16. Support for Workflow Process Collaboration 361 

TABLE 16.2. Modeling notation for use of applications, data, and resources within an 
activity. 

Activity I <name> ' 

~:::::1 
Application -= 
Use -= 

I f'>PJi!i cauon>n 

Information 
Use 

Information Use 

•• 1Jrf.P •• 4 <ll"""'> : 
<oame(s)> 

Process 
Decisions 

Rules 

<aUribule> ------. 
l<llarne~ : 

<name> : 

<AIU I> <AUr2> ... 
<Rulei><Rule2> ... 

A basic unit of work in tenns of "what" and "how." An activity is a 
named group of attributes, subobjects, and rules. It also bas an 
associated completion state. The "how" is implemented in a Rule or 
Procedure with SIL (KI Shell System Integration Library) calls . 

Placeholder for values generated when executing an activity. These 
attributes can hold process decisions that impact which of the later 
activities are performed and bow they are performed. An attribute 
can also hold names of information objects necessary to perform an 
activity or bookkeeping data. 

External applications (analysis, databases, etc.) invoked to automate 
aspects of an activity. Applications 'APis' are used to invoke, 
retrieve data, or store data. 

Information frames that describe external information . resources , 
costs. and metrics. 

Product data (information objects) used or created when performing 
activities . 

Previous process decisions (i.e., attributes of earlier activities) that 
control bow the current activity is completed. 

Rules can also be associated with an activity. The rule contains the 
logic of how an activity is executed. 

M399 

TABLE 16.3. Modeling notation for the activity hierarchy/information hierarchy. 

Subactlvity Un~ 

Frame 

Information 
Frame 

<aUribuleS> 

Bi-directional links between an activity and a frame. 

Aggregation of activities strucrur.e~ ~y a control construct wbicb 
determines the sequencing of activities. The order of actlvttles can be 
"sequential ," "cbo1ce." "if-then." "while." etc. 

Aggregation of attributes that bold information. 

M399 



www.manaraa.com

362 Jay Ramanathan 

TABLE 16.4. Notation for the time view. 

Activity I <name> : 

Decision r-· 
Activity{ 
Next Activity 
Link 

Synchronization 
Activity 0 

UV<;If.Target : <Role • Activity> 

SendiWait -•· 
Link 

Walzl.Jn)( ••• 

Source : <Role • 

Next Activity 
Link 

Role 

References 

Activity name. Estimated times- x andy- for activity execution, 
without wortflow support and with wortflow support. respectively, 
are used to execute the activity to provide a basis for cycle-time 
reduction estimates. 

Decision activity is a special type of activity with the next activity 
based on the outcomes "yes" or "no." 

Synchronization activity is a special type of activity used to suspend 
fUrther activities within a role until it receives a signal sent from 
other activities in other roles. 

Links to send a signal or wait for signal. Could have 
<Role.(userid.)Activity> when specific names are chosen. 
<exp> is the expression that specifies which wait links must 
"fi.re" before proceeding with the condition by which the activity 
completes. 

Links an activity to another. Estimated times- x and y- for 
activity execution, without work.tlow support and with workflow 
support. respectively, are used to provide a basis for estimating 
cycle·time reduction. An activity can have many next activities. If 
an activity is already completed, this link indicates the activity is 
redone. 

A collection of activities performed by a prototypical 
department/project member. This is an "entry point" into a 
group of activities in the total activity network. When a worker 
is assigned to a role, the responsibility of the worker is to 
perform the grouped coUection. The <identifier> reflects the 
manner in which role instances are given unique identifiers. 
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Improved Total Development 
Process: Overcoming the 
Ten Cash Drains 

DoN CLAUSING 

The Ten Cash Drains 

The existing development process of a product in the United States delivers 
products that are only average in quality and cost, and are delivered to the 
market late. (Japan is the benchmark.) This is the result of the Ten Cash 
Drains: 

1. Technology Push, but Where's the Pull? 
2. Disregard for Voice of the Customer 
3. Eureka Concept 
4. Pretend Designs 
5. Pampered Product 
6. Hardware Swamps 
7. Here's the Product; Where's the Factory? 
8. We've Always Made It This Way 
9. Inspection 

10. Give Me My Targets; Let Me Do My Thing. 

The total cash drain is easily 10 percent of corporate revenues; often much 
more when the full costs are accounted 

Total Development Process 

The improved Total Development Process plugs the Ten Cash Drains, 
greatly improving the financial positions of the corporation. Good products 
are brought to market in a timely fashion. By continuously bringing better 
products to market, the improved Total Development Process provides dy
namic rejuvenation. This chapter describes the improved Total Development 
Process actions in overcoming the Ten Cash Drains. 

A zero-level block diagram is shown in Figure 17.1. Product and process 
technologies are generated and incorporated into specific product develop
ments, which are then placed into production. This is shown in more detail 

365 
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TECHNOLOGY .. PRODUCT PRODUCTION 
GENERATION ... DEVB.OPMENT 

FIGURE 17 .1. 

,~~~~············~ . . . r----..,....,---=~~~~=-:---~···········--·--
DEVELOP QUALITY . . 

. . . . . 

. . . . 
TECHNOLOGY ; . 
GENERATION 

4. ROBUSTNESS MISTAKE 
SELECT ELIMINATION , 

PRODUCT 1. DESIGN I I 
CO~E~ ~--------~ 

2. DEVELOP PRODUCTION 
CAPABILITY 

3. DEVELOP LOGISTICAL 
CAPABILITY . . . 

PRODUCTION 

AND 

FIELD 

SUPPORT 

'················~ L-----'----------~".,. ............ ,. .. .,. ...... . 
FIGURE 17.2. Concurrent development with multifunctional team: 1. production de
sign of product; 2. production capability; 3. logistics capability; 4. robustness. 

in Figure 17.2, which displays the fundamental concept of concurrent engi
neering. The product design, production capability, and logistical (field sup
port) capability are developed concurrently to have robust quality. The im
proved Total Development Process is shown in operational detail in Figure 
17 .3, with the first 14 months shown in still more detail in Figure 17 .4. 
Figures 17.3 and 17.4 show 38 months to complete the development of a 
specific product, from the start of system design until the start of production. 
This is the improved, shorter time that will be achieved for complex prod
ucts, such as a car, or a very large, complex copier or printer. Simpler 
products have a scaled-down schedule, approximately 1 year for a VCR for 
example. Large aerospace projects will take longer, perhaps 5 years. The 
schedule of 38 months is to be compared with typical schedules of 60-70 
months in previous practice, slowed by the Ten Cash Drains. 

The general structure of Figures 17.3 and 17.4 is common to all develop
ment activities. In Figure 17.3 the major activities (system design, etc.) have 
been separated for clarity. Of course, in actual practice they are tightly 
integrated together, and performed by one multifunctional product develop
ment team. The most important details are described in the following sec
tions in the context of overcoming each of the Cash Drains. 
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FIGURE 17.3. Improved Total Development Process. N =needs; C =concepts; H = 
hardware; GEN = generic. Here it refers to SN optimization of generic technological 
concepts, which precedes optimization of specific product embodiments of the tech
nology; Process PD = process parameter design (SN optimization of production 
processes); PIT= problem identification test; PI, P2, BO, Bl = Four successive itera
tions of prototype; PSP = problem-solving process; LRDT = launch readiness dem
onstration test; DD&B = detail design and builds; SN = signal-to-noise ratio. The 
signal is the performance that we want. The noise is undesirable deviations from the 
intended performance; SA&V =system adjustment and verification; Des.Corr. = 
correction of design mistake; T &A = tool and assembly; QC = quality control. 
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ASSEMBLY LINE CONCEPT AND DESIGN 
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MACHINE TOOL COICEPT AM> DESIGN 

FIGURE 17 .4. First 14 months of Figure 17.3 in more detail (for system design and 
optimization). 

Overcoming Cash Drain 1: "Technology Push, but 
Where's the Pull?" 

Technology Push, but Where's the Pull? 

The United States is very strong in technology generation. However, even in 
this area of strength, there are three significant problems: (1) new technologi
cal concepts are developed and often major resources are spent, but no 
discernable customer need can be identified; (2) there are strong customer 
needs for which technology generation activities are lacking; (3) good con
cepts are developed for which there are clear customer needs, but the techno
logical concepts are inadequately transferred into the development of a 
specific product. 

Technology push results in many "one but" concepts. These concepts are 
fantastic, but ... they fail to meet a major customer requirement. Often the 
cleverness of the concept or its attractiveness in meeting other customer 
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requirements results in much money being drained into its development 
before it is totally recognized that the concept has no potential because it is 
inherently incapable of satisfying an outstanding customer requirement. At 
the other extreme, there are often major customer requirements and needs 
for product or process improvements for which there is no ongoing technol
ogy generation activity. This often leads to creation of a significant new 
concept during the system design. Usually, this leads to disaster. Such con
cepts are too immature to be developed on a product development schedule 
during system design. It should be a strong operating principle that signifi
cantly different new concepts are not selected during system design unless 
sufficient prior technology generation activity has occurred to develop the 
concept to a sufficient level of maturity. 

Often, good new concepts are generated that have the potential to meet 
customer needs but they are only poorly transferred into the system design 
activity. These concepts often go down a technology drain and never make it 
to the market. This usually leads to prolonged blame-giving between the 
technology generation organization and the system design organization. 

In summary, the United States is very strong at technology generation, but 
much of this strength is dissipated by excessive technology push and inade
quate focus on the strategic needs of the corporation and its customers. 

Technology Generation 
Technology generation is strong in the United States, based on many people 
with a deep understanding of natural phenomena and an independent drive 
for creativity. There is great opportunity to build upon this base to achieve 
a more complete technology generation activity. The Needs Phase (see Fig
ure 17.3) identifies the technologically strategic needs ofthe particular indus
try and market segment. The Concepts Phase generates new concepts that 
are responsive to the needs and selects the best concepts for further develop
ment. The Hardware Phase is a continuation of the invention activity in the 
laboratory. At the completion of technology generation, the concept has 
been demonstrated to work very well at one operating condition, and to be 
strongly attractive in meeting customer needs. 

The coherent technology strategy, which identifies major customer needs 
that require new technological thrusts, is the prime activity to assure that 
there is sufficient technology generation activity addressing all major strate
gic customer needs. This strategy will also go far toward helping to quickly 
identify the "one but" concept that should not receive further investment. Of 
course, the invention of new technology requires creativity. Volumes have 
been written on the subject, with uncertain conclusions. The author believes 
that the major requirements for creativity are (1) deep involvement in iden
tifying the needs, (2) strong understanding of physical phenomena, and (3) 
creative environment (rewarding, not bureaucratic). 

The only way to achieve successful technology transfer is to form inte-
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grated teams to do the initial steps in the system design. The integrated teams 
have people from both the technology generation activity and the systems 
design activity. This integration leads to successful transfer of the new con
cept into the system design activity so that it is enabled to go downstream 
starting from a strong system design base. All attempts at a formal hand-off 
procedure without team integration have failed. 

At the conclusion of technology generation, the concept has been shown 
to work very well at one operating point and to be very attractive at meeting 
customer needs. The remaining tasks are then to integrate the concept into a 
specific system design and to optimize the concept for low cost and high 
quality, so that it will work well when subjected to a wide range of operating 
conditions (robust design). The initial work on robust design (good perfor
mance throughout a wide range of operating conditions) is the important 
transitional link between technology generation and the development of a 
specific product. Before a new technology is finally selected for a specific 
product there should be a clear demonstration of the potential for robustness. 

The term technology generation is too restrictive to describe the ongoing 
activities to provide the corporation with increased capabilities. These activ
ities can best be thought of as "generic improvement," with technology 
generation as a very important element. Other generic improvements can be 
achieved by a thorough attention to technical detail, coupled with close 
attention to the needs of the customers. This can be started by preparing a 
House of Quality (introduced in the next section). An example of this evolu
tionary type of generic improvement is the rust-prevention improvements 
that were made at Toyota Auto Body in the late 1970s. 

Summary 
Strong technology strategy and technology transfer assure attractive new 
technological concepts to meet major customer needs. 

Overcoming Cash Drain 2: "Disregard for Voice of the 
Customer" 

Disregard for Voice of the Customer 

The first step in system design is the determination of the needs of the 
customer. Often, in the United States, the product is doomed to mediocrity 
by the date of a completion of this Needs Phase (see Figures 17.3 and 17 .4). 
The biggest culprit in this cash drain is deployment of the voices of corporate 
specialists rather than the voice of the customer. This further aggravates the 
technology push problem that is Cash Drain 1. Frequently, the criteria that 
are used during the ensuing Concept Phase have already lost or distorted 
much of the voice of the customer. 
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House of Quality 

The House of Quality (Hauser and Clausing, 1988) and the procedure for 
developing it, which have evolved in Japan since 1971, provide an excellent 
method for deploying the voice of the customer. The House of Quality is a 
planning table that shows explicitly the deployment from the voice of the 
customer to product planning characteristics. Also shown are competitive 
benchmark evaluations for existing products. 

The House of Quality must be prepared during the Needs development 
(see Figures 17.3 and 17 .4) by an integrated team consisting of people knowl
edgeable about marketing, market research, product planning, product 
design, process engineering, service, and perhaps other functions. This inte
grated team brings together all of the best information on customer needs 
for the market segment for which the new product is intended. They work 
together to achieve consensus on the required product planning characteris
tics and quantitative target values that are fully responsive to the needs of the 
customer and will lead to a superior product relative to competitive bench
marks. This systematic process, which is guided by the format of the House 
of Quality, leads to understanding by all of the major functions of the 
corporation as to the required product characteristics. This consensus and 
understanding leads to commitment by all functions and, therefore, eventu
ally by all of the involved people within the corporation. Gaining the full 
understanding and commitment of all people to the deployed voice of the 
customer is critical to successful development of commercially viable new 
products. The result is a major improvement over what usually happens in 
the United States today. The House of Quality deployment is the beginning 
of several steps of systematic Quality Function Deployment. Quality Func
tion Deployment assures that the voice of the customer guides work in all 
functions of the Total Development Process, and manages the information 
so that all of it is utilized in producing the actual product. 

Summary 
The House of Quality and the subsequent steps of Quality Function De
ployment assure that the voice of the customer is deployed and all activities 
are guided by and are responsive to the needs of the customer. 

Overcoming Cash Drain 3: "The Eureka Concept" 

The Eureka Concept 

Often the selected product concept is the result of someone shouting "Eu
reka, I have this great new concept." It becomes the only concept that is 
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given serious consideration. All too often it does not stand the test of time. 
It does not even stand the test of time to bring the product to the market, 
much less the time of its actual production. Many concepts look good in the 
initial flush of creation. However, when such concepts are quickly accepted 
and a strong run is begun heading for the marketplace, they are usually 
found to be vulnerable to an intrinsically superior concept. It is a tremen
dous cash drain to waste nearly all of the Total Development Process upon 
a concept that has been recognized as highly vulnerable by the time the 
product actually reaches the market. 

Pugh's Concept Selection Process 

The search for the invulnerable product concept can be greatly improved by 
the use of the concept selection process that has been developed by Stuart 
Pugh (Pugh, 1981) and his colleagues in Great Britain. In this process, we 
carefully avoid a hasty running away with a singular concept. It is required 
that a large number of concepts that are in real contention and have a chance 
of being selected are available before selection is started. A large number is 
at least 10 and preferably 20-30. These concepts are then carefully evaluated 
with respect to each other by using the criteria that have been developed 
during the Needs Phase. This process is thus strongly focused on the voice of 
the customer, and it avoids the excessive and premature quantification that 
is a glaring weakness in many selection processes now used in the United 
States. This process is a team activity and is designed and facilitated to keep 
everyone thinking about the concepts and the criteria. This process leads to 
great clarification of both the concepts and the criteria that are being used 
for their selection. New concepts and new criteria emerge and some existing 
criteria are found to be not relevant. This process often employs four to 
six iterations of the formal matrix that is used for concept selection. At 
intermediate stages of the process, the total number of concepts may grow or 
shrink, but eventually the team converges on an invulnerable concept. This 
process may take It-3 months. At the end of this time, the team is confident 
that they have picked a winning concept and they are committed to its 
success. 

Summary 

Use of the Pugh Concept Selection Process leads to a selected concept that is 
invulnerable to being quickly surpassed in the marketplace, and achieves 
team commitment that is crucial to the success of the remainder of the Total 
Development Process. 
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Overcoming Cash Drain 4: "Pretend Design" 

Pretend Designs 

Pretend Designs are not production intent,* are often simply new but not 
better, and become focused on the creation of experimental hardware. This 
initial design comes to have as its objective the building of the first prototype 
(PI), rather than the achievement of the best possible design of the final 
product in the product marketplace. These designs are usually motivated 
by a strong desire to be new and different, but all too often the result is 
demonstrably inferior to a design already in the field. A lack of production 
intent leads to the attitude, "Oh well, this is just the first design-I'll fix this 
all up later." This is a sure road to disaster. 

Design 

To avoid pretend designs, it is critical to separate the initial design into two 
phases. The first phase is the design study (see Figure 17.3), which is aimed 
at achieving the best possible design. At the completion of this design study, 
there is a "go-no go" review, and if the resulting design does not meet 
criteria for a successful product, the Pl prototype will not be built. This is a 
sure way to avoid concentration on experimental Pl hardware, and to free 
everybody's creativity to achieve the best possible production-intent design. 
The second phase, after review has been successfully completed, is the 
completion of the detailed dimensioning, and the building of the first (PI) 
production-intent prototypes. 

The design must start with a concentrated activity of design competitive 
benchmarking by the engineers who are on the design study team. The 
competitive benchmark products are disassembled by the design study team 
down to the individual piece parts. The function of each part in the total 
competitive product is analyzed, the cost of each part is carefully estimated, 
and a best evaluation is made of the probable production processes that were 
used to make each p3:rt. The parts are arranged on piece-part boards with the 
estimated cost next to each part. This design competitive benchmarking must 
be done by the engineers on the design study team. It cannot be done by 
anyone else to achieve the full beneficial effect upon the eventual product 
design. Furthermore, each engineer is challenged to beat the competitive 
benchmark design or use it. This has a tremendously beneficial effect. It 
assures that no designs will be used simply because they are new. This avoids 
the common problem of designs that are new, but clearly inferior to existing 
designs already in the field. With the challenge of beating the competitive 

• Engineering term that means that the design is not intended for production. 
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benchmark design or using it, each engineer becomes strongly concentrated 
upon achieving a better design. Sometimes the initial reaction is one of awe 
and respect for a competitive design. For a few weeks, the competitive design 
may be carried as the selected design concept at the detailed level for the new 
product. However, engineers are never happy to use someone else's design 
and, in this situation, are strongly motivated to come up with a superior 
design. Inevitably, they do so. As a result, every functional area of the prod
uct is superior in its design concept. 

The design team is strongly trained in the methods of design for assembly, 
design for piece-part producibility, and value analysis/value engineering 
(V A/VE). They apply this training in carrying out the design activity to 
achieve the best possible design, very producible and serviceable. The process 
is done in a continuous style, avoiding the setting apart of small time periods 
to do specific activities such as V A/VE. Instead of setting aside 2 weeks to do 
V A/VE and then feeling that that chore has been completed, this improved 
process emphasizes the continuous application of V AfVE throughout the 
entire design process. 

The design activity itself is divided into two phases (33-28 months in 
Figure 17.4). Halfway through the design study, the subsystem concepts are 
selected and frozen so that nothing on the subsystem concept drawings can 
be significantly changed for the remainder of the Total Development Pro
cess. At this time, there is a small internal review to assure that everyone 
understands the concepts that have been selected and how they integrate 
together to create the superior total product. 

Next, attention is concentrated upon creating best possible piece-part de
signs and the selection of the right components. 

In doing the design work the skills in "partial design" that have been 
learned in school and by experience are fully utilized. Such skills as design of 
machine elements and circuit design are employed, with emphasis upon 
engineering fundamentals. When physics and design are in conflict, physics 
always wins. Here we are concentrating on "total development," in which 
"partial design" is embedded. 

As soon as attention is focused on piece-part design, potential suppliers 
are brought in and, to the fullest possible extent, utilized as full participating 
members of the design study. It is important to fully engage the technical 
expertise of the suppliers at this early stage. If necessary, key suppliers with 
special expertise should be given design consultation contracts to assure their 
full participation and the utilization of their technical knowledge. (In some 
products, entire subsystems may be designed by a supplier. Of course, in this 
case, the supplier would have been involved from the beginning of the design 
study.) 

In the design activity, it is always necessary to have a drawing of the 
complete product, often referred to as the "big picture." It is extremely 
important that this big picture drawing be continuously updated, at least 
daily, in the most efficient way. This can easily be done with modern com-
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puter-aided design systems. The design files of the team members can be 
readily transferred to the big picture to assure that integration of all aspects 
of the design is occurring. 

At the completion of the design study (after month 28 in Figure 17.4), 
there exists detailed layout drawings of each subsystem, and drawings of 
almost every piece part. However, the piece-part drawings may be dimen
sioned only with respect to critical parameters. Also, at this time, a detailed 
cost estimate has been prepared, functional analyses including failure modes 
and effects analysis (FMEA) have been completed, initial processing deci
sions have been made, and a styling model is ready. All of this information 
is incorporated into a design plan to assure that all design activities during 
the remainder of the Total Development Process are strongly guided by the 
crucial work that has already been completed. This information is presented 
at a crucial "go-no go" review. This review determines that the design is 
inherently superior to competitive benchmarks and meets all aspects of the 
business strategy, or the development is stopped and returned to the begin
ning of the process to redefine the required characteristics. 

Summary 

The design activity focuses everyone's attention on creating the best possible 
design for the actual production product, and thus avoids the cash drain of 
the "Pretend Design." 

Overcoming Cash Drain 5: "Pampered Product" 

Pampered Product 

Most products work well at one operating condition. The old-fashioned 
approach in the United States pampered the product concept to enable it to 
look good, especially in demonstrations for vice presidents. The product was 
not seriously challenged, but rather, was pampered by special tuning and 
tinkering so that it would put on a very good demonstration. The pampered 
product approach has been improved upon by a rigorous application of 
reliability growth and problem-solving methodology. However, the reliabil
ity growth and problem-solving-process methodology is not an adequate 
approach to the optimization of the vital few design parameters in order to 
achieve robust performance. This misapplication of reliability growth and 
problem-solving process is inspection of the design. It has all the faults of 
inspection during production (see Cash Drain 9). It results in countermea
sures being brought to bear too late when they are very expensive and often 
do not catch all of the problems before the product is in the hands of the 
customer. In this approach of problem identification and problem solving to 
grow the reliability, purposeful improvements are not made until the product 
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has been detected as being defective. This approach is very ineffective in 
optimizing the vital few design parameters that are the most unique aspects 
of the new design and control its most important performance characteris
tics. The problem with the problem-solving process approach to optimiza
tion of the vital few design parameters is that it is incapable of detecting 
situations that are very close to being a problem but are not actually a 
problem on the specific hardware being tested at the specific operating point 
of the problem-identification test. Therefore, situations that are just about to 
go over the cliff will not be detected. However, if further improvement is not 
made, such a design will perform poorly in the field where new conditions of 
use following realistic production conditions will cause a product to go over 
the cliff and have serious problems. Therefore, it is very important to have a 
problem prevention approach in the optimization of the vital few design 
parameters that will assure that the design is not only performing well in 
some limited test, but is actually very far away from any problem-causing 
cliff and, therefore, under realistic conditions, will remain on safe operating 
ground and not fall off the cliff. 

The problem-solving process is very satisfactory for correcting simple 
mistakes in the design. However, a systematic optimization process is re
quired to achieve robust performance by finding the best values for the 
critical design parameters. 

Optimization of Quality 
Quality has two aspects: 

1. Elimination of mistakes 
2. Robust performance. 

Robust designs keep performance close to the ideal customer satisfaction 
value, even when the design is subjected to the actual conditions of customer 
use. The two aspects of quality are associated with the two styles of decision 
making: 

1. Experience is sufficient 
2. Decisions must be optimized, experience is not sufficient (some ignorance 

remains). 

When experience is sufficient, the only problem is simple mistakes (human 
error). A complex system may have 107 design decisions, many of them 
mundane. An error rate of 0.01 %, which seems very good, will still create 
1000 mistakes. These then must be found and eliminated. The common 
process of problem-identification tests, problem-solving process, and design 
correction, guided by historical reliability-growth curves, is successful. Here 
we will concentrate on the second aspect of quality, robust design. Robust 
performance is controlled by the critical (vital few) design variables. Here it 
is not a question of correcting mistakes. These parameters are sufficiently 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 377 

unique to the present design that is being developed, so that it is not possible 
for even the best engineers to get it right the first time. Therefore, a system
atic decision-making process is needed to select the best numerical values for 
the vital few design parameters that are critical to the success of the product. 
(Although the word 

The optimization process (see Figures 17.3 and 17.4) for the vital few 
design parameters must have two characteristics. First, it must be capable 
of systematically and rapidly making the right numerical choice for the 
values of each critical parameter, even though total understanding of the 
phenomena that control the function of the system is not available. Waiting 
for total understanding will inevitably take much too long for the completion 
of the total development process and the product will reach the market too 
late for its unique characteristics to be especially attractive to customers. 
Secondly, the optimization process for the vital few design parameters must 
be capable of preventing problems by recognizing that although the system 
may actually be working satisfactorily, it is very close to a problem and will 
fall off the cliff under actual customer conditions. The outstanding optimiza
tion method for rapidly and economically achieving problem prevention by 
a systematic process of decision-making that utilizes all available under
standing, but does not wait for the time-delaying arrival of new understand
ing, has been developed by Taguchi (Taguchi and Clausing, 1990). 

The most important single improvement in the Total Development Pro
cess is the optimization of the signal-to-noise ratios. The signal-to-noise 
ratios have been developed by Taguchi as a measure of robustness (the 
proximity of potential problems). As the systematic optimization process 
increases the values of the signal-to-noise ratios, the system design moves 
farther and farther away from the occurrence of any potential problems. The 
signal-to-noise (SN) optimization is known as parameter design because the 
nominal values for the vital-few design parameters are optimized by this 
process. 

SN optimization is initially done on the concepts that have shown promise 
during technology generation. During this initial SN optimization these con
cepts are often still generic rather than having been applied to a specific 
system design. The generic SN optimization is very beneficial in readying a 
concept for application in a specific system design. For more complex and 
unique concepts it is a requirement that some generic SN optimization has 
occurred before the concept can be selected for a new system design. 

It would be easy to first do SN optimization of the generic concepts that 
have emerged from the technology sensation activity, then design these con
cepts into a specific system design and build prototype hardware, which 
would then be followed by again performing SN optimization on this proto
type hardware. Although this approach, carried out in a competent manner, 
would be foolproof and result in the best possible system design, it would 
have the glaring shortcoming of taking too long in getting the product to 
market, after the market window had slammed shut. Therefore, in the inter-
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est of efficiency, it is necessary that the SN optimization be done simultane
ously with the critical initial portion of the system design. This is clearly 
shown in Figures I7.3 and I7.4. Although a considerable challenge, this 
simultaneous optimization and system design can be done. Therefore, to 
have a world-class total development process, it must be done. 

The design of the SN rigs begins near the end of the Concept Phase of the 
system design. By that time, the product concept is sufficient to guide the 
design of the SN rig. As much as possible, the SN rig should be based on 
hardware that already exists. This existing hardware will be hardware that 
was developed during technology generation and generic SN optimization, 
and mules (existing production hardware that is modified to accept new 
subassemblies for the purpose of doing the SN optimization). The first SN 
optimization will usually consist of two or three iterations. It is completed 
in time for the information to be easily incorporated into the new product 
design. 

After the completion of the first SN optimization, the SN rigs are often 
upgraded to incorporate important design changes that more closely reflect 
the current system design. The second SN optimization is then completed. 
With close coordination to achieve quick design and hardware implementa
tion of the results of the second optimization, the PI prototype hardware will 
completely capture all of the design decisions that are made during the SN 
optimization. 

The early completion of the SN optimization, so that its results are com
pletely captured in the PI hardware, is a critical and extremely beneficial 
feature of the improved Total Development Process. In the past, failure to 
do adequate SN optimization has led to the presence of many borderline 
problems that greatly plague and complicate the ensuing elimination of 
mistakes. The borderline problems come and go intermittently. When they 
come, they cause major shortfalls in performance to the point where it is 
difficult to work on the mistakes. When these intermittent problems go away 
temporarily, they cause a false sense of security, which is then demolished 
when the problems again return. This constant going and coming of major 
problems has a demoralizing effect upon the entire development activity. By 
eliminating these major intermittent problems very early, the SN optimiza
tion allows subsequent concentration on simply correcting the many mun
dane mistakes. 

After the completion of the SN optimization, the best nominal values have 
been established for each of the vital few critical design parameters. Then 
tolerance design is performed. The most economical level of precision for 
each of the critical production processes is selected. Economy is assured by 
using Taguchi's Quality Loss Function (Phadke, I989) to predict the quality 
loss that will occur in the field as a result of the selected level of precision. 
This is added to the manufacturing cost and the precision level is selected 
that minimizes the total cost. Previously, at this stage of the development 



www.manaraa.com

17. Improved Total Development Process: Overcoming the Ten Cash Drains 379 

process, there has been no ability to put a dollar value on the loss that would 
be incurred because of the selected level of precision. Taguchi's Quality Loss 
Function has enabled this rational tolerance-design process to replace what 
had previously been an emotional and trying negotiation between product 
designers and process engineers. After the best level of precision for each 
critical production process has been selected, then production tolerances are 
placed on the drawing. However, in the improved Total Development Pro
cess, the production tolerances on the drawings are almost superfluous for 
many products. 

After the PI prototypes are available, system adjustment and verification 
is performed. Some of the PI prototypes are devoted to this activity. (The 
other PI prototypes will be used to correct the mistakes.) The SN optimiza
tion has minimized the critical variances in the outputs of the subsystems of 
the product. However, the nominal or "mean values" for these subsystem 
outputs that were chosen in the system design may not be optimal. System 
adjustment is the adjustment of the mean values of the critical subsystem 
output performance characteristics to assure that the total system has the 
best possible performance. This system adjustment is easy to do. After the 
system adjustment is completed, then a system verification test (SVT) is 
performed. In the system verification test, the PI prototypes are tested in 
a head-on showdown with the competitive benchmark product(s). In this 
head-on competitive benchmark system verification test, the critical SN ra
tios are compared between the new product and the competitive benchmark 
product. The new product should show improvement in the critical SN 
values. The amount of improvement that is required to have a world-class 
product when the new product appears in the market can be easily estimated. 
At the completion of the system verification test, a "go-no go" review is 
held. If the product fails this head-on comparison of SN ratios with the 
competitive benchmark, it means that the product is inherently incapable of 
being a major success in the marketplace. If this should happen, this specific 
product development activity should be terminated. A return should be 
made to the beginning of the system design to redefine the system concept 
that will be superior for the new market entry date. Based on the experience 
that has just been attained, a better system design should be achieved. This 
is very preferable to throwing good money after bad. Of course, by using the 
improved Total Development Process, the specific product development ac
tivity will almost never have to be cancelled. After this review, there should 
never again be any serious consideration given to the possibility that the 
specific product development activity will be cancelled. Instead, all effort 
should be concentrated in getting the best possible product to the market at 
the scheduled date, or earlier. 

Simultaneously with the system adjustment and verification activity, other 
PI prototype machines will be devoted to problem identification testing and 
the problem-solving process. In this activity, the mundane mistakes will be 
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weeded out to achieve reliability growth. This is then repeated on the P2, BO, 
and B 1 hardware.* All product design changes should be completed at the 
end of the P2 problem-solving process. The BO iteration is to correct mis
takes in the production processes. The B1 iteration is to verify that the 
production processes have been correctly implemented in factory operations. 

At the completion of the optimization, a launch-readiness demonstration 
test (LRDT) is performed on the Bl hardware. In this test, simulated cus
tomer use conditions are utilized. This test should not be regarded as a 
significant step in the development of quality. If the entire process has been 
done well, the LRDT will provide no new significant insights into the new 
product. It is done strictly to convince the management of other major 
corporate functions, and to provide data to guide the fine tuning of the sales 
and service plans. 

Summary 
Taguchi's methods of optimization challenge the new product instead of 
pampering it, and ensure that the design is as far away as possible from all 
potential critical problems. 

Overcoming Cash Drain 6: "Hardware Swamps" 

Hardware Swamps 
Hardware swamps occur when the prototype iterations are so numerous 
and so overlapping that the entire team becomes swamped by the chores 
of debugging and maintaining the experimental hardware. The hardware 
swamp can become so severe that no time remains to improve the design. 
The prototype hardware has become an end unto itself, rather than its being 
used to improve the design. A hardware swamp can be recognized by la
boratories packed full of experimental equipment and an inability to com
plete any organized experiments because of the voracious appetite of the 
hardware to be debugged and maintained. 

Prototypes Enable Optimization 
Only enough prototypes are built to enable the successful completion of the 
optimization process. Only four iterations of the prototypes are needed (see 
Figure 17 .3) to achieve successful optimization, two design iterations, and 

• Four major iterations of prototypes is the most that should be required. Many 
products only require two. Of course, if the production volume is small, in the limit 
only one, then prototypes may not be appropriate. In this case there may be many 
minor iterations (changes to parts and subsystems) on the few units of production, the 
objective being to eliminate mistakes and achieve some final improvement in robustness. 
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two production iterations. (For products that. are significantly simpler than 
cars, copiers, and computers, only two iterations are required.) The early 
optimization of robustness (before prototypes are built) enables the mistakes 
to be eliminated in a few iterations of prototypes. There is sufficient time 
between each iteration of prototypes to enable the data from the previous 
prototype to be incorporated in the build of the next prototype. This is 
essential for an efficient process. 

Prototypes are built only to enable the development of quality. Building 
prototypes for the sake of building prototypes or to achieve some ideological 
number of iterations is rigorously avoided. Some of the Pl prototypes are 
used to verify robustness. The remaining Pl prototypes and the P2 proto
types are used to eliminate mistakes from the product design. The BO and B l 
prototypes are used to eliminate mistakes from the production equipment 
and processes. There should be continuous efforts to reduce the number of 
iterations that are required. 

Summary 

Early optimization of robustness enables the number of prototypes to be 
greatly reduced. 

Overcoming Cash Drain 7: "Here's the Product. 
Where's the Factory?" 

Here's the Product. Where's the Factory? 

Past practices have all too often developed a product to an almost final stage 
before looking at how it might produced. This is a sure road to failure. The 
production capability must be developed along with the product design. It is 
not a design if we don't know how to make it. In doing the design study, 
design for assembly and design for piece-part producibility must be empha
sized. Here we are describing the need to simultaneously develop the produc
tion capability in close coordination with the product design. If the design of 
the production capability starts only a few months before actual production, 
many severe problems are guaranteed to occur. There is a similar require
ment for field operations, particularly service. 

Development of Production Capability 

In parallel with the product system design, the capability must be developed 
(see Figure 17.3) to produce piece parts, assemble the product, and have the 
operating systems that are necessary for factory and field operations. The 
development of the piece-part production and assembly capability can be 
best thought of as a part of the system design. The result is a total product
and-process system. 
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Piece-part production capability has three degrees of required develop
ment, depending on the portion of the process and eqW.pment that is new: 

1. The piece-part production process is a new, unique, clean-sheet (starting 
with a clean sheet of paper) process. In this case, the development process 
for the clean-sheet production process is the Total Development Process 
itself. The clean-sheet production process must go through all of the steps 
of the Total Development Process, including system design and optimiza
tion. (Instead ofP2 prototypes, the actual production equipment is built). 

2. Dedicated capability. In this case, the design of the machine tools them
selves must be tailored to the specific product system design. However, 
the function of these machine tools is conventional and requires little or 
no development. 

3. The machine tools are standard and in place in the factory, and only 
fixtures must be designed and built for the specific product. 

The lead time becomes progressively shorter. A clean-sheet production 
process must go through the Total Development Process. The dedicated 
processes can start a bit later, but still must go through a long development 
activity. The third case, where only the tools and fixtures must be designed 
and built, can have very short lead times. This is the advantage of flexible 
manufacturing. Of course, most piece-part production has for a long time 
been somewhat flexible in the sense that one machine tool could make parts 
for many different products. The shorter development time for tool design 
and build that is displayed in Figures 17.3 and 17.4 reflects the advantage of 
conventional flexible manufacturing. An increased emphasis upon flexible 
manufacturing can greatly reduce the time that is shown in Figure 17.3 and 
17.4. However, one must be aware of the longer production cycle times that 
frequently accompany increased flexibility. Therefore, the shorter develop
ment time and the ability to more smoothly and rapidly enter production 
must be balanced against increased cycle times. 

The piece-part production tools and the assembly equipment must go 
through a system design activity and correction of mistakes that is quite 
similar to the system design and problem-solving process that has already 
been shown for the product and clean-sheet processes in Figures 17.3 and 
17 .4. It is important that all of these production capability development 
activities be started well before the PI build so that they can influence the 
style of the PI build, and so that much information can be attained from the 
Pl build to guide the design and development of the piece-part production 
tools and production assembly line. 

Many operating systems are necessary for factory and field operation. 
Although such systems have long been in use, there is continuous opportu
nity to improve them, and many developments are now producing major 
improvements. Examples of such operating systems are configuration man
agement, change management, prototype build, problem management, ser
vice documentation and training, spares management, unit manufacturing 
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cost (UMC) tracking, process sheets, CNC, production routing and schedul
ing, ordering, the manufacturing quality system, and distribution. These 
operating systems are usually in the curriculum and area of expertise of 
business schools in the United States. There is a need for closer involvement 
and participation of business school graduates and engineers in the develop
ment and implementation of these operating systems. In many companies, 
these operating systems have taken on a life of their own and have become 
excessively complex, and too difficult and time-consuming for the average 
design and process engineer. The design and process engineers must load the 
operating systems with the design data for the specific product design, acti
vate the systems, and initially operate them for prototype builds, and, most 
importantly, pilot production (BO build). There is much opportunity to im
prove the flexibility of operating systems through the use of computers. The 
design database is created during System Design. Then it must be very easy 
to load, activate, and operate the operating systems. 

Summary 
Development of production capability and logistical (field) capability in 
parallel with product development assures smooth and efficient transition 
into factory operations and field operations. 

Overcoming Cash Drain 8: "We've Always Made It This 
Way" 

We've Always Made It This Way 
The process operating points (speeds, depth of cut, feed rates, pressures, 
temperatures, etc.) are specified on process sheets or NC programs. The 
values for the process parameters have often been fixed for a long time, and 
even originally were the result of little development, if any. "We've always 
made it this way and it works." Yes, but has the process been optimized to 
achieve minimum cycle time and maximum quality? 

Process Parameter Design 

Taguchi's methods of parameter design have proven to be very successful in 
the optimization of production processes. This action is completely analo
gous to the SN optimization of the product. Here the parameter design 
improves the precision of the process, while holding or reducing the cycle 
time. This greatly improves product quality and reduces production costs. 

Process parameter design is done shortly before start of production (see 
Process PD in Figure 17 .3). This enables production tooling to be used. (For 
clean-sheet production processes, the process is SN optimized much earlier, 
at the same time as the product.) 
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Process parameter design can be successful and very beneficial even after 
start of production. Ford Motor Company and the American Supplier Insti
tute have demonstrated this type of success. 

Summary 

Taguchi's method of process parameter design greatly improves production 
processes. 

Overcoming Cash Drain 9: "Inspection" 

Inspection 

Inspection in the factory means sorting the good from the bad after produc
tion has been completed. This is now widely recognized to be a poor process 
for most products, largely through the efforts of Deming (Deming, 1986). 

On-Line QC 

On-line quality control (QC) (see Figure 17.3) eliminates the waste of inspec
tion. This was first recognized by Walter Shewhart during the 1920s, when he 
created his famous control chart. Japanese companies used the control chart 
with great benefit from 1950 until recently. During the 1980s, the control 
chart has been increasingly employed in the United States. However, Taguchi 
has developed a method of on-line QC that is more active in improving 
quality than the control chart, and which is now widely used in Japan. This 
is a method of optimal checking and adjusting. The machine operator mea
sures every nth part, and if it deviates from the target by more than a 
predetermined adjustment limit, the process is adjusted back to the target. 
The checking interval, n, and the adjustment limit are set at values that 
minimize total cost (quality loss in the field plus factory cost). Taguchi's 
Quality Loss Function is used to estimate the quality loss in the field. 

The method of optimal checking and adjusting greatly reduces many dif
ferent cash drains: cost of inspection, cost of scrap, cost of rework, cost of 
adjustment, and quality loss in the field. It is a simple process to perform, 
integrating cost-reduction discipline with the machine operator's natural 
tendency to check and adjust. 

Summary 

Taguchi's method of optimal checking and adjusting minimizes the direct 
and indirect costs of inspection. 
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Overcoming Cash Drain 10: "Give Me My Targets, 
Let Me Do My Thing" 

Give Me My Targets, Let Me Do My Thing 

Targets seem good. However, Deming points out that they can tend to 
restrain improvement. Also, the early allocation of targets down to a detailed 
level tends to destroy teamwork. The writing of contracts so that each person 
can then work in isolation seems to have a fatal fascination for the American 
psyche. It leads to subsystems that cannot be integrated, products that can
not be produced, production capacity that cannot produce modem products, 
operating systems that attempt to enslave their users, managers who cannot 
lead, and employees who wait to be told what to do. 

Integrative, Participative Management 

Employee involvement has made significant progress in the United States 
since 1980. Integrated, multifunctional teams that have authority commen
surate with their responsibility are a key success factor. Managers who lead 
the process instead of reacting to problems are essential. Holding targets at 
the highest feasible organizational level produces emotional stress in the 
American psyche, but it promotes teamwork. 

Product development teams should be responsible for development, prod
uct, and processes. Once development is complete, the products and processes 
go through a transition into production operations and field operations. 

Summary 
Teamwork and competitive benchmarking win over contracts and targets. 
Management must lead the process. 

Strategies 

The improved Total Development Process that has been described is carried 
out in the context of corporate strategies, usually business strategy, product 
strategy, and technology strategy. These three strategies need to be inte
grated. The improved Total Development Process is the means by which the 
implementation ofthe next phase of the strategies is begun. The development 
of a new product is started with the intention of bringing a new product to 
market on a certain date, with quality, costs, and features that appeal to the 
customers in a certain market segment, as planned in the product strategy. 
The new product will implement leadership technologies, as planned in the 
technology strategy. The product will be capable of achieving the financial 
goals that are stated in the business strategy. 
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The improved Total Development Process cannot succeed if the strategies 
are seriously flawed. A beautiful product might be produced for which there 
is little profit potential. More commonly the strategies are sound, but the 
development process is weak. The products come too late, with quality, 
costs, and features that do not excite the potential customers. 

It is important that the development people and the rest of the enterprise 
have a clear consensus about the strategies that are being implemented. This 
consensus needs to be continuously reaffirmed throughout the development 
period. The development people sometimes make sound tradeoffs that are 
not adequately communicated to the sales and service organization. If the 
sales and service people are surprised by the tradeoffs when production is 
about to start, much internal resistance may arise. 

It is essential to success that the improved Total Development Process be 
carried out with a clear consensus about the business strategy, product strat
egy, and technology strategy that are being implemented. 

Root Causes 

The ten cash drains are the major problems in the development process in the 
United States. This leads to the question of the root causes for these prob
lems. There is certainly not a consensus about the root causes. It seems to the 
author that there are two primary root causes: 

I. Expectations that are not high enough. 
2. Segmentalism; cloistered specialists looking inward within their specialty. 

Segmentalism is especially pernicious. Americans have produced elegant 
solutions to problem definitions that have become increasingly obsolete. 
Japanese have produced pragmatic solutions to problem definitions that they 
have made increasingly relevant. Segmentalism makes it difficult to do the 
integrative thinking that leads to better objectives. 

Some people believe that the root causes must be overcome before im
provements can be made in the development process. It seems to the author 
that it is better to improve simultaneously the process to overcome the ten 
cash drains and work to mitigate the effects of the root causes. 

Benefits of Improved Total Development Process 

By greatly reducing the Ten Cash Drains, the improved Total Development 
Process will lead to major improvements in quality, cost, and delivery. This 
in tum will lead to greater market share and unit profit margins. There is no 
escape, the technical and managerial details must be mastered, to be fol
lowed by continuous improvement. As Deming has written, "Study and hard 
work will be required." 
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